
The METRICS NEWS can be ordered directly from the Editorial Office (for address see
below).

Editors:

ALAIN ABRAN
Professor and Director of the Research Lab. in Software Engineering Management
Quebec-University of Montreal
Departement of Computer Science
C.P. 8888 Succursale Centre-Ville, Montreal, H3C 3P8, Canada
Tel.: +1-514-987-3000, -89000, Fax: +1-514-987-8477
abran.alain@uqam.ca

MANFRED BUNDSCHUH
Chair of the DASMA
Sander Höhe 5, 51465 Bergisch Gladbach, Germany
Tel.: +49-2202-35719
Bundschuhm@acm.org
http://www.dasma.de

REINER DUMKE
Professor on Software Engineering
University of Magdeburg, FIN/IVS
Postfach 4120, D-39016 Magdeburg, Germany
Tel.: +49-391-67-18664, Fax: +49-391-67-12810
dumke@ivs.cs.uni-magdeburg.de

CHRISTOF EBERT
Dr.-Ing. in Computer Science
Alcatel Telecom, Switching Systems Division
Fr. Wellensplein 1, B-2018 Antwerpen, Belgium
Tel.: +32-3-240-4081, Fax: +32-3-240-9935
christof.ebert@alcatel.de

HORST ZUSE
Dr.-Ing. habil. in Computer Science
Technical University of Berlin, FR 5-3,
Franklinstr. 28/29, D-10587 Berlin, Germany
Tel.: +49-30-314-73439, Fax: +49-30-314-21103
zuse@tubvm.cs.tu-berlin.de

Editorial Office: Otto-von-Guericke-University of Magdeburg, FIN/IVS, Postfach 4120,
39016 Magdeburg, Germany
Technical Editor: DI Mathias Lother
The journal is published in one volume per year consisting of two numbers. All rights
reserved (including those of translation into foreign languages). No part of this issues may be
reproduced in any form, by photoprint, microfilm or any other means, nor transmitted or
translated into a machine language, without written permission from the publisher.
� 2000 by Otto-von-Guericke-Universität Magdeburg. Printed in Germany

C A L L F O R P A P E R S

for the 11th International Workshop on Software Measurement
of the German Interest Group on Software Metrics and the

Canadian Interest Group on Metrics (C.I.M.)
In cooperation with

COSMIC – Common Software Measurement International Consortium

August 28-29, 2001 in Montréal (Québec) CANADA

THEME & SCOPE: SOFTWARE SIZE MEASUREMENT

Software measurement is one of the key technologies to control or to manage the software
development process. Measurement is also the foundation of both sciences and engineering,
and much more research in software is needed to ensure that software engineering be
recognized as a true engineering discipline.

In 2001, a significant number of key institutional documents will be made in the public
domain where measurement is considered a fundamental issues (such as the IEEE- Guide to
the Software Engineering Body of Knowledge and ISO standards specifics to Measurement).

Therefore, it is necessary to exchange between researchers and practitioners the experiences
on the design and uses of measurement methods to simulate further theoretical investigations
to improve the engineering foundations through measurement.

The purpose of the workshop is to review the set of issues such as the identification of
deficiencies in the design of currently available measurement methods, the identification of
design criteria and techniques and measurement frameworks.

We are looking for papers in the area of software measurement, addressing generic research
issues, infrastructure issues or specific research and implementation issues on the following
issues and topics(but not limited to):

A - Measurements within institutional documents:
�� IEEE – Guide to the Software Engineering Body of Knowledge – SWEBOK project

 www.swebok.org
�� ISO/IEC JTC1/SC7 new standards and work-in-progress on software measurement
�� Measurement program frameworks publicly available

B - Objects and attributes to be measured:
�� Types of measurement object targets (functional domains, type of software – layers,

specific functional characteristics - algorithms)
�� Timely adaptation of the designs of measurement methods to new and emerging

technologies (OO, Multi-media, Web-based applications, etc.)
�� Size attributes categories (Functional, Technical, Quality, etc.)

C - Measurement methods: design issues
�� Design issues of measurement methods: definition of base components to be measured,

ISO conformance, weights assignments and theoretical foundations (Basis for consensus,
degree of consensus, etc.

�� Normalization issues: time dependence, technology dependence, infrastructure changes
�� Integration of measurement types: when and how.
�� Quality of measurement methods (repeatability accuracy, correctness, traceability,

uncertainty, precision, etc).

D - Uses of measurements results in relationships with other measures:
�� Productivity Analysis (foundations of productivity models, quality of productivity models,

experimental basis and constraints that limit it expandability to contexts outside of the
experimental basis).

�� Estimation process (uncertainty, identification of inputs, expectations, technical estimates
versus business risks estimation, etc.).

PROGRAM COMMITTEE

Alain Abran, University du Québec à Montréal - UQAM, Canada
Fernando Brito e Abreu, INESC Lisboa, Portugal
Luigi Buglione, Invited professor, UQAM
Manfred Bundschuh, DASMA, Germany
François Coallier, Bell Canada, Canada
Jean-Marc Desharnais, CIM Montreal, Canada
Reiner Dumke, University of Magdeburg, Germany
Christof Ebert, Alcatel Antwerp, Belgium
Martin Hitz, University of Klagenfurt, Austria
Franz Lehner, University of Regensburg, Germany
Serge Oligny, UQAM, Canada
Geert Poels, Vlekho Brussel, Belgium
Andreas Schmietendorf, T-Nova Berlin, Germany
Harry Sneed, SES Munich/Budapest, Hungary
Charles Symons, COSMIC - UK
Horst Zuse, TU Berlin, Germany

SUBMISSIONS

Authors should send abstract (1-2 pages)
by mail, fax or e-mail by May 1st, 2001 to

Alain Abran Reiner Dumke
University of Quebec or to Otto-von-Guericke-Universität Magdeburg
Dept. of Computer Science Fakultät für Informatik
C.P.8888, Succ. Centre-Ville Postfach 4120
Montreal (Quebec), Canada H3C 3P8 D-39016 Magdeburg, Germany
Tel.: +1-514-987-3000, ext. 8900 Tel.: +49-391-67-18664
Fax: +1-514-987-4501 Fax: +49-391-67-12810
abran.alain@uqam.ca dumke@ivs.cs.uni-magdeburg.de

WORKSHOP TIMETABLE

 Submission deadline of abstract: May 1st, 2001

 Notification of acceptance: May 10, 2001
 Position paper deadline: July 15, 2001
 Workshop date: August 28-29, 2001

FEES for authors: none

NEWS

For the latest news about the Workshop see the following Web site:

http://lrgl.uqam.ca/workshop2001

C A L L F O R P A P E R S

Workshop der GI-Fachgruppe 2.1.10 "Software-Messung und -Bewertung"

vom 10.9. - 11.9.2001
an der Universität Kaiserslautern

http://ivs.cs.uni-magdeburg.de/sw-eng/us/giak/

Neben dem einfachen Einsatz von Software-Metriken haben sich im industriellen Bereich
immer mehr Software-Messprogramme etabliert, die eine kontinuierliche Software-Messung
und Bewertung von ausgewählten Produkt- und Prozessmerkmalen der Software-Entwicklung
gewährleisten. Bei der methodischen Vorgehensweise hat sich dabei besonders die Goal-
Question-Metrics-Methode bewährt. Andererseits dringen auch immer neue Software-
Technologien, wie die komponentenbasierte oder agentenbasierte Entwicklung auf den Markt,
deren Auswirkungen auf die Prozess- oder gar Produktqualität noch kaum untersucht wurden.
Dazu zählt auch die Erschließung neuer Anwendungsfelder, wie das eCommerce.

Der diesjährige Workshop widmet sich daher vor allem (jedoch nicht ausschließlich) den
Themenschwerpunkten
�� Erfahrungsberichte zu Metriken-Programmen in der Praxis,
�� Anwendungserfahrungen bei der Aufwandsschätzung, insbesondere mit der Function-

Point-Methode sowie dem FFP,
�� Lösungsformen und Erfahrungen in der Messdatenhaltung,
�� theoretische Grundlagen der metriken-basierten Software-Entwicklung und -Anwendung,
�� Anwendung neuer Technologien für die Umsetzung und Installation von Metriken-

Programmen,
�� Erschließung weiterer Bereiche durch quantifizierte Mess- und Bewertungsformen

(komponentenbasierte Software-Entwicklung, eCommerce, Web Engineering usw.).

Für die Präsentation sind ca. 20 Minuten vorgesehen, um jeweils ausreichend Zeit für
Diskussionen zur Verfügung zu haben. Darüber hinaus sollen wiederum die bewährten Panel-
Diskussionen Anwendung finden. Die Beiträge werden im Rahmen der Buchreihe
"Information Engineering und IV-Controlling" beim Deutschen Universitätsverlag
veröffentlicht.
Für die Zeit des Workshops besteht die Möglichkeit von Tool-Demonstrationen zum Gebiet
der Software-Messung und -Bewertung.
Beiträge schicken Sie bitte per Post oder per Email bis zum 15. Juli 2001 an eine der beiden
Adressen

Prof. Dr. Dieter Rombach Prof. Dr. Reiner Dumke
Fraunhofer Institut für Experimentelles Otto-von-Guericke-Universität Magdeburg
Software Engineering Fakultät für Informatik
Sauerwiesen 6 Postfach 4120
D-67661 Kaiserslautern D-39016 Magdeburg
rombach@iese.fhg.de dumke@ivs.cs.uni-magdeburg.de

Sollte die Zahl der Präsentationen zu groß werden, so treffen die Organisatoren eine Auswahl.

C A L L F O R P A R T I C I P A T I O N

The 4th European Conference on
Software Measurement and ICT Control

(FESMA-DASMA 2001)

Heidelberg, Germany
May 9-11, 2001

http://www.ti.kviv.be/conf/fesma.htm

SCOPE AND THEMES

The scope of the future FESMA conferences will be broadened in the sense that these will
also include subjects in the area of Information and Communication Technology (ICT)
management control. This will not replace the traditional scope of measurement but will be
supplementary. The reason is that the application of measurement is not a target itself but a
component of the ICT management control system of an organisation. With this
diversification, FESMA makes its conferences more attractive for target groups in the area of
ICT and user management and for controllers, financial officers, auditors, a.o. who are
involved in support of ICT management.

The conference theme is

"Managing ICT in internetworked enterprises"

The subtheme for ICT professionals is

"Measures for quality control and cost estimation in the e-world"

The subtheme for management and support functions is

"The balanced scorecard as a support tool for ICT management and ICT involved user
management"

TOPICS

Quality and cost of E-business applications
Quality and cost of internet site development
ICT balanced scorecard : new developments and experiences
Evaluating new ICT-related methods, techniques and tools
Evaluating and controlling software process improvement programs
System and software cost and quality benchmarking studies
System and software size measurement and estimation
System and software quality measurement and prediction
Empirical investigations of system and software quality and costs
Machine learning and other AI techniques for
advanced analysis of system and software quality and costs
Assessing conceptual schema and database schema quality
Measurement support for UML-compliant system and software development
Measurement support for component-based development
Measurement support for system and software reengineering
Other topics related to the application of ICT balanced scorecard, software measurement and
software process improvement are also welcome.

FESMA

This non-profit making organisation was founded in Amsterdam in 1996 to co-ordinate and
support the activities of the various Software Metrics Associations in Europe. The main
objective of FESMA is to promote the use of software metrics, in the broadest sense, to enable
best practice in the development and delivery of software products. At the moment software
metrics associations from 10 European countries: Belgium, Denmark, Finland, France,
Germany, Great Britain, Italy, the Netherlands, Spain and Sweden are participating in
FESMA. Canada and Japan are associated members.

IMPORTANT DATES

Conference May 9-11, 2001
Workshops/Tutorials May 7-8, 2001

PRE-CONFERENCE TUTORIALS AND WORKSHOPS

A number of tutorials and/or workshops will be run on Monday and Tuesday, May 7 and 8,
2001.

VENDORS

A tools fair will be held during the conference to give attendees the opportunity to see the
newest tools available. If you would like to display at the tools fair please contact the
conference director.

PROGRAM CHAIRS

Geert Poels, Katholieke Universiteit Leuven/Vlekho-Brussel, Belgium
gpoels@vlekho.wenk.be)

Manfred Bundschuh, DASMA, Germany
bundschuh@acm.org

PROGRAM ADVISORY BOARD

Alain Abran, Université de Québec à Montréal, Canada
Guido Dedene, Katholieke Universiteit Leuven, Belgium
Reiner Dumke, University of Magdeburg, Germany
Bruno Peeters, DEXIA Bank, Belgium
Dieter Rombach, University of Kaiserslautern, Germany
Eberhard Rudolph, Hochschule Bremerhaven, Germany
Rini van Solingen, Fraunhofer IESE, Germany

CONFERENCE DIRECTOR

Martin Hooft van Huysduynen, FESMA,
Oosterzijweg 43, 1851 PC Heiloo, The Netherlands
Tel.: +31 654264386
mjhooftvh@cs.com

CONFERENCE ADMINISTRATION OFFICE - CONTACT DETAILS

Rita Peys,
FESMA Conference Manager,
Technologisch Instituut vzw,

Desguinlei 214,
B-2018 Antwerpen, Belgium
Tel.: +32 3 216 09 96
Fax: +32 3 216 06 89
fesma@conferences.ti.kviv.be

URL of conference web site:

http://www.ti.kviv.be/conf/fesma.htm

VENUE

The conference will be held at the Marriott Hotel in Heidelberg. The hotel is located on the
banks of the river Neckar with its own landing jetty, only 500 meters from the motorway exit
as well as from Heidelberg's main train station. There is an underground parking.

