
 Call for Participation 3

12th International Workshop on Software Measurement

IWSM 2002

Workshop Program

October 7 – 9, 2002, Magdeburg, Germany

Venue: Computer Science Building 29, University of Magdeburg

Monday, October 7, 2002:

 8.00: Workshop and Tutorial Registration, Room 319

 9.00 – 13.00: Tutorials

 Charles Symons, Software Measurement Services Ltd., London, UK:
 COSMIC FFP – for Sizing Business and Real-time Software,
 Room K058

 Alain Abran, Ecole de Technologie Superieure, Montreal, Canada:
 Concept and Practical Use of the ISBSG Portal,
 Room 335

 Horst Zuse, Technical University Berlin, Germany:
 Metrics in the Software Life Cycle,
 Room E037

13.00 – 14.30: Lunch

14.30 – 15.30: Community session of the GI FG 2.1.10 members
 Room 335

15.30 – 17.00: Community session of the COSMIC members
 Room E037

17.00 – 18.30: Community session of the DASMA members
 Room K058

18.30: Exhibitors’ Reception

 Call for Participation 4

Tuesday, October 8, 2002:
Venue: Computer Science Building 29, Room 307

 8.45 – 9.00: Alain Abran, Reiner Dumke: Welcome and Introduction

Chair: Reiner Dumke, University of Magdeburg

 9.00 – 9.45: Keynote Horst Zuse (TU Berlin, Germany):

 Problems and Pitfals in Software Metrics Applications

 9.45 – 10.15: Alain Abran, Asma Sellami (ETS Montreal, Canada):
 Models of the Measurement Concepts in the ISO Vocabulary

 of Terms in Metrology

10.15 – 10.45: Harry Sneed (SDS Vienna & CaseConsult Wiesbaden, Germany):
 XMI-Relational Model of a Software Metric Database

10.45 – 11.00: Coffee Break

Chair: Alain Abran, Ecole de Technologie Superieur Montreal

11.00 – 11.30: Alain Abran, Peter Fagg, Roberto Meli, Charles Symons (COSMIC

 Consortium):
 Clarifications of the COSMIC FFP Method of Functional Sizing

11.30 – 12.00: Malcolm Jenner (University of Woverhampton, UK):
 Automation of Counting of Functional Size Using COSMIC FFP in
 UML

12.00 – 12.30: Jean-Marc Desharnais, Tim Küssing, Alain Abran; Andre Mayers

 (University of Quebec & University of Nuremberg & ETS &
 University of Sherbrook, Canada):
 Design of a Diagnostic Tool to Improve the Quality of the
 Functional Measurement

12.30 – 14.00: Lunch

 Chair: Charles Symons, Software Measurement Service Ltd., UK

14.00 – 14.30: Maya Daneva (TELUS Mobility, Canada):
 Comparing ERP Requirements Engineering Processes: a Case Study

14.30 – 15.00: Mathias Lother, Andreas Schmietendorf, Thomas Böhm,
 Reiner Dumke (University of Magdeburg):
 Quality Evaluation of Large Scale Software Systems

 Call for Participation 5

15.00 – 15.30: Roland Neumann, Lars Grunske (Institute of Hasso-Plattner, Potsdam,
 Germany):
 Hierarchical Software Quality Models – a Step Towards

 Quantifying Nonfunctional Properties

 15.30 – 15.45: Coffe Break

 Chair: Harry Sneed, CaseConsult Wiesbaden, Germany

 15.45 – 16.15: Manfred Bundschuh (AXA Cologne, Germany):
 Estimation of Maintenance Tasks

 16.15 – 16.45: Andreas Schmietendorf, Reiner Dumke (T-Systems Berlin &

 University of Magdeburg, Germany):
 Metrics-based Analysis of Enterprise Java Beans Components

 16.45 – 17.15: Luigi Buglione, Alain Abran (SchlumbergerSema Rome, Italy &
 ETS Montreal, Canada):
 ICEBERG: a Different Look at Software Project Management

 19.30: Social Event

Wednesday, October 9, 2002:
Venue: Computer Science Building 29, Room 307

 Chair: Horst Zuse, TU Berlin

 9.00 – 9.45: Keynote Alain Abran (Ecole Technologie de Superieur, Montreal):

 The SWEBOK Intitiative and Software Measurement Intentions

 9.45 – 10.15: Stefan Jungmayr (FernUniversität Hagen, Germany):

 Testability Measurement and Software Dependencies

 10.15 - 10.45: Cornelius Wille, Reiner Dumke, Stanimor Stojanov (University of
 Magdeburg, Germany & University of Plovdiv, Bulgaria):
 New Measurement Intentions in Agent-based Systems Development
 and Application

 10.45 - 11.00: Coffe Break

 Chair: Manfred Bundschuh, AXA Cologne & DASMA e. V.