HEIDELBERG

Heidelberg : the fairy tale setting has captivated imaginations and inspired creative hearts for
centuries. In works preserved for all time. From writers such as Goethe,
Eichendorff, Hölderlin, Jean Paul, Victor Hugo, and Mark Twain to name just a
few, to painters including Turner, Rottmann, Issel, and Trübner, who created
rich paintings, the town on the Neckar River. Composers such as Schumann,
C.M. von Weber, Brahms also captured their impressions of Heidelberg's unique
blend of river landscape, historic town, and hillside castle in their music.

C A L L F O R P A R T I C I P A T I O N - PE2001

2th GI-Workshop Performance Engineering
 within the Software Development

University of the German Federal Armed Forces Munich
19. April 2001

SCOPE

One of the most critical non-functional quality factors of a software system is the performance
characteristic. The main idea of performance engineering is to consider the performance as a
design target throughout the whole software development process and especially in its early
phases. The goal of the PE2001 workshop is to bring together experts from industries and
research within the field of performance- and software-engineering.

PRELIMINARY WORHSHOP PROGRAM

M. Christiansen, H. Herting, E. Rohde: Overview and compatibility of the tools Strategizer -
Best/1 - s_aturn within the software performance engineering
J. Luethi, C. M. Llado: Sensitivity Analysis of an EJB Performance Model using Interval
Parameters
R. Gerlich, R. Gerlich: Performance and Robustness Engineering: A Potential Conflict
H. Eckardt: Bottleneck-analysis – a analytical method for the performance assessment
E. Dimitrov, A. Schmietendorf, K. T. Atanassov: Generalised Nets models for the performance
analysis of multi-tier client/server systems
D. Stoll, P. Rauch, C. Janczewski, E. Lipper: Evaluating Architecture and Design Issues via
Performance Modelling: A Case Study
R. Dumke, C. Wille: Performance engineering methods of agent-based software-systems
A. Schmietendorf, R. Hopfer: Overview to the use of benchmarks within the performance
evaluation of hard- and software-systems
H. Ultsch: Web-Performance-Measurement with „HowAreYou“ (product presentation)

PROGRAM COMMITTEE

Prof. Dr. R. Dumke, Otto-von-Guericke-Universität Magdeburg
Dipl. Ing. Dipl. Inform. A. Schmietendorf, T-Nova, EZ Berlin
Prof. Dr. R. Hopfer, HS für Technik und Wirtschaft Dresden
Prof. Dr. F. Lehmann, Universität der Bundeswehr München
Prof. Dr. C. Rautenstrauch, Otto-von-Guericke-Universität Magdeburg
Dipl. Ing. H. Herting, DeTeCSM, Benchmarklabor Darmstadt
Dipl. Inform. A. Scholz, Accenture Unternehmensberatung
Prof. Dr. F. Victor, Fachhochschule Köln

ORGANISATION

The workshop will be held at the university of the German Federal Armed Forces in Munich.
The workshop language will be German. Further information about the registration procedure
can be found at the following web-side:

http://www-wi.cs.uni-magdeburg.de/pe2001/

Our 10th Workshop on Software Measurement took place in Berlin in October 2000. The
following report gives an overview about the presented papers. Furthermore, the papers are
published in the following Springer book:

Lecture Notes in Computer Science 2006

N E W A P P R O A C H E S I N S O F T W A R E
M E A S U R E M E N T

Reiner Dumke and Alain Abran (Eds.)

10th International Workshop, IWSM 2000
Berlin, Germany,
October 4-6, 2000

Springer Publisher 2001

ISBN: 3-540-41727-3

Impact of Inheritance on Metrics for Size, Coupling, and Cohesion in
Object -Oriented Systems

Dirk Beyer, Claus Lewerentz, Frank Simon

Software Systems Engineering Research Group
Technical University Cottbus, Germany

(db|cl|simon)@informatik.tu-cottbus.de

Abstract. In today’s engineering of object oriented systems many different metrics are used to get
feedback about design quality and to automatically identify design weaknesses. While the concept
of inheritance is covered by special inheritance metrics its impact on other classical metrics (like
size, coupling or cohesion metrics) is not considered; this can yield misleading measurement values
and false interpretations. In this paper we present an approach to work the concept of inheritance
into classical metrics (and with it the related concepts of overriding, overloading and
polymorphism). This is done by some language dependent flattening functions that modify the data
on which the measurement will be done. These functions are implemented within our metrics tool
Crocodile and are applied for a case study: the comparison of the measurement values of the
original data with the measurement values of the flattened data yields interesting results and
improves the power of classical measurements for interpretation.

Measuring Object-Orientedness: the Invocation Profile

Peter Rosner1, Tracy Hall2, Tobias Mayer1

1Centre for Systems and Software Engineering, South Bank University,
Borough Rd, London SE1 0AA, UK

+44 207 815 7473
rosnerpe@sbu.ac.uk
tobias@sbu.ac.uk

2Department of Computer Science, University of Hertfordshire, Hatfield,
Hertfordshire, AL10 8AB, UK
hallt@herts.ac.uk

Abstract. This paper introduces the invocation profile as the basis for a suite of metrics to indicate
the presence and mix of object-oriented mechanisms in a system written in an object-oriented
language. This addresses concerns of practitioners and stakeholders that object-oriented mech-
anisms should be adequately exploited in such a system and gives an indication of the skills needed
by developers for system enhancement and maintenance. An outline is given of plans to implement
this metrics suite for systems written in Java.

mailto:rosnerpe@sbu.ac.uk
mailto:hallt@sbu.ac.uk

CEOS - a Cost Estimation Method for Evolutionary, Object-Oriented
Software Development

Siar Sarferaz1, Wolfgang Hesse2

1microTOOL GmbH, Voltastr. 5, D–13349 Berlin, Germany
Tel.: +49-030-467086-0

Siar.Sarferaz@microTOOL.de
2FB Mathematik/Informatik, Universität Marburg, Hans Meerwein-Str.,

D-35032 Marburg, Germany
Tel.: +49-6421-282 1515, Fax: +49-6421-282 5419
hesse@informatik.uni-marburg.de

Abstract. In this article we present a method for estimating the effort of software projects
following an evolutionary, object-oriented development paradigm. Effort calculation is based on
decomposing systems into manageable building blocks (components, subsystems, classes), and
assessing the complexity for all their associated development cycles. Most terms of the complexity
calculation formulae carry coefficients which represent their individual weights ranging from
factors for particular features up to general influence factors of the project environment. These
coefficients can continuously be improved by statistical regression analysis.
Outstanding features of the method are its flexibility (allowing estimations for project portions of
any size) and its capability to deal with dynamic adjustments which might become necessary due to
changed plans during project progress. This capability reflects the evolutionary character of
software development and, in particular, implies revision, use and evaluation activities.

A Measurement Tool for Object Oriented Software and Measurement
Experiments with it

Li Xinke, Liu Zongtian, Pan Biao, Xing Dahong

Institute of Microcomputer Application, Hefei University of Technology,
Hefei 230009, P.R.C, China

Abstract. The research on software metrics has a long history for more than forty years, but the
research on object-oriented (OO) software metrics has been going on for a few years only. C&K
metrics is one of the most famous researches on OO software metrics. First, this paper analyses the
shortcoming of the C&K metrics suite for object-oriented design and provides an improved metrics
suite. Then the paper introduces a practical C++ measurement tool, SMTCPP, implemented by the
authors based on improved metrics. SMTCPP parses C++ programs by the LL(1) method,
extracts a lot of program information, such as classes, members and objects; counts the indications,
such as the number of methods per class, the biggest complexity among methods, depth of
inheritance tree, the number of children, coupling between object classes, response for class, and
relative lack of cohesion in methods. The measure values are very useful to guide the software
process. The tool may also put the values into a database to collect sufficient data for building a
software quality evaluation model. Last, the paper analyses the experiments for three practical
programs. The result shows that SMTCPP is useful.

Estimating the Cost of Carrying out Tasks Relating to Performance
Engineering

Erik Foltin1, Andreas Schmietendorf 1,2

1 Otto-von-Guericke-Universität Magdeburg, Fakultät Informatik, Institut für Verteilte Systeme,
Postfach 4120, D-39016 Magdeburg,

Tel.: +49-391-6712701, Fax: +49-391-6712810,
foltin|schmiete@ivs.cs.uni-magdeburg.de

2 T-Nova Deutsche Telekom Innovationsgesellschaft mbH, Entwicklungszentrum Berlin,
Wittestraße 30N, D-13476 Berlin,

Tel.: +49-30-43577-633, Fax: +49-30-43577-460,
A.Schmietendorf@telekom.de

Abstract. The study presented here analyzes the methods currently used to estimate costs, and how
these methods map the tasks related to Performance Engineering (PE) and the costs thereof. To
create transparency and acceptance of these extremely important tasks within the context of
software development, an approach is pursued which derives the required costs from a
corresponding risk analysis and thus examines the business process to be supported, the software
development and normal operation. Initial empirical studies are presented which highlight the
general trends for possible costs of specific PE methods.

MEASUREMENT IN SOFTWARE PROCESS IMPROVEMENT PROGRAMMES: AN EMPIRICAL
STUDY

Tracy Hall1, Nathan Baddoo1, David Wilson2

1University of Hertfordshire, UK
2University of Technology, Sydney, Australia

Abstract. In this paper we report on our empirical study of SPI programmes in thirteen UK
software companies. We focus on companies’ approaches to SPI and how measurement relates to
SPI in those companies. We present quantitative data characterising SPI and measurement in the
companies. We discuss how the use of measurement relates to the maturity of software processes
and how measurement supports maturing processes.
Our results show that companies are generally enthusiastic about implementing measurement and
they believe that SPI is impoverished without measurement. However our data shows that in reality
companies have implemented very little substantive measurement. Indeed we suggest that
companies find implementing measurement within SPI more difficult than they expect.
Furthermore, we report on data from software personnel suggesting that companies are reluctant to
implement measurement because it is difficult to justify in terms of quick pay backs. Overall our
research suggests that despite companies knowing that measurement is fundamental to SPI, it is
rarely implemented effectively.

mailto:A.Schmietendorf@telekom.de

Improving Validation Activities in a Global Software Development

Christof Ebert1, Casimiro Hernandez Parro, Roland Suttels, Harald Kolarczyk
Alcatel, Switching and Routing Division, Antwerp, Belgium / Madrid, Spain /

Stuttgart, Germany
1Alcatel, SD-97, Fr.-Wellesplein 1, B-2018 Antwerpen, Belgium

Tel.: +32-3-240-4081, Fax: +32-3-240-9935
christof.ebert@alcatel.be

Abstract. Increasingly software projects are handled in a global and distributed project set-up.
Global software development however also challenges traditional techniques of software
engineering, such as peer reviews or design meetings. Especially validation activities during
development, such as inspections need to be adjusted to achieve results, which are both efficient
and effective. Effective teamwork and coaching of engineers highly contribute towards successful
projects. We will in this article evaluate experiences made in the last 3 years with validation
activities in a global setting within Alcatel's Switching and Routing business. We will investigate 3
hypotheses related to effects of collocated inspections, intensive coaching, and feature-oriented
development teams on globally distributed projects. As all these activities mean initial investment
compared to a standard process with scattered activities, the major validation criteria for the 3
hypotheses is cost reduction due to earlier defect detection and less defects introduced. The data is
taken from a sample of over 60 international projects of various sizes from which we collected all
type of product and process metrics in the past 4 years.

A Generic Model for Assessing Process Quality

Manoranjan Satpathy1, Rachel Harrison1, Colin Snook2, Michael Butler2
1School of Computer Science, Cybernetics and Electronic Engineering

University of Reading, Reading RG6 6AY, UK
{M.Satpathy, Rachel.Harrison}@reading.ac.uk

2Department of Electronics and Computer Science
University of Southampton, Highfield, Southampton SO17 1BJ, UK

{cfs98r, mjb}@ecs.soton.ac.uk

Abstract. Process assessment and process improvement are both very difficult tasks since we are
either assessing or improving a concept rather than an object. A quality process is expected to
produce quality products efficiently. Most of the existing models such as CMM, ISO 9001/9000-3
etc. intend to enhance the maturity or the quality of an organization with the assumption that a
matured organization will put its processes in place which in turn will produce matured products.
However, matured processes do not necessarily produce quality products. The primary reasons are:
(i) In the process quality models, the relationship between the process quality and product quality
is far from clear, and (ii) many of the process models take a monolithic view of the whole life-cycle
process, and as a result, the idiosyncrasies of the individual processes do not receive proper
attention.
In this paper, we first define an internal process model in a formal manner. Next, we define a
generic quality model whose scope covers all the development processes and most of the
supporting processes associated with the development phase. The generic quality model is a
parametric template and could be instantiated in a systematic manner to produce the quality model
for any individual process. We then show such a customization for the formal specification process
and use this customized model to formulate a GQM-based measurement plan for the same process.
We then discuss how the generic model would be useful in process assessment and process
improvement.

mailto:mjb}@ecs.soton.ac.uk

Maturity Evaluation of the Performance Engineering Process

Andreas Schmietendorf, André Scholz

University of Magdeburg, Faculty of Computer Science, Germany
schmiete@ivs.cs.uni-magdeburg.de,
ascholz@iti.cs.uni-magdeburg.de

Abstract. This contribution presents a model for process improvement in the area of performance
engineering, which is called performance engineering maturity model. The use of this model allows
the evaluation of the level of integration and application of performance engineering. It leans
against the well-established capability maturity model from the software engineering institute. The
model is based on a questionnaire catalog, which was transferred into a web based evaluation form.
The results of this anonymous evaluation are analyzed in this contribution.

COSMIC FFP and the World-Wide Field Trials Strategy

Alain Abran1, S. Oligny1, Charles R. Symons2
1Software Engineering Management Research Laboratory

Université du Québec à Montréal
C.P. 8888, Succ. Centre-Ville

Montréal, Québec, Canada
Tel: +1 (514) 987-3000 (8900), Fax: +1 (514) 987-8477

abran.alain@uqam.ca
2Software Measurement Service Ltd., St. Clare's, Mill Hill

Edenbridge, Kent TN8 5DQ, UK
Tel: +44 (0) 1732 863 760, Fax: +44 (0) 1732 864 996

charles_symons@compuserve.com

Abstract. Building on the strengths of previous work in the field of software functional size
measurement, the Common Software Measurement International Consortium (COSMIC) proposed
a set of principles in 1998 onto which a new generation of functional size measurement methods
could be built. The COSMIC group then published version 2.0 of COSMIC-FFP, in 1999, as an
example of a functional size measurement method built on those principles. Key concepts of its
design and of the structure of its measurement process are presented, as well as the strategy of its
world-wide field trials.

mailto:schmiete@ivs.cs.uni-magdeburg.de
mailto:abran.alain@uqam.ca
mailto:luigi.buglione@computer.org

Extraction of Function-Points from Source-Code

Harry M. Sneed (MPA)
CaseConsult, Wiesbaden

Software Data Service, Vienna
Software Engineering Service, Budapest

Harry.Sneed@T-online.de

Abstract. In spite of the efforts of the IFPUG group to standardise the counting of Function-
Points, there is still a lot of room left for interpretation. This is especially true when it comes to
counting Function-Points in modern client server or web-based applications. There is no standard
means of identifying inputs and outputs in such systems. The author proposes here a tool supported
method for extracting Function-Point counts from C++ and Java Source-Code. This method has
been applied and calibrated to the GEOS Stock Brokerage system under development in Vienna,
where the author is currently engaged.

Early & Quick COSMIC-FFP Analysis using Analytic Hierarchy Process

Luca Santillo
Data Processing Organisation, 00196 Roma, v. Flaminia, 217, Italy

Tel.: +39-06-3226887, Fax: +39-06-3233628
luca.santillo@iol.it

Abstract. COSMIC-FFP is a rigorous measurement method that makes possible to measure the
functional size of the software, based on identifiable functional user requirements allocated onto
different layers, corresponding to different levels of abstraction. The key concepts of COSMIC-
FFP are software layers, functional processes and four types of data movement (sub-processes). A
precise COSMIC-FFP measure can then be obtained only after the functional specification phase,
while for forecasting reasons the Early & Quick COSMIC-FFP technique has been subsequently
provided, for using just after the feasibility study phase.
This paper shows how the Analytic Hierarchy Process, a quantification technique of subjective
judgements, can be applied to this estimation technique in order to improve significantly its self-
consistency and robustness. The AHP technique, based on pair-wise comparisons of all (or some
of) the items of the functional hierarchical structure of the software provided by E&Q COSMIC-
FFP, provides the determination of a ratio scale of relative values between the items, through a
mathematical normalization. Consequently, it is not necessary either to evaluate the numerical
value of each item, or to use statistical calibration values, since the true values of only one or few
components are propagated in the ratio scale of relative values, providing the consistent values for
the rest of the hierarchy.
This merging of E&Q COSMIC-FFP with AHP results in a more precise estimation method which
is robust to errors in the pair-wise comparisons, and self-consistent because of the redundancy and
the normalization process of the comparisons.

Measuring the Ripple Effect of Pascal Programs

Sue Black, Francis Clark
Centre for Systems and Software Engineering, South Bank University,

103 Borough Road, London SE1 0AA, UK
Tel.: ++44(0)702 815 7471
blackse@sbu.ac.uk
clarkfg@hotmail.com

Abstract. Recent acquisition of a half million LOC telephone switching system TXE4 written in
Pascal has provided a unique opportunity for software measurement. This paper discusses the
software implementation of ripple effect measure - REST (Ripple Effect and Stability Tool)
focusing on a recent attempt to produce a Pascal parser for REST which will be used to measure
the TXE4 system. Ripple effect is a measure of impact analysis: the effect that a change to one part
of a system will have on other parts of a system. It can be used in software engineering
development to compare different versions of software or during maintenance to highlight software
modules which may need attention. The implementation of the Pascal parser has highlighted
several significant differences between Pascal and C source code, which are discussed and
investigated.

An Assessment of the Effects of Requirements Reuse Measurements on the

ERP Requirements Engineering Process

Maya Daneva

Clearnet Communications, 200 Consilium Place, Suite 1600
Toronto, Ontario M1H 3J3, Canada
mdaneva@clearnet.com

Abstract. Setting realistic expectations for a requirements measurement exercise and assessing the
real benefits resulting from the implementation of metrics in Requirements Engineering (RE) is a
key challenge for many information systems (IS) organizations. This paper describes how a project
team can demonstrate a connection between efforts invested in requirements reuse measurement
and business results in Enterprise Resource Planning (ERP) projects. We provide an approach to
analyzing and assessing the benefits gained from integrating requirements reuse measurement
practices in the ERP RE process. Dependencies between requirements measurement activities and
RE activities and deliverables are studied in the context of SAP R/3 implementation projects.

mailto:Blackse@sbu.ac.uk

A New Metric-Based Approach for the Evaluation of Customer Satisfaction
in the IT Area

Reiner R. Dumke, Cornelius Wille

University of Magdeburg, Faculty of Computer Science, Postfach 4120,
D-39016 Magdeburg, Germany

Tel.: +49-391-6718664, Fax: +49-391-6712810,
{dumke,wille}@ivs.cs.uni-magdeburg.de

Abstract. For the existence and growth of enterprises the protected sales of goods and
performances are of decisive opinion. In order to ensure this, the acceptance of the products and
performances by the customers is depended on indirect criterion mainly: the customer satisfaction.
A lot of criteria and methods with help of the science were or are worked out to “measure”
satisfaction or discontent of the customers to the inquiry.
Our paper describes the general satisfaction aspects and their coherence between customer
satisfaction, quality and customer loyalty as well as their significance for the development of an
enterprise. After the classification of methods for measuring customer‘s satisfaction different
methods for the recording of customer satisfaction are shown. A basic model for customer
satisfaction is introduced for recording and assessment at software products using software metrics
related to the product, process and resources aspects. This method attemps to measure directly the
causes to evaluate their effect to the customer satisfaction.
In order to evaluate customer satisfaction, a tool COSAM was implemented that allows a metrics-
based assessment besides the traditional assessment of the customer satisfaction by customer
interviews. On the other hand, the tool can be used for experiments of a given level of customer
satisfaction to analyse the effects of successful measured aspects such as ISO 9000 certification, a
high level of the developer skills or a high level in the CMM evaluation.

Utility Metrics for Economic Agents

Dirk Schmelz1, Margitta Schmelz1, Julia Schmelz2
1Thüringer Kompetenzzentrum eCommerce

tranSIT GmbH Ilmenau, Germany
c/o Friedrich-Schiller-Universität Jena, Germany

mms@informatik.uni-jena.de
2Technische Universität München, Germany

schmelz@mathematik.tu-muenchen.de

Abstract. In this paper, a metric view for operating software agents is developed and explained by
way of an example of economic trader agents utility. Here, the role of simulation models as a
helpful technology for construction and validation of agents in artificial environments is
propagated.

QF
2
D: a Different Way to Measure Software Quality

Luigi Buglione1, Alain Abran2

Software Engineering Management Research Laboratory
Université du Québec à Montréal

C.P. 8888, Succ. Centre-Ville
Montréal, Québec, Canada

1Tel: (39) 338.95.46.917, Fax: (39) 06-233.208.366
luigi.buglione@computer.org

2Tel: +1 (514) 987-3000 (8900), Fax: +1 (514) 987-8477
abran.alain@uqam.ca

Abstract. Quality Function Deployment (QFD) technique has been developed in the context of
Total Quality Management, and it has been experimented in the software engineering domain. This
paper illustrated how key constructs from QFD contributed to an development of a second version
of a Quality Factor (QF) for a qualitative software evaluation, considering three distinctive but
connected areas of interest, each of them representing dimension of performance:

� economic dimension, the perspective is the managers’ viewpoint;
� social dimension, the perspective is the users' viewpoint;
� technical dimension, the perspective is the developers' viewpoint.

This new version of the original QF technique, referred to as QF2D (Quality Factor through QFD),
has the following features: it can be used for both a priori and a posteriori evaluations of the
software product; it makes usage of the set of quality sub-characteristics proposed in the new
upcoming ISO/IEC 9126:2000 standard it has a variable number of elements taken into account
the three viewpoints for the evaluation; it offers the visual clarity from QFD for external and
internal benchmarking. An implementation of this new version of this technique in quality models
is also discussed.

Using FAME Assessments to Define Measurement Goals

Dirk Hamann1, Andrew Beitz1, Markus Müller2, Rini van Solingen1

1Fraunhofer IESE, Sauerwiesen 6, Technopark II, 67661 Kaiserslautern, Germany
2Fraunhofer IESE, Luxemburger Str. 3, 67657 Kaiserslautern, Germany

{hamann, beitz, markus.mueller, solingen}@iese.fhg.de

Abstract. Although assessment-based approaches and measurement-based approaches are often
considered as competitors, they compliment each other very well. Assessments are strong in
identifying improvement objectives within a relatively short time frame, but are weak in guiding
the actual implementation of the proposed changes. Measurement, however, supports very well in
supporting actual changes and providing feedback on the effects of these changes, but has a
difficulty with selecting the right goals. In this paper, we suggest an approach in which focused
assessments are used to identify improvement goals and to use goal-oriented measurement to guide
the implementation of the actual changes.

mailto:luigi.buglione@computer.org
mailto:abran.alain@uqam.ca

Mapping Processes Between Parallel, Hierarchical and Orthogonal System
Representations

Francis Dion1, Thanh Khiet Tran2, Alain Abran3

1 Epsilon Technologies inc., 1200, Boul. Chomedey, Laval (QC) Canada H7V 3Z3
fdion@xpertdoc.com

2 tkhiet@yahoo.com
3 Professor and director of the Research Lab. in Software Engineering Management

Université du Québec à Montréal, Département d'informatique, C.P. 8888, Succ. Centre-ville
Montréal (Québec), Canada H3C 3P8

abran.alain@uqam.ca

Abstract. The importance of software system representation through models and visual diagrams is
increasing with the steady growth of systems complexity and criticality. Since no single
representation is best suited to address all the documentation, communication and expression needs
of a typical software development project, the issues related to conversion and coherence between
different representations are having a significant impact on team productivity and product as well
as process quality. This paper explores the types of relationships that exist between representations
and the impact they have on mapping, generation and synchronization processes. We propose a
characterization of those relationships as being parallel, hierarchical or orthogonal. Examples and
comments on mapping or transformation processes and automation prospects in the context of
software size measurement are also provided.

Analyzing Software Design using a Measurable Program
Design Language

Nadine Hanebutte1 and Reiner R. Dumke2

1University of Idaho, Dept. of Computer Science, Moscow, ID 83843, USA
hane@cs.uidaho.edu

2Otto-von-Guericke-University of Magdeburg, Dept.of Computer Science,
Postfach 4120, D-39016 Magdeburg, Germany,

Tel.: +49-391-6718664, Fax: +49-391-67-1812810
dumke@ivs.cs.uni-magdeburg.de

Abstract. To estimate the quality or the number of faults in a future source code, design metrics are
generated from the design documentation written in a Program Design Language. The document is
analyzed for defined tokens and structures. Their occurrences or order is counted using previously
defined unambiguous metrics. Metrics are highly correlated. Therefore the structure of the observed
measures is to be analyzed and processed to be valid input to further analysis like multi-regression
models and hypothesis testing for prediction of external software attributes.

Keywords: design metrics, fault estimates, software quality maintenance, Program Design Language

1 Introduction

The key to any attempt to make changes is the ability to measure the effort of those changes.
There are about 200 software metrics in use (Munson and Khoshgoftaar, 1993). But only a
subset of them are used in a particular software development project or a particular project
stage. Measures are known for all stages of the development process as project, process or

environment measures. Software metrics are mostly applied as product measures during the
implementation, usually because other measurable or structured information about the
software are not available.

1.1 Recent Works

The number of measures that can be extracted from a project design depends on the degree of
the availability of documentation of the design of a software. According to this degree there
are low-level (or architectural) and the high-level (or detailed) design. Different metrics are
available for each level.

During the low-level design phase extracted measures are based on information like
hierarchical module diagrams, data flow, functional and interface description.

One of the suggested metrics for this phase is De, which provides information about the
necessity of redesign after an outlier analysis. (Zage, 1993)

One other approach is the mapping of the cyclomatic complexity approach (McCabe, 1976)
from implementation onto design. (McCabe, 1989) While the metrics of low-level design can
only capture some of the project attributes, depending on the used tool (Swann, 1978), it is
possible to map almost all measurement strategies for source code onto the detailed design.
But to extract metrics from design documentation, it is necessary to use a suitable description
language. (Heitkoetter et al., 1990) There is no general solution for extending software metrics
onto design because of the wide range of tools that can be used for the documentation of
design (Oman and Curtis, 1990). Because of the different level of design details that can be
visualized with different tools a mapping metrics from different tools is sometimes not
possible.

Additionally to selecting the metrics to be applied one has to model the relation of these
measures to the things that one wants to know: How faulty is the future code going to be? Is it
from the intented quality? Based on the answer the best design can be selected. (Shepperd and
Ince, 1989)

There are different ideas on how to find the relation between measured numbers and the
formulation of the answers, i.e. factor analysis (Coupal and Robillard, 1990; Munson and
Khoshgoftaar 1992) or outlier analysis (Shepperd and Ince, 1989; Zage, 1993].

1.2 Product Measurement during Software Design

The point of measuring software is to retrieve a number of quantities that enable us to make
statements about the quality of a piece of documentation or code or to perform a comparison
between different solutions for the same problem.

Many of the commonly used measures are directly or indirectly dependent on each other.
For instance, increasing the lines of code (LOC) is accompanied by an increase in the number
of statements. Splitting a module in smaller piece would reduce the number of statements but
would shift the problem to an other measuring domain - coupling, because the amount of
exchanged variables between the new modules would be increased. Regarding this, it is useful
to analyze the applied set of metrics about their dependencies and develop an understanding
for the nature of those metrics.

Mostly source code is measured to extract quality information. But it is possible to measure
other steps in the software development process like the design, as well. Design measurement
lets us capture important aspects of product and process early in the software development life
cycle, so that corrective actions can be taken earlier (Rombach, 1990). For doing so it is
necessary to create well-structured design documentation.

1.3 The University-of-Idaho-Design-Language (UofI-DL)

The design language was developed to describe the algorithm of future software as well as its
data structure. Furthermore, as part of the project documentation, it should link the different
parts of the design project together with the later product – the source code. It consists of a
verbal description of a module, information about its place in the calling structure and a
reference of all used variables, types and constants. For the algorithm - called the Precode - a
keyword set is used to describe the problem by providing structures like loops, sequences,
selections, calls and simple equations. Any separate design document to describe a piece of
code is called a module. A module written in UofI-DL has the form as in Figure 1.

The structure and keyword set have the advantage of being measurable, to quantify the
design results on module level. For each module the design documents includes a description
about its place within the calling hierarchy and information about the data flow to and from
other modules. This allows to capture metrics at module-level which are usually only
measurable at project-level when all source code files, in particular the definition of all
functions, types, etc., are available.

An experiment was conducted where sixteen metrics were extracted from the design of 48
programs or program parts written in UofI-DL. Therefore sample algorithms were taken, from
books on algorithms in C or PASCAL as well as from older design projects, to capture a wide
variety of algorithm types. Since the general applicability of these metrics is to be analyzed
and the goal is to draw conclusions that are valid beyond this experiment, the randomization
of the input data is required (Wohlin et al., 2000).

The design documents have been written for the chosen algorithms. The design of a
module is stored as ASCII text. A syntax check is performed with each file to ensure a valid
input to the measuring process. Thereafter the text is analyzed for the appearance or order of
certain tokens. For each metric an unambiguous definition was made to ensure the
repeatability of the experiment. These definitions were implemented in a metric tool.

1. MODULE NAME Enter_Function

2. MODULE NUMBER 505

3. DESCRIPTION

Requests the polynom from the user.
In Form of: Number_of_terms
Coefficient & exponent for the
number of terms.

4.1. CALLED MODULES

Get_Term

4.2. CALLING MODULES

Main_Half_Interval

5. ALGORITHM

5.1. HEADER

HEADER Enter_Function WITH First_term IN/OUT
Last_term IN/OUT
Heap IN/OUT

5.2. DEFINITION

1) DEF term_pointer IN SRS 2.2.2.
2) DEF big_real IN SRS 2.2.1.
3) DEF index IN SRS 2.2.5.

5.3. DECLARATION

1) VAR First_term : term_pointer INIT pass FROM SRS 1.1.2.
2) VAR Last_term : term_pointer INIT pass FROM SRS 1.1.3.
3) VAR Heap : term_pointer INIT pass FROM SRS 1.1.6.

4) VAR Coefficient : big_real INIT local FROM SRS 1.1.11.
5) VAR Exponent : big_real INIT local FROM SRS 1.1.17.
6) VAR Counter : index INIT local FROM SRS 1.1.13.
7) VAR Number_of_terms : index INIT local FROM SRS 1.1.36.

5.4. CONSTANT

empty

5.5. PRECODE

1. |* request Number_of_Terms from user
|=

2. |LOOP (Counter -> 1 TO Number_of_Terms STEP 1)
|==== == ====

3 | |CALL Get Term WITH First term IN/OUT

identification

functionality

hierarchy position

interface
description

reference section

linkage to the
data dictionary

data section

linkage to the
source code

precode section

Figure 1: Example for the UofI-DL Module Structure

2 The Design Measurement Approach

Using the measurement tool the following six-teen measures have been extracted from the
module:

Nodes, Edges, Cycles, Variables, Types, Constants, Statements, Maximum Nesting, Returned
Arguments, Number of Paths, Maximum Path Length, Average Path Length, Calling Modules,
Called Modules, Incoming Variables, Outgoing Variable.

Those measures are supposed to capture the most influence factors to the introduction of
faults. All chosen metrics are simple ones, captured by counting up certain attributes of design
documentation:

Variables, Constants and Types
The idea of measuring variables, constants and types is taken from the Halstead metric (Zuse,
1997). Halstead identified the number of operands as a characteristic mark for the
programming effort. The approach is mapped onto the declaration and definition part of a
module. The types are seen as the unique operands. Accordingly, the variables and constants
are the total number of operands, and can thus be grouped by their types.

Incoming and Outgoing Variables, Returned Arguments
The coupling increases directly with the complexity of a module interface (Troy and Zweben,
1993). The mediums of the coupling are the passed data and the return arguments named in
the module header. Those are measured in numbers of incoming and outgoing variables.

Called variables are manipulated outside. Outside means that according to the status of a
module and the setting of the arguments, a variable of this module is changed inside of
another module. The manipulation of data by other modules than the one where it is defined in

the first place and the passing of information is discussed in (Yux and Lamb, 1995) by Henry
and Kafura. Their information flow metric for design accounts the fact that the complexity
increases with extending the data flow. Chapin recognized with his Q-metric for design the
different kinds of variables and the necessity to differ between them (Yu and Lamb, 1995).

Calling Modules
An external design metric De as suggested by Zage (Zage, 1993) is based on data flow and call
structure. This composite metric includes fan-in, fan-out, inflow and outflow.

Called Modules, Nodes and Edges
McCabe used connected components, nodes and edges as base for his cyclomatic complexity
(McCabe, 1976). There are doubts on the usefulness of the McCabe metric itself (Dumke and
Foltin, 1999). But these three measures are commonly identified as the influence factors for
the algorithm complexity. A similar approach is introduced by McClure (Yu and Lamb,
1995), which is calculates the modules complexity in design from the invoking and invoked
modules and the according control structures.

Statements
The LOC is probably one of the oldest and most often used metrics (Zuse, 1997). There are
several definitions on how to count lines of code. Because formatting plays a major role in the
editing of a well-structured design document, simply counting the new lines would not give a
comprehensive result. The number of complete statements in the algorithm should therefore
be counted.

Paths
McCabe came to the conclusion that a cyclomatic complexity of ten should be the maximum
for a maintainable program. Assuming that maintainability and complexity are dependent,
there is a maximum path number before an algorithm becomes to complex. The cyclomatic
complexity is the number of linear independent paths in a program. Therefore it can be
concluded that the number of paths is a significant measure of software.

Maximum and Average Path Length, Maximum Nesting and Cycles
Those are measures on how the statements are distributed in the different algorithm paths.
Complexity of the control structures can be used to weight the information available on fan-in,
fan-out, inflow or outflow.

These metrics can be roughly divided into two groups: one capturing the attributes related
to the module's size, the other one the communication between a module and other ones.

3 The Software Measurement Exploration

3.1 Analysis and Statement of the Results

After measuring all 48 modules, the result is in the format of 48 x 16 matrix containing 48
vectors of the 16 metrics. It is difficult to draw any immediate conclusions or even make
predictions from the amount of different numbers with different meanings. For the analysis
process the aim is to place all measured numbers in a multi-regression model (Equation 1) to
approximate external metrics. With this type of model the actual process of discovering the
relationship between internal and external metrics starts. The model than is to be verified
using hypothesis testing methods, e.g. the t-test (Wohlin et al., 2000).

Eq. 1: y=b0m0+b1m1+b2m2+...+bimi+c

This model is based on the assumption, that the independent variables of the analysis are not
linear compounds of each other, nor share an element of common variance. But usually
software metrics do not own this features (Munson, 1995). All metrics are more or less
correlated with each other. As a result it can not be determined how the effect of a change to
one metric effects the other ones. The measures as they are, can not be used for any prediction
of the future software systems attributes immediately. For example, an increase in LOC can
cause the definition of new variables or maybe a reduction in the amount of needed variables.

Under the assumption that the measures have an underlying structure and that some of
them are highly correlated, factor analysis and principal component analysis are performed on
the z-scores of the measures to explore the nature of this underlying structure.

If there is a structure, it can be concluded that instead of 16 dependent metrics there is a
smaller set of independent metrics represented by the factors, each combining a number
of the original measures, that can be used to describe each module.

To analyze the matrix's structure the eigenvalues, as representation of the variance within
the input matrix, are calculated. According to the Kaiser

Criterion1 five factors would be extracted, according to the scree-test2 four. Because in case
of five factors the result include a trivial factor3 four was chosen.

This leads to a grouping of the input measures. According to their correlation to one single
factor and by analyzing the corresponding input metric a domain is defined that describes the
nature of the grouped metrics.

 FACTOR ONE TWO THREE FOUR

NODES 0.96276 0.05329 -0.00660 0.12768
EDGES 0.93830 0.10428 0.01844 0.23732
CYCLES 0.42570 -0.06092 -0.10061 0.75005
VARIABLES 0.66313 0.27124 0.39342 0.19673
TYPES 0.40250 0.50972 0.20342 0.29158 to be removed
CONSTANTS 0.21945 0.14471 -0.61806 -0.33772 to be removed
STATEMENTS 0.93411 0.09083 0.02708 -0.03540
MAXIMUM NESTING 0.54965 0.50932 0.25872 0.18160
CALLING MODULES 0.04399 0.34559 0.62539 -0.15196
CALLED MODULES -0.05742 0.94406 0.01214 -0.03235
INCOMING VARIABLES 0.06384 0.18414 0.84762 0.06090
OUTGOING VARIABLES 0.05313 -0.01726 0.51501 -0.42189
CALLED VARIABLES 0.19073 0.85324 0.13907 0.03079
NUMBER OF PATHS 0.29814 0.17591 0.12566 0.73327
MAXIMUM PATH LENGTH 0.90907 0.12056 -0.09052 0.22046
AVERAGE PATH LENGTH 0.87933 0.05807 -0.10244 0.18891

Domain Length Fan-Out Fan-In Width

Figure 2: Rotated Factor Pattern; Four Factors selected

1 Number of factors equals the number of eigenvalues greater than one.
2 Plot of the eigenvalues. Plot is observed for "jumps": Number of factors equals number of eigenvalues before

the change in continuity.
3 This is a factor with only one member from the original set.

The metrics are expected to group according to their nature and can therefore be used to
characterize each domain.

Metrics which do not group conclusively need be removed for this analysis to reduce their
influence of their noise to the analyzed data, since these metric do not help to draw
conclusions about the modules. In the first factor nodes, edges, variables, statements,
maximum nesting, maximum and average path length are grouped which are all measures of
the size of a program. The longer the source code "text" is, the higher is the count of these
metrics. The second factor includes called modules, called variables and types. The first two
are the number of other programs that are called by the measured one and the variables that
are passed to them; manipulated within this other module and are returned with its value
changed to the calling one.

Both are highly correlated to the factor with values from above 0.8. The third variable types
seems to have nothing in common with the other two. The usage and definition of types is a
question of programming style of the programmer and is sometimes not even supported by the
programming language. It is possible to write two almost exact program, by using self-defined
types in one of them and only standard types in the other. Therefore it is assumed that number
of types is more a measure of development strategies than of code/design itself. The modules
were written without a restriction on the usage of predefined or self-defined types. Therefore
metric types is removed from the data set and will not be included in further analysis.

The third factor shows a similar problem. Calling modules, incoming variables and
outgoing variables, which are measures of the communication flow from other modules are in
the same group as constants. As for types in the last factor the number of constants seems to
be again more a measure of a writing style than the content quality. Constants can be
substituted by variables completely as long as the programmer respects the restriction not to
change the value once it is set. Constants is removed from the analyzed set.

The last factor with number of path and cycles measures the complexity of the control flow
or the amount of different ways from the beginning of the program to its end.

These observations lead to the following conclusions: The number of factors in the future
analysis is four. Variables types and constants are removed. A naming convention for each
factor according to the grouped metrics can be introduced.
�� Name of domain one: Length
�� Name of domain three: Fan -in
�� Name of domain two: Fan- out
�� Name of domain four: Width

Size Communication

Length Width Fan-Out Fan-In
Nodes
Edges
Variables
Statements
Maximum Nesting
Maximum Path Length
Average Path Length

Cycles
Paths

Called Modules
Called Variables

Calling Modules
Incoming Variables
Outgoing Variables

Table 1: The Structure of the Metrics

The factors are the metric domains. Domain length and width are module size domains.
Domain fan-in and fan-out are module-communication domains. Therefore there are two
super domains: size and communication. The metrics structure as in Table 1.

The correlation between the domains is overall low, while the correlation in-between the
size related domains and in-between the communication related domains is slightly higher
while it is extremely low between the size domains and the two communication domains.

The super domains are independent. The correlation between the communication related
domains is very low. The correlation between two remaining domain is to high for absolute
independence but to low to actually conclude dependence. The domains can therefore be
treated as if they were independent, which was not possible with initial metrics (Table 2.)

There are several ways to continue with the goal to scale the modules and to describe their
likelihood to fail with one single number for each module.

 Domain length Domain fan-out Domain width Domain fan-in
Domain length 1.00 0.27 0.52 0.12
Domain fan-out 0.27 1.00 0.09 0.28
Domain width 0.52 0.09 1.00 -0.02
Domain fan-in 0.12 0.28 -0.02 1.00

Table 2: Correlation of the Domains

One would be to add up the scores, another to weight each score with the corresponding
eigenvalue as in equation 2.

Eq. 2: Fault index = fL*�L+fFO*�FO+fFI*�FI+ fW*�W

To be able to compare the fault indices of one project with others the indices should be
standardized. Usually the modules with indices outside the standard deviation are analyzed
with the target of redesign. Static limits can be defined which are adjusted as knowledge about
the nature of the index emerges. If there are no outliers, the modules closest to the limits are
analyzed, mainly to see if the limits are valid. If extreme outliers occur, the X-less algorithm
could be used (Zage, 1993).

Further analysis could be done to relate this number to quality or number of faults for
example to estimate coefficients for an univariant relation. If this relation could be estimated,
the limits could be refined, according to the numbers of faults. I.e. if no faults occur to an
index of 0.5 this could be the upper limit.

3.2 Result Interpretation

The factor scores are computed to structure all information and ease the observation process.
The domains as well as the fault index are understood as an indicator of problems. There are
no fixed numbers on limit values for the index or the domains yet. The numbers are a ranking
system. If the relation to an external metric like number of faults could be estimated, this
metric can be used for qualifying and defining static limits. The interpretation of the fault
index is context dependent. For each domain the highest and the lowest scores are shown in
the Tables 3 to 6. The meaning and conclusion drawn from each score are different within
each domain.

Module 002 - maximum

Cycles 10
Paths 5032

Module 113 - minimum

Cycles 0
Paths 1

Table 3: Maximum and Minimum Results for Domain Width

3.2.1 Domain Width

The reason for a high score in width of a program is a high amount of decisions that have to
be made when tracing the algorithm, such as in constructs like loops and decision statements.
An increase in the number of selections leads to the increase of the number of paths in a
module. A high number of paths indicates that there is a good chance, that some of those paths
will never be passed or that this module is faulty, because the high number of conditions often
have hard to predict dependencies. A closer look should be taken at modules, which score
high in this domain. They are good candidates for alternative solutions. Modules with a high
number of paths are almost unstestable, because there is no chance to cover all paths. A lower
score in this domain does not necessarily mean the module is of better quality, but it indicates,
that this module can be tested easier.

3.2.2 Domain Length

Module 002 - maximum

Nodes 52
Edges 75
Variables 17
Statements 45
Maximum Nesting 7
Maximum Path Length 31
Average Path Length 22,27

Module 504 - minimum

Nodes 9
Edges 10
Variables 2
Statements 5
Maximum Nesting 1
Maximum Path Length 5
Average Path Length 3,00

Table 4: Maximum and Minimum Results for Domain Length

Compared with the entire measured modules module 002 has the almost highest score in
number of nodes, edges and statements (Table 4). A high number of statements have to be
executed every time the source code to this module is in use. Additionally, a high number of
variables is used. A module with a high score in the length domain will have a high amount of
memory in use. The module with the lowest score in length was 504. So it can be expected,
that this module has very low space usage and the number of executed commands per module
call is small. Indeed show those numbers that this module is really "small" with just three
average executed statements and two variables.

3.2.3 Domain Fan-Out

Data about external factors of influence to one module like called modules and called
variables are collected in this domain (Table 5).

Module 114 - maximum

Called Modules 6
Called Variables 11

Module 101 - minimum

Called Modules 0
Called Variables 0

Table 5: Maximum and Minimum Results for Domain Fan-Out

The module 114, the one with the highest score in this domain has the highest number in those
two raw measures by far. This could mean that the granularity is already too high and tasks
from called modules with a low fan-in could be included.

The module (101) with the minimum score in this domain does not call any other modules.
This module is taken as an example since there is more that one module that has the same
score in this domain and since they all do not call sub routines. Therefore there is no data
return to this module either.

A minimum in this domain indicates a one-block program with no modularity, when there
is a very small number in the fan-in domain, too.

3.2.4 Domain Fan-In

 Module 005 - maximum

Calling Modules 4
Incoming Variables 4
Outgoing Variables 1

Module 900 - minimum

Calling Modules 0
Incoming Variables 0
Outgoing Variables 0

Table 6: Maximum and Minimum Results for Domain Fan-In

A high score in the fan-in domain it could mean, that the module stands in the lowest level in
a calling hierarchy or it is to universal. It might be solving to many different tasks and should
be split into subtasks. If too many other modules are using this one, the task it is solving is
either often repeated and important or it is representing more than one functionality, which
should lead to a redesign with a higher granularity. A low score in this domain means that the
functionality represented by this module is almost not used and a too high granularity is
indicated or this module stands on the top of the calling hierarchy, which should be
accompanied by high score in fan-out. Module 900 seems to be of the one block design type,
having a low granularity, since its fan-out score is one of the lowest. This can indicate a
monolithic programming style.

4 Summary and Conclusions

The suggested design language allows a comprehensive way of writing design documents. Its
major advantages are its structure that allows to link design documents together with other
project part’s documentation and the fact that it can be measured with metric similar to the
one often applied to source code. Therefore first quality statements can be made about the
future software before the first line of code is written. To put a meaning to the measured
numbers the metrics are analyzed using factor analysis. This leads to a grouping of the metrics
and allows a first interpretation of the results. The metrics group in a way as one would group
them intuitively. The grouping allows a reduction and therefore eases further analysis. A
module can therefore be described in its length, its width4, its fan-out, as the data sent from

4 Width in the sense of complexity. One can imagine this as all the different ways across the module next to each

other.

the module, and fan-in, as the data send to this module from others. This allows quality
statements early during the development not only in terms of likelihood to fail, but also for
functionality splitting and granularity, which are more design than code issues. Furthermore
each module can be measured independently from all others.

References

Coupal, D. and Robillard, P.N., Factor Analysis of Source Code Metrics. The Journal of

Systems and Software. v12, 263 -269 (1990)

Dumke, R.R. and Foltin, E., An Object-Oriented Software Measurement and Evaluation
Framework. Proceedings of the FESMA '99, Amsterdam, 59 -68 (1999)

Heitkoetter, U.,et al, Design Metrics and Aids to Their Automatic Collection. Information and
Software Technology. v32 n1, (1990)

McCabe, T.J., A Complexity Measure. IEEE Transactions on Software Engineering. vSE2
n4, (1976)

McCabe, T.J. and Butler, C.W., Design Complexity Measurement and Testing.
Communications of the ACM. v32 n12, (1989)

Munson, J.C. and Khoshgoftaar T.M., Measuring Dynamic Program Complexity, IEEE
Software. v11, 48-55 (1992)

Munson, J.C. and Khoshgoftaar, T.M., Measurement of Data Structure Complexity. The
Journal of Systems and Software, 20, 217-225, (1993)

Munson, J.C., Software Measurement: Problems and practice. Annals of Software
Engineering. 1, 255-285 (1995)

Oman, P.W. and Curtis, R.C., Design and Code Traceability Using a PDL Metrics Tool. The
Journal of Systems and Software. v12, 189-197 (1990)

Rombach, D.H., Design Measurement: Some Lesson Learned. IEEE Software. v3, 17-25
(1990)

Shepperd, M. and Ince, D., Metrics, Outlier Analysis and the Software Design Process.
Information and Software Technology. v31 n2, 91-98 (1989)

Swann, G.H. Top-Down Structured Design Techniques, Petrocelli Books, New York,
Princeton, 1978, p. 17-33

Troy, D.A. and Zweben, S.H., Measuring the Quality of Structured Design, in Software
Engineering Metrics. - Vol. 1: Measures and Validations (Sheppard, M. ed.), McGraw-
Hill Book Company, 1993

Wohlin, C., Rueson, P., Höst, M., Ohlsson, M.C., Regnell, B. and Wesslen, A.,
Experimetation in Software Engineering: An Introduction, Kluwer Academic
Publishers, 2000

Yu, X. and Lamb, D.A., Metrics applicable to software design. Annals of Software
Engineering. 1, 23-41 (1995)

Zage, W.M and Zage D.M., Evaluating Design Metrics on Large-Scale Software. IEEE
Software. v7, (1993)

Zuse, H., A Framework of Software Measurement, DeGruyter Publisher, Berlin, 1997

Software Reuse and Metrics within a Process Model
for Object-oriented Development

Evgeni Dimitrov1, Andreas Schmietendorf1,2, and Reiner Dumke2

1T-Nova, Deutsche Telekom Innovationsgesellschaft mbH, Entwicklungszentrum
Berlin, Wittestraße 30N, 13509 Berlin

Evgeni.Dimitrov|A.Schmietendorf@telekom.de
2Otto-von-Guericke-Universität Magdeburg, Fakultät Informatik,

Institut für verteilte Systeme, Postfach 41 20, D-39016 Magdeburg
schmiete|dumke@ivs.cs.uni-magdeburg.de

Abstract: Like other engineering disciplines, the development of industrially viable information
systems requires a procedure that can be planned and followed. A procedural model for object-
oriented software development is presented, which also particularly takes account of software reuse
and the use of metrics. The appropriate project-specific procedural model can be derived from this
procedural model for every concrete object-oriented software project. In addition, initial concepts
and implementations of tool support for this procedural model are presented, and general experience
in practice is described.
Keywords: Metrics, object orientation, tools, reuse, procedural model

1 Introduction

In the context of "software production", the process of software development is determined,
throughout all its phases, by the extreme complexity of the product to be created, the need to
design the entire system for different work phases (which may also be geographically
scattered) and the high level of quality and safety requirements that have to be incorporated.
This process, which is typically carried out in phases, must be duly planned, controlled and
analyzed [Dumke 1993], and questions of economic viability, quality assurance and
compliance with regulations must also be incorporated.

Within Deutsche Telekom AG, a standard procedural model based on the V model is used
for the development and maintenance of complex software systems [VM Basis 1996]. This
non platform related description for the development work itself and for the form in which the
results are presented has been successfully used for years. Figure 1 shows the phases of the
VM Basis graphically.

OperationIntroductionTest and
acceptance

Implemen-
tationDesignAnalysisConceptionPlanning

Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7Phase 1

Figure 1: Deutsche Telekom AG's procedural model [VMBasis 1996]

As with other engineering disciplines, the added value of applying procedural models comes
from the use of tried and tested and, as far as possible, standardized methods, notations and
tools for software development. This ensures, amongst other things, that reliable, continuously

improved methods are used for development, that sufficient documentation (including
documentation of the uniform structure) is available for further development and
maintenance, that the process of development can be planned as a whole and the input
required can be assessed and that regulations/laws can be taken into account. In addition, large
projects can be structured on the basis of structural levels and specific quality assurance
becomes possible.

2 The aims of the object-oriented procedural model

The procedure for software development, i.e. the definition of the software development
process, is depicted on the basis of descriptions and instructions through structuring from
various viewpoints as a model or procedural model and is thus made transparent and
plannable.

A procedural model [Biskup 1996]

1. defines:
�� a role model,
�� rules for the areas of activity of software system development, project management,

configuration management and quality management,
2. prescribes methods and tools that support the preparation of results.

However, the standard procedural model used by Deutsche Telekom, VM-BASIS, does not
take the object-oriented concepts into consideration and can therefore not be used effectively
in the realization of OO projects. To make this possible, the project experience existing in
DTAG's Berlin Development Centre in this area was combined to form a generic procedural
model for OO development (genVMOO) [Dimitrov 1998] and made available to all future
projects. The idea was to develop a procedural model based on the Unified Process (UP)
which would take into account, in particular, the characteristics of VM-BASIS in relation to
structural levels and notation. In addition, the following additional objectives were pursued:
�� Defining the use of metrics for the quantitative and qualitative evaluation of the resources

used, necessary processes and the actual product.
�� Successive support of the procedural model by appropriate tools so that an efficient

application is guaranteed.
�� Consideration of assets for comprehensive reuse of the software and linking of the

processes necessary for this with those of the development process.

In order to be able to support different project types in OO development, such as business
process and data-driven development or prototyping, a generic VM-OO (reference model) is
taken as a basis. The generic VM-OO serves as a framework for deriving project-type-specific
procedural models on the basis of process patterns ([Coplien 1995]) and/or using company
specifications ([Noack 1997]). Through the more specific formulation of marginal conditions
and general project specifications, further project-specific modifications (known as 'tailoring')
can be undertaken (Figure 2).

generic VM-
OO (reference

model)

project-type-
spec.VM-OO

project-spec.
VM-OOtailoring

specialize
concretize

Figure 2: Classification of OO procedural models

3 Generic procedural model for object orientation

3.1 Basic structures and characteristics of genVMOO

The following features characterize genVM-OO:

�� It complies with the Unified Process (UP) [Jacobson 1999] (although it was developed at

the same time as UP in part),
�� It is based on the widely used "nearly" standard notation UML,
�� It can be used in a controlled way for iterative, incremental development,
�� It is application case driven,
�� It can be modified for each specific project.

genVMOO uses the static structure and the numbering system of VM-BASIS, consisting of
phase, segment and activity. The main focus here is to describe what is to be done and how it
is to be done.

The following main goals are associated with the individual phases:
�� Conception: Laying down the basic requirements for the system. The ideas that the

developers, analysts and end users have are described in overall terms and the general
conditions are outlined.

�� Analysis: The description of all the functional and operational characteristics of the future
system.

�� Design: Laying down the system architecture and mapping the analysis model for the
solution area.

�� Implementation: Transforming the design model into programs that are coded in an
(object-oriented) programming language.

�� Test: Proof that the implemented system behaves as required and complies with all the
specifications.

The following standard template is used to represent the segments within a phase (or the
activities within a segment) (here using the example of the phase "Object-oriented analysis"):

SE ooa2
Class (object)

analysis

Application case
model

Static structural
model

Dynamic system
model

Application
case diagram

Class
(object)
diagram

Interaction

OOA Phase

Analysis model

SE ooa1
Requirement

analysis

SE ooa3
Analysis of system

dynamic

state diagrams

Figure 3: Segments within the object-oriented analysis (OOA) phase

The dynamic structure (project management view) - milestone plans are used to describe
when something must be done and who should do it - is taken from the Unified Process and
consists of the following stages (see also [Müller-Ettrich 1999]):
�� Inception: for the fundamental orientation and rough planning for the project. At the end,

sufficient information should be available to decide whether the project is to be continued
or not.

�� Elaboration: for the analysis of the area of application and the development of a viable
architectural model.

�� Construction: for incremental generation, testing all software components and integrating
them into a product.

�� Transition: for acceptance of the application, delivery and launch on the user's premises.

3.2 Software reuse in genVMOO

genVMOO not only defines the procedure for development of object-oriented software
systems, but also supports project staff in the development of component-based software
architectures. For this, it is important to clarify, on the one hand, the link between the reuse
processes and the genVMOO-supported software development processes and, on the other
hand, the assignment of possible re-usable candidates to the phases of the genVMOO [SW-
WiVe 1999]. These interrelations are shown in Figure 4.

The fundamental thesis here is that reuse is justified in all phases of the software
development. Not just codes should be reused, but all the products (assets) of the software
development, such as project plans, specifications, templates, analysis and design models, test
cases and test plans, documentations, etc.

Conception

Analysis

Design

Implementation

Test

Re-use initiation

Repository candidates

� Define team
� Re-use plan
� Research / market overview

� Identification / selection of
re-usable components
(concept)

� Identification / selection of
analysis components

� COTS candidates

� Identification / selection of
design components

� Evaluation / selection of
COTS

� Identification / selection of
implementation
components

� Identification / selection of
test components

Integration

� Integration of components
in the application

� Specialist lexicon
� Use-Case specification (BP)
� Architecture specification
� Templates
� ...

� Use-case diagram
� Class diagram
� Scenarios
� Interaction diagram
� State diagram

� Design Classes
� Subsystems
� Packet diagrams
� Deployment diagram

� Class libraries
� Interfaces
� Modules

� Test-scenarios
� Test-cases

Precondition

Phases of genVMOO

Figure 4: Integration of the reuse process and the OO software development process

(genVMOO)

3.3 Metrics and measurement points in genVMOO

Since metrics unrelated to paradigms (input requirement metrics, error statistics, customer
satisfaction, etc.) have been determined for many years, the application of metrics specially
for object-oriented paradigms was started in parallel to the introduction of the object-oriented
procedural model. On the basis of these metrics, both the quantitative and the qualitative
evaluation of the models prepared (UML in Rational Rose), the program code (C++ and Java)
and, indirectly, the procedural model itself are possible. In addition, it is also possible to carry
out a partly automated input requirement estimate using Object Point [Sneed 1996].

However, it is also proposed to expand the application of metrics in relation to the
conception and maintenance phases. In the case of conception, recording the metrics mainly
affects the text-based descriptions or business process models on the basis, for example,
expanded process chains. Maintenance would use such metrics as modification or port input
requirements.

Determination of metrics has been defined for the first time in the object-oriented
procedural model. To do this, defined measurement points were laid down, which allow
projects to be compared, even within the ongoing software generation process, taking the
marginal conditions (scope, complexity, quality...) into account.

The following two possibilities are the most rational when defining the measurement point:

1. measurement points to be determined by reference to segments, phases and ongoing

cycles,
2. measurement points to be determined by milestones or milestone events.

The input required in the case of the former is naturally greater, but more precise conclusions
can be drawn about the process, the resources and the actual software product. However, in
addition, it also involves difficulties resulting from the fact that the conclusion of a segment or
a phase cannot always be clearly identified, or the transitions between phases and cycles
become blurred. If this is the case, the measurement points should be determined by reference
to milestone events.

In the case of the former, in genVMOO, 11 significant measurement points were defined
for the moment, and the initial experiments were carried out. For OO projects with few cycles
(2 to 3 cycles), this approach is quite good. On the other hand, the second approach seems to
be more suitable for more complex projects with more than 3 cycles.

4 genVMOO tool support

4.1 Process Management Tool

The efficient use of procedural models depends, in our opinion, largely on tool support. In a
first approach, a process management tool should support teamwork, the project manager and
changes to the genVMOO itself. For the teamwork, the procedural model should be displayed
on screen as an ongoing element.

Each person involved in the project should thus be taken individually through the activities
that the project manager has assigned to him or her. At every point, everyone involved knows
what concrete products /results documents are expected of them. The aim is to release
software developers from any overheads that a procedural model inevitably brings with it, and
thus to support the acceptance and spread of genVMOO. A further aspect is the support of the
project manager, who should be given a type of checklist of all the tasks that are to be dealt
with in principle. In addition, it should be possible to plan the project in terms of time,
resources and functions (phase structure, milestones, etc.). Modifications to the genVMOO
should also be carried out with the support of tools so that the system can react flexibly to new
requirements. This means that the tool will support the continuous improvement of the entire
software development process as it moves towards a higher level of organizational maturity.
These requirements thus produce the functional tool characteristics shown below.

PM

CM

SD

QM

Conception

Analysis
(OOA)

Design
(OOD)

Implementation
(OOP)

Test
(OOT)

Activities Phases

Requirements
analysis

Class/ Object
analysis

Analysis of system
dynamic

Segments

Figure 5: Presentation using the example of system development

1. Visualizing the components of genVMOO in the form of a tree structure (cf. Figure 5)

according to the following areas of activity:
�� Project management,
�� Configuration management,
�� System development,
�� Quality management.
For system development, the following should also be visualized:
�� the development phases, divided into segments and activities,
�� the results documents (description forms) and
�� instructions/ explanations needed to carry out the activities.
For the results documents, pre-produced templates will be provided and visualized.

2. Visualizing the workflow in the team, computer administration of all results documents,
(automatic) incorporation of the tools used in the project for carrying out activities and
generation of the results documents.

3. Control of the software development process on the basis of genVMOO, i.e. those

involved in the project should be taken reliably through the process of development.

4. Automatic modification (tailoring) of genVMOO to a concrete project. As a result of this,

a project-specific VMOO is created, since not all the activities /results documents
proposed in the genVMOO are required for every specific project.
Marginal conditions and project characteristics are offered to the user in a dialogue. The
actual tailoring is therefore reduced to a series of mouse clicks.

5. Setting up the specific project – planning of times and functions (phases, increments, or
cycles, milestones, etc.)

6. Maintenance and carrying out changes to the genVMOO, resulting from project
experience. The modifications are carried out interactively on the genVMOO.
The following modifications can be undertaken by the project manager:
�� definition of segments or activity and product types (description forms) and indication

of relationships (product flow) between segments, activities and results documents
�� laying down roles and processing states
�� formulation of tailoring rules

In an initial development phase, the project management tool could be realized on the basis of
3 components: a visualizer (partly realized already) to carry out tasks 1 to 3, a project manager
to carry out tasks 4 and 5, and a model manager to carry out task 6. The extent to which the
company's own tools could be implemented or standard applications such as MS Project could
be used for project planning tasks has not yet been conclusively discussed. Tasks 4 and 5 are
already partly supported within the framework of a metrics database that has now been
implemented; this will be explained in the following.

4.2 Using a metrics database

The incorporation of metrics within the software lifecycle requires, as already stated, defined
measurement points and, for efficient processing as part of statistical evaluations, these must
be saved in a database. To do this, the MetricDB application was implemented on the basis of
a multilevel C/S architecture, the client interface of which is shown in Figure 6.

Figure 6: Browser dialog of the metrics database

The significant advantages of this application are its possible incorporation of every type of
procedural model (on the basis of templates), the automatic takeover of measured values from
corresponding measurement tools, the use of many types of metrics, including configurable
threshold values and a corresponding textual and graphic report, for example, for comparing
the metrics of two projects over a period of time to be defined. Figure 6 clearly shows the

procedural model that was briefly described, with its stages, cycles and phases, with the
measurements carried out always being assigned to the relevant phases. A more detailed
exploration of this subject is given in [Schmietendorf 1999].

5 Summary and outlook

In the past, complex and, above all, extensive procedural models have caused major problems
in practical use. It cannot be expected that all developers should be familiar with "Paperware"
running into a few thousand pages. Accordingly, a procedural model must be a guideline for
the creation of software products and must follow a learning approach integrated into the
development. At the moment, project managers and developers receive just 50 pages of text to
help them find their way around "genVMOO". Another important factor for the successful,
efficient use of procedural models is their granularity, i.e. special marginal conditions should
only be supported by the procedural model if they have to be taken into account within
development; otherwise, this type of complexity should be kept well away from the user.

In addition to these fundamental questions, the procedural model that has been selected or
developed requires tool support. The question is whether a standard tool that takes everything
into consideration is preferable or whether existing tool approaches should be integrated
independently, including the appropriate CASE tools and programming environments. Even if
integration of this type seems more time-consuming at first glance, a considerable level of
dependency is likely with a procedural model and associated tool chain developed solely by
one company. One possible solution would be the definition of a standard interface (such as
CORBA-IDL or XMI), via which all the tools used as part of development could exchange
information. In addition, another advantage of individual integration is that practical
experience can be taken into account in the corresponding procedural models, which should
give a corresponding market advantage for the software development house in question in the
medium term.

To complete the genVMOO we are planning to integrate the necessary performance
engineering processes. Taking into account the performance of an information system in terms
of response times, throughput and process flow times requires an approach that takes the
complete software development cycle into consideration. A number of viable integration
models are already available for this (e.g. [Smith 1990]); the processes necessary for these
must be integrated into current procedural models. In addition to the realization of the tool
support already described, this theme is at the heart of further tasks that have to be dealt with.

References

[Biskup 1996] Biskup, H.; Fischer, T.: Vorgehensmodelle - Versuch einer begrifflichen

Einordnung (Procedural models - an attempt at a classification of terms). In:

Leitungsgremium des GI-FA 5.1 (Hrsg.): Memorandum 2/96 of Technical
Committee 5.1 "Management of Application Development and Maintenance".
Karlsruhe 1996.

[Coplien 1995] Coplien, J.: A development Process generative Pattern Language. Bell
Laboratories, 1995 http://portal.research.bel-labs.com/orgs/ssr/people/ cope/Patterns/
Process)

[Dimitrov 1998] Dimitrov, E.: Ein Vorgehensmodell für die Objektorientierte Entwicklung (A
procedural model for object-oriented development). Internal Report, Deutsche
Telekom AG, Entwicklungszentrum Berlin, 1998

[Dumke 1993] Dumke, R.: Modernes Software Engineering. Vieweg Lehrbuch Informatik,
Braunschweig/Wiesbaden 1993

[Jacobson 1999] Jacobson, I.; Booch, G; Rumbaugh, J.: The Unified Software development
Process. Addison-Wesley, Reading (Mass.) 1999

[Müller-Ettrich 1999] Müller-Ettrich, G.: Objektorientierte Prozeßmodelle. UML einsetzen
mit OOTC, V-Modell, Objectory (Object-oriented process models. Using UML with
OOTC, V-model, objectory). Addison-Wesley, 1999

[Noack 1997] Noack, J.; Schienmann, B.; Kittlaus, H.-B.: Ein Leitfaden für die
objektorientierte Anwendungsentwicklung in der Sparkassenorganisation (A
guideline for object-oriented application development in the savings bank
organization). OBJECTspektrum 6/97, S.52-59, 1997

[Rational 1999] Rational: UML Unified Modeling Language, Version 1.1 and 1.3,
http://www.rational.com

[Schmietendorf 1999] Schmietendorf, A.; Stoyanov, S.; Mourdjeva, A.: Implementation of a
Metrics Database for Industrial Use. Metrics News Vol. 4, No. 1, July 1999

[Smith 1990] Connie U. Smith, C. U.: Performance Engineering of Software Systems,
Addison-Wesley, New York 1990

[Sneed 1996] Sneed, H. M.: Schätzung der Entwicklungskosten von objektorientierter
Software (Estimating the development costs of object-oriented software). Informations
Spektrum 19, Springer Verlag, Heidelberg 1996, S. 133-140

[SW-WiVe 1999] Projekt Software-Wiederverwendung (SW-WiVe) (The software reuse
project), Final report, T-Nova, Deutsche Telekom Innovationsgeselschaft,
Entwicklungszentrum Berlin, 1999

[VMBasis 1996] Pullwitt, S.; Tannenbaum, K. G.: Vorgehensmodell der Deutschen Telekom:
Entwicklung und Instandhaltung von komplexen Softwaresystemen (Deutsche
Telekom procedural model: the development and maintenance of complex software
systems). A. Ganser (publ.), Munich, Vienna, Oldenbourg 1996

Dumke, R.; Lehner, F.:
Software-Metriken - Entwicklungen, Werkzeuge und Anwendungsverfahren
DUV Publisher, Wiesbaden, 2000 (229 pages)

http://www.rational.com/

ISBN 3-8244-7120-5

The includes the papers of the 9th German Workshop on Software Measurement in
Regensburg in September 1999. The contents is

Michael Jacobsen-Rey
AUTOMATED SOFTWARE INSPECTION - Attaining New Levels of Software Quality

Thomas Fetcke
TWO PROPERTIES OF FUNCTION POINT ANALYSIS
Erik Foltin, Reiner Dumke, Andreas Schmietendorf
ENTWURF EINER INDUSTRIELL NUTZBAREN METRIKEN-DATENBANK
Projekt: metricDB-2 V 0.8

Claus Lewerentz, Heinrich Rust, Frank Simon
QUALITY - METRICS - NUMBERS - CONSEQUENCES

Reiner Dumke
ERFAHRUNGEN IN DER ANWENDUNG EINES ALLGEMEINEN OBJEKT-ORIENTIERTEN
MEASUREMENT FRAMEWORK

Andreas Schmietendorf, Evgeni Dimitrov, Reiner Dumke, Erik Foltin, Michael Wipprecht
KONZEPTION UND ERSTE ERFAHRUNGEN EINER METRIKENBASIERTEN SOFTWARE-
WIEDERVERWENDUNG

Patricia Mandl-Striegnitz
UNTERSUCHUNG EINES NEUEN ANSATZES ZUR PROJEKTMANAGEMENT-AUSBILDUNG

Hans Windpassinger
MÖGLICHKEITEN DER METRIK-BASIERTEN MODELLIERUNG UND AUSWERTUNG VON
QUALITÄTSVORGABEN MIT DEM WERKZEUG LOGISCOPE

Silvio Löffler, Frank Simon
SEMIAUTOMATISCHE, KOHÄSIONSBASIERTE SUBSYSTEMBILDUNG

Ulrich Schweikl, Stefan Weber, Erik Foltin, Reiner Dumke
APPLICABILITY OF FULL FUNCTION POINTS AT SIEMENS AT

Harry M. Sneed
TESTMETRIKEN FÜR OBJEKTORIENTIERTE BANKENANWENDUNGEN

Christof Ebert
PROCESS CHANGE MANAGEMENT IN LARGE ORGANIZATIONS

Angelika Mittelmann
MESSEN VON WEICHEN FAKTOREN - Ein Erfahrungsbericht

Wohlin,Claes et al.:
Experimentation in Software Engineering - An Introduction
Kluwer Academic Publishers Boston/Dordrecht/London, 2000 (204 pages)

ISBN 0-7923-8682-5

The purpose of EXPERIMENTATION IN SOFTWARE ENGINEERING: An Introduction is
to introduce students, teachers, researchers, and practitioners to experimentation and
experimental evaluation with a focus on software engineering. The objective is, in particular,
to provide guidelines for performing experiments evaluating methods, techniques and tools in
software engineering. The introduction is provided through a process perspective. The focus is
on the steps that must be taken to perform experiments and quasi-experiments. The process
also includes other types of empirical studies.

The motivation for the book emerged from the need for support the authors experienced
when making their software engineering research more experimental. Several books are
available that either treat the subject in very general terms or focus on some specific part of
experimentation; most focus on the statistical methods in experimentation. These are
important, but there are few books elaborating on experimentation from a process perspective;
none addressing experimentation in software engineering in particular.

The scope of EXPERIMENTATION IN SOFTWARE ENGINEERING: An Introduction is
primarily experiments in software engineering as a means for evaluating methods, techniques
and tools. The book provides some information regarding empirical studies in general,
including both case studies and surveys. The intention is to provide a brief understanding of
these strategies and in particular to relate them to experimentation.

EXPERIMENTATION IN SOFTWARE ENGINEERING: An Introduction is suitable for
use as a textbook or a secondary text for graduate courses, and for researchers and
practitioners interested in an empirical approach to software engineering.

Bundschuh, M.; Fabry, A.:
Aufwandschätzung von IT-Projekten

MITP Publisher, Bonn, 2000 (331 pages)
ISBN 3-8266-0534-9

This new book about software effort and costs estimation, includes a description of the current used
methods in practice. A detailed presentation considers the Function Point methods and their different
approaches. The book includes some case studies and is directed for a general practical use in the IT
area.

Menascé, D.A.; Almeida, V.A.F.:
Scaling for E-Business – Technologies, Model, Performance, and Capacity
Planning

Prentice Hall Publ., 2000 (449 pages)
ISBN 0-13-086328-9

This book teaches you how to approach website performance problems in a methodical and
quantitative way. It introduces a methodology to analyze the way websites are used (behavior model
graphs) and how work flows through them (interaction diagrams). The book shows you how to build
these models from web logs or from a system analysis. It then shows you how to use these models to
analyze your current system’s behavior, and also to predict how much capacity you will need as
demand grows and changes.

The book gives a very readable treatment of each step in this process, giving background tutorials
on networking, web servers, server-side scripts, and database servers. It also gives quantitative
measures of each of these components, telling you how to size servers and networks for each step of
the interaction diagram. For example, it shows the relative cost of ordinary HTTP transactions, and
then progresses to SSL/TOS secure transactions, and then SET transactions. In each case it explains
the technology, then it explains the performance implications, and finally it considers the pros and
cons of using hardware accelerators for the cryptographic steps. Each concept is exemplified by a
specific example worked out in detail.

The web is unpredictable: it is very hard to guess what will happen next. What new technology
will appear next month? What new security hole will pop up? What feature will create explosive
growth on your site? This book cannot answer those questions – no book can. But, once you know
what you want to do, this book gives you the quantitative tools to estimate the capacity needed to
provide the new features and to estimate what they will cost, and also to estimate the new system’s
performance and response time.

Professors Menascé and Almeida have developed a pragmatic approach to website performance
modeling. This practitioner’s handbook abstracts the current research articles and textbooks – giving
you clear advice on how to approach performance problems. The result is a very readable and useful
tutorial on how to scale up a website from a single server to a site handling millions of transactions
per day.

Dumke, R.; Abran, A. (Eds.):

New Approaches in Software Measurement
10th International Workshop, IWSM 2000, Berlin, Germany, October 4-6, 2000
LNCS 2006, Springer-Verlag, Heidelberg 2001 (244 pages)
ISBN 3-540-41727-3

OBJECT-ORIENTED SOFTWARE MEASUREMENT

Impact of Inheritance on Metrics for Size, Coupling, and Cohesion in Object -Oriented
Systems
D. Beyer, C. Lewerentz, F. Simon
Measuring Object-Orientedness: the Invocation Profile
P. Rosner, T. Hall, T. Mayer

CEOS - A Cost Estimation Method for Evolutionary, Object-Oriented Software Develop-
ment
S. Sarferaz, W. Hesse
A Measurement Tool for Object Oriented Software and Measurement Experiments with it
L. Xinke, L. Zongtian, P. Biao, X. Dahong

INVESTIGATIONS IN SOFTWARE PROCESS IMPROVEMENT

Estimating the Cost of Carrying out Tasks Relating to Performance Engineering
E. Foltin, A. Schmietendorf
Measurement in Software Process Improvement Programmes: An Empirical Study
T. Hall, N. Baddoo, D. Wilson
Improving Validation Activities in a Global Software Development
C. Ebert, C. Hernandez Parro, R. Suttels, H. Kolarczyk
A Generic Model for Assessing Process Quality
M. Satpathy, R. Harrison, C. Snook, M. Butler
Maturity Evaluation of the Performance Engineering Process
A. Schmietendorf, A. Scholz

FUNCTION-POINT-BASED SOFTWARE MEASUREMENT
COSMIC FFP and the World-Wide Field Trials Strategy
A. Abran, S. Oligny, C.R. Symons
Extraction of Function-Points from Source-Code
H.M. Sneed
Early & Quick COSMIC-FFP Analysis using Analytic Hierarchy Process
L. Santillo

SOFTWARE MEASUREMENT OF SPECIAL ASPECTS

Measuring the Ripple Effect of Pascal Programs
S. Black, F. Clark
An Assessment of the Effects of Requirements Reuse Measurements on the ERP
Requirements Engineering Process
M. Daneva

A New Metric-Based Approach for the Evaluation of Customer Satisfaction in the IT Area
R.R. Dumke, C. Wille
Utility Metrics for Economic Agents
D. Schmelz, M. Schmelz, J. Schmelz

IMPROVING THE SOFTWARE MEASUREMENT PROCESS

QF
2
D: a Different Way to Measure Software Quality

L. Buglione, A. Abran
Using FAME Assessments to Define Measurement Goals

D. Hamann, A. Beitz, M. Müller, R. van Solingen

Mapping Processes Between Parallel, Hierarchical and Orthogonal System Representations
F. Dion, T.K. Tran, A. Abran

Dumke, R.; Rautenstrauch, C.; Schmietendorf, A.; Scholz, A. (Eds.):

Performance Engineering. State of the Art and Current Trends
LNCS 2047, Springer-Verlag, Heidelberg 2001

One of the most critical non-functional quality factors of a software system is the performance
characteristic. The main idea of performance engineering is to consider the performance as a
design target throughout the whole software development process and especially in its early
phases.

The objective of this book is to bring researchers and industry experts together in describing
the state of the art as well as current trends of performance engineering. Thereby a major part
of all facets of this innovative development technique can be discussed. Each paper will
provide insight into the effective use of performance engineering through methods, models,
case studies, experience reports, or experiments.

The contributions of the book are based on:
�� The first German Workshop Performance Engineering within the Software

Development PE2000 May, 17 2000 in Darmstadt, Germany
�� The second international Workshop on Software and Performance – WOSP 2000,

September, 17.-20. 2000 in Ottawa, Canada
�� and a separate Call for Book Chapters

The book contains the following articles:

INTRODUCTION

Historical Roots of Performance Engineering
Aspects of Performance Engineering – An Overview

RELATIONS BETWEEN SOFTWARE AND PERFORMANCE ENGINEERING

Conception of a Web-based SPE Development Infrastructure
Dumke, R., Koeppe, R.
Performance and Robustness Engineering and the Role of Automated Software
Development
Gerlich, R.
Performance Engineering of Component-Based Distributed Software Systems
Gomaa, H., Menascé, D.A.
Conflicts and Trade-offs between Software Performance and Maintainability
Lundberg, L., Häggander, D., Diestelkamp, W.
Performance Engineering on the Basis of Performance Servic Levels
Rautenstrauch, C., Scholz, A.
Possibilities of Performance Modelling with UML
Schmietendorf, A., Dimitrov, E.
Origins of Software Performance Engineering: Highlights and Outstanding Problems

Smith, C.U.
Performance Parameters and Context of Use
Stary, C.

PERFORMANCE MODELING AND PERFORMANCE MEASUREMENT

Using Load Dependent Servers to Reduce the Complexity of Large Client-Server
Simulation Models
Curiel, M., Puigjaner, R.
Performance Evaluation of Mobile Agents: Issues and Approaches
Dikaiakos, M.D., Samaras, G.
UML-based Performance Modeling Framework for Component-Based Distributed Systems
Kähkipuro, P.
Scenario-based Performance Evaluation of SDL/MSC-specified Systems
Kerber, L.
Characterization and Analysis of Software and Computer Systems with Uncertainties and
Variabilities
Majumdar, S., Lüthi, J., Haring, G., Ramadoss, R.
The Simalytic Modeling Technique
Norton, T.R.
Resource Function Capture for Performance Aspects of Software Components and Sub-
systems
Woodside, M., Vetland, V., Courtois, M., Bayarov, S.

PRACTICAL EXPERIENCE

Shared Memory Contention and its Impact on Multi-Processor Call Control Throughput
Drwiega, T.
Performance and Scalability Models for a Hypergrowth e-Commerce Web Site
Gunther, N.J.
Performance Testing for IP Services and Systems
Huebner, F., Meier-Hellstern, K., Reeser, P.
Performance Modelling of Interaction Protocols in Soft Real-Time Design Architectures
Juiz, C., Puigjaner, R., Jackson, K.
A Performance Engineering Case Study: Software Retrieval System
Merseguer, J., Campos, J., Mena, E.
Performance Management of SAP® Solutions
Schneider, T.

METRICS 2001 & ESCOM 2001:

7th International Symposium on Software Metrics
April 2 - 6, 2001, London, England
see: http://www.mmhq.co.uk/2001/

PE2001:

2. German Workshop of Performance Engineering in Software Development
April 19, 2001, Munich, Germany
see: http://www-wi.cs.uni-magdeburg.de/pe2001/

http://www.mmhq.co.uk/2001/
http://www-wi.cs.uni-magdeburg.de/pe2001/

FESMA/DASMA 2001
4th European Conference on Software Measurement and ICT Control
May 9 - 11, 2001, Heidelberg, Germany
see: http://www.ti.kviv.be/conf/fesma.htm

QualWeek 2001

14th Annual International Internet & Software Quality Week 2001
29 May - 1 June 2001, San Francisco, California
see: http://www.soft.com/QualWeek/QW2001/

IFPUG 2000, Fall:

International Function Point User Group Fall Conference,
September 11-15 , 2000, San Diego, USA
see: http://www.ifpug.org/conferences/conf.html

IWSM'2001:

11th International Workshop on Software Measurement
August 28 - 29, 2001, Montreal, Canada
see: http://lrgl.uqam.ca/workshop2001/

PROFES 2001:

3rd International Conference on Product Focused Software Process Improvement
September 10 - 13, 2001, Kaiserlautern, Germany,
see: http://www.ele.vtt.fi/profes2001/

CONQUEST 2001:

Conference on Quality Engineering in Software Technology
September 19 - 21, 2001, Nuremberg, Germany
see: http://www.asqf.de/

UML 2001:
Fourth International Conference on the Unified Modeling Language
October 1 - 5, 2001, Toronto, Canada
see: http://www.cs.toronto.edu/uml2001/

WCRE 2001:

8th Working Conference on Reverse Engineering
October 2 - 5, 2001, Stuttgart, Germany
see: http://www.reengineer.org/wcre2001/

ICSM'2001:

IEEE International Conference on Software Maintenance
November 6 - 10, 2001, Florence, Italy

http://www.ti.kviv.be/conf/fesma.htm
http://www.soft.com/QualWeek/QW2001/
http://www.ifpug.org/conferences/conf.html
http://lrgl.uqam.ca/workshop2001/
http://www.ele.vtt.fi/profes2001/
http://www.asqf.de/
http://www.cs.toronto.edu/uml2001/
http://www.reengineer.org/wcre2001/

see: http://www.dsi.unifi.it/icsm2001/

EuroSTAR 2001:

9th European International Conference on Software Testing Analysis & Review,
November 19 - 23, 2001, Stockholm, Sweden
see: http://www.eurostar.ie/

see also: OOIS, ECOOP and ESEC European Conferences

Other Information Sources and Related Topics

�� http://rbse.jsc.nasa.gov/virt-lib/soft-eng.html
 Software Engineering Virtual Library in Houston

�� http://www.mccabe.com/
 McCabe & Associates. Commercial site offering products and services for

software developers (i. e. Y2K, Testing or Quality Assurance)

�� http://www.sei.cmu.edu/
 Software Engineering Institute of the U. S. Department of Defence at

Carnegie Mellon University. Main objective of the Institute is to identify and
promote successful software development practices.

 Exhaustive list of publications available for download.

�� http://dxsting.cern.ch/sting/sting.html
 Software Technology INterest Group at CERN: their WEB-service is

currently limited (due to "various reconfigurations") to a list of links to other
information sources.

�� http://www.spr.com/index.htm
 Software Productivity Research, Capers Jones. A commercial site offering

products and services mainly for software estimation and planning.

�� http://fdd.gsfc.nasa.gov/seltext.html
 The Software Engineering Laboratory at NASA/Goddard Space Flight Center.

Some documents on software product and process improvements and findings
from studies are available for download.

�� http://www.qucis.queensu.ca/Software-Engineering/
 This site hosts the World-Wide Web archives for the USENET usegroup

comp.software-eng. Some links to other information sources are also
provided.

http://www.dsi.unifi.it/icsm2001/
http://www.eurostar.ie/

�� http://www.esi.es/
 The European Software Institute,Spain

�� http://saturne.info.uqam.ca/Labo_Recherche/lrgl.html
 Software Engineering Management Research Laboratory at the University of

Quebec, Montreal. Site offers research reports for download. One key focus
area is the analysis and extension of the Function Point method.

�� http://www.SoftwareMetrics.com/
 Homepage of Longstreet Consulting. Offers products and services and some

general information on Function Point Analysis.

�� http://www.utexas.edu/coe/sqi/
 Software Quality Institute at the University of Texas at Austin. Offers

comprehensive general information sources on software quality issues.

�� http://wwwtrese.cs.utwente.nl/~vdberg/thesis.htm
 Klaas van den Berg: Software Measurement and Functional Programming

(PhD thesis)

�� http://divcom.otago.ac.nz:800/com/infosci/smrl/home.htm
 The Software Metrics Research Laboratory at the University of Otago (New

Zealand).

�� http://ivs.cs.uni-magdeburg.de/sw-eng/us/
 Homepage of the Software Measurement Laboratory at the University of

Magdeburg.

�� http://www.cs.tu-berlin.de/~zuse/
 Homepage of Dr. Horst Zuse

�� http://dec.bournemouth.ac.uk/ESERG/bibliography.html
 Annotaded Bibliography on Object-Oriented Metrics

�� http://www.iso.ch/9000e/forum.html
 The ISO 9000 Forum aims to facilitate communication between newcomers

to Quality Management and those who, having already made the journey have
experience to draw on and advice to share.

�� http://www.qa-inc.com/
 Quality America, Inc's Home Page offers tools and services for quality

improvement. Some articles for download are available.

�� http://www.quality.org/qc/
 Exhaustive set of online quality resources, not limited to software quality

issues

�� http://freedom.larc.nasa.gov/spqr/spqr.html

 Software Productivity, Quality, and Reliability N-Team

�� http://www.qsm.com/
 Homepage of the Quantitative Software Management (QSM) in the

Netherlands

�� http://www.iese.fhg.de/
 Homepage of the Fraunhofer Institute for Experimental Software Engineering

(IESE) in Kaiserslautern, Germany

�� http://www.highq.be/quality/besma.htm
 Homepage of the Belgian Software Metrics Association (BeSMA) in

Keebergen, Belgium

�� http://www.cetus-links.org/oo_metrics.html
 Homepage of Manfred Schneider on Objects and Components

��http://dec.bournemouth.ac.uk/ESERG/bibliography.html
 An annotated bibliography of object-oriented metrics of the Empirical

Software Engineering Research Group (ESERG) of the Bournemouth
University, UK

News Groups

�� news:comp.software-eng

�� news:comp.software.testing

�� news:comp.software.measurement

Software Measurement Associations

�� http://www.aemes.fi.upm.es
 AEMES Association Espanola de Metricas del Software

�� http://www.asqf.de
 ASQF Arbeitskreis Software-Qualität Franken e.V., Nuremberg, Germany

�� http://www.cosmicon.com
 COSMIC Common Software Measurement International Consortium

�� DANMET: Danish Software Metrics Association

�� http://www.dasma.de
 DASMA Deutsche Anwendergruppe für Software Metrik und Aufwands-

schätzung e.V.

http://www.qsm.com/
http://www.iese.fhg.de/
http://dec.bournemouth.ac.uk/ESERG/bibliography.html
news:comp.software-eng
news:comp.software.testing
http://www.aemes.fi.upm.es/
http://www.asqf.de/
http://www.cosmicon.com/
http://www.dasma.de/

�� http://www.esi.es
 ESI European Software Engineering Institute in Bilbao, Spain

�� http://www.fesma.org/
 FESMA Federation of European Software Metrics Associations

�� http://www.sttf.fi
 FiSMA Finnish Software Metrics Association

�� FFPUG: French Function Point User Group

�� FPUGA: Function Point User Group Austria

�� http://www.iese.fhg.de
 IESE Fraunhofer Einrichtung für Experimentelles Software Engineering

�� http://www.isbsg.org.au
 ISBSG International Software Benchmarking Standards Group, Australia

�� http://www.nesma.nl
 NESMA Netherlands Software Metrics Association

�� http://www.sei.cmu.edu/
 SEI Software Engineering Institute Pittsburgh

�� http://www.spr.com/
 SPR Software Productivity Research by Capers Jones

�� http://fdd.gsfc.nasa.gov/seltext.html
 SEL Software Engineering Laboratory - NASA-Homepage

�� http://www.vrz.net/stev
 STEV Vereinigung für Software-Qualitätsmanagement Österreichs

�� http://www.sqs.de
 SQS Gesellschaft für Software-Qualitätssicherung, Germany

�� http://www.ti.kviv.be
 TI/KVIV Belgish Genootschap voor Software Metrics

�� http://www.uksma.co.uk
 UKSMA United Kingdom Software Metrics Association

Software Metrics Tools (Overviews and Vendors)

Tool Listings

http://www.esi.es/
http://www.fesma.org/
http://www.sttf.fi/
http://www.iese.fhg.de/
http://www.nesma.nl/
http://www.sei.cmu.edu/
http://www.spr.com/
http://fdd.gsfc.nasa.gov/seltext.html
http://www.vrz.net/stev
http://www.sqs.de/
http://www.ti.kviv.be/
http://www.uksma.co.uk/

�� http://www.pitt.edu/~ddarcy/isprof/intotool.html#intro
 Metrics Tool Listings by Dace Darcy

�� http://www.cs.umd.edu/users/cml/resources/cmetrics/
 C/C++ Metrics Tools by Christopher Lott

�� http://davidfrico.com/mettools.htm
 Software Metrics Tools by Dave

�� http://mdmetric.com/meastl1.htm
 Maryland Metrics Tools

�� http://cutter.com/itgroup/reports/function.html
 Function Point Tools by Carol Dekkers

Tool Vendors

�� http://www.mccabe.com
 McCabe & Associates

�� http://www.scitools.com
 Scientific Toolworks, Inc.

�� http://zing.ncsl.nist.gov/webmet/
 Web Metrics

�� http://www.globalintegrity.com/csheets/metself.html
 Global Integrity

�� http://www.spr.com/
 Software Productivity Research (SPR)

�� http://jmetric.it.swin.edu.au/products/jmetric/
 JMetric

�� http://www.imagix.com/products/metrics.html
 Imagix Power Software

�� http://www.verilogusa.com/home.htm
 VERILOG (LOGISCOPE

�� http://www.qsm.com/
 QSM

METRICS NEWS

http://www.pitt.edu/~ddarcy/isprof/intotool.html
http://mdmetric.com/meastl1.htm
http://www.mc/
http://www.qsm.com/

VOLUME 5 2000 NUMBER 2

CONTENTS

Call for Papers .. 3

Call for Participation ... 7

Workshop Report ...11

Position Papers ...23

Hanebutte, N. and Dumke, R.R.:
Analyzing Software Design using a Measurable Program
Design Language ...23

Dimitrov, E., Schmietendorf, A., and Dumke, R.:
Software Reuse and Metrics within a Process Model for
Object-oriented Development ..34

New Books on Software Metrics ...45

Conferences Addressing Metrics Issues ...51

Metrics in the World-Wide Web ..53

ISSN 1431-8008

	Alain Abran
	Manfred Bundschuh
	Reiner Dumke
	Christof Ebert
	Horst Zuse
	
	
	
	
	In cooperation with

	August 28-29, 2001 in Montréal \(Québec\) CAN�

	THEME & SCOPE: SOFTWARE SIZE MEASUREMENT
	A - Measurements within institutional documents:
	B - Objects and attributes to be measured:
	C - Measurement methods: design issues
	D - Uses of measurements results in relationships with other measures:
	
	
	PROGRAM COMMITTEE
	SUBMISSIONS
	Alain AbranReiner Dumke
	WORKSHOP TIMETABLE
	NEWS

	SCOPE
	PRELIMINARY WORHSHOP PROGRAM
	PROGRAM COMMITTEE
	ORGANISATION

	Dirk Beyer, Claus Lewerentz, Frank Simon

	Measuring Object-Orientedness: the Invocation Profile
	Li Xinke, Liu Zongtian, Pan Biao, Xing Dahong
	Measurement in Software Process Improvement Programmes: an Empirical Study

	A Generic Model for Assessing Process Quality
	Andreas Schmietendorf, André Scholz

	COSMIC FFP and the World-Wide Field Trials Strategy
	Luca Santillo
	Maya Daneva

	Utility Metrics for Economic Agents
	Using FAME Assessments to Define Measurement Goals
	1 Introduction
	2 The aims of the object-oriented procedural model
	3 Generic procedural model for object orientation
	3.1 Basic structures and characteristics of genVMOO
	3.2 Software reuse in genVMOO
	3.3 Metrics and measurement points in genVMOO

	4 genVMOO tool support
	4.1 Process Management Tool
	4.2 Using a metrics database

	5 Summary and outlook
	References
	
	Software-Metriken - Entwicklungen, Werkzeuge und Anwendungsverfahren

	Erik Foltin, Reiner Dumke, Andreas Schmietendorf
	Experimentation in Software Engineering - An Introduction

	ISBN 0-7923-8682-5
	
	Aufwandschätzung von IT-Projekten

	MITP Publisher, Bonn, 2000 (331 pages)
	ISBN 3-8266-0534-9
	Prentice Hall Publ., 2000 (449 pages)
	ISBN 0-13-086328-9
	LNCS 2047, Springer-Verlag, Heidelberg 2001
	Other Information Sources and Related Topics
	VOLUME 5 2000 NUMBER 2
	CONTENTS