 11.00 - 11.30: Antonia Bertolino, Gaetano Lombardi, Eda Marchetti, Reffaela

 Mirandola (CNR Pisa & Rome University & EricssonLab Rome,
 Italy):

 Software Performance Measures to Assist Decision Makers within
 the Rational Unified Process

 Call for Participation 6

 11.30 - 12.00: Alain Abran, Reiner Dumke, Jean-Marc Desharnais, Iphigenie
 Ndyaje, Christian Kolbe (ETS Montreal, Canada & University of
 Magdeburg, Germany):
 A Strategy for a Credible & Auditable Estimation Process Using
 the ISBSG International Data Repository

 12.00 - 12.30: Robert Hürten (Hürten & Partner Consulting, Blankenheim,
 Germany):
 Why does the Function Point Analysis Find so Little Acceptance?

 12.30 – 14.00: Lunch

 Chair: Günter Büren, Büren & Partner Nuremberg, Germany

 14.00 – 14.30: Marek Leszak, Werner Brunck, Gerd Moessler (Lucent Technologies,
 Nuremberg, Germany):
 Analysis of Software Defects in a Large Evolutionary
 Telcommunication System

 14.30 – 15.00: Hannu Toivonen (Nokia Research Center, Finland):
 Defining Measures for Memory Efficiency of the Software in
 Mobile Terminals

 15.00 – 15.30: Reiner Dumke, Mathias Lother, Cornelius Wille (University of
 Magdeburg):
 Situation and Trends in Software Measurement – A Statistical
 Analysis of the SML@b Metrics Bibliography

 15.30: Reiner Dumke: Final Discussion and Closing

 Position Papers 7

FUNCTION POINT PROGNOSIS APPROVED
Regression Analysis for Approximation of

Function Point Counts

Dipl.-Math. Manfred Bundschuh
AXA Service AG, Cologne, President of DASMA e.V.

1 Environment

In 2001 the AXA Service AG in Cologne completed the total counts of all 78 application
systems (without SAP applications) with totally about 100,000 unadjusted Function Points
(FP’s). Actually more than 100 staff members are trained in FP counts and project estimation
in order that in each group of developers there is at least one FP and estimation „expert“. The
competence center consists of 3 people who are also responsible for the multiproject
management and project management tools (Business Engine and MS Project). The Business
Engine administers about 250 projects with 20,000 assignments of 1,100 people delivering
timesheetsfor weekly planning and reports as well as monthly accounting.

Function Points mean througout this paper IFPUG 4.0 unadjusted FP’s.

FP counts are in AXA Service AG obligatory ad least at the end of the requirements
analysis and at project post mortem. Function Point prognosis, as described in this
paper, instead of FP count is obligatory during the feasibility study and at project
start. The counts and their details are documented centrally in the estimation
competence center and in the Function Point Workbench and Excel charts (see
chapter Project Register Database) and thus could be investigated for gaining
several metrics and especially for early estimation purposes.

AXA Service AG is the outsourced noninsurance part of AXA Insurances in Germany. The
IT Department includes about 650 IT Professionals with approximately 50 Project leaders.
Besides there is the outsourced computing center with about 250 staff members. The
insurance branches deliver about 160 IT-Coordinators supporting the IT-Projects. IT-
development is mostly host-based with COBOL programming. There exist about 2,700
Databases (1,600 CICS, 1,100 IMS) and 2,500 DB2 tables (1,600 production, 900
disposition), about 7,800,000 transactions per day (5,600,000 CICS and 2,200,000 IMS). PC
Projects use Optima++, a C++ Shell, for programming and Internet Programming is done with
Java.

IT-Projects in AXA Service AG do mostly develop interactive database administration
systems for e.g. car or life insurance or claims management, within a very complex
environment with centralized databases for e.g. insurance partners, document
mangement etc.

2 Motivation

Project estimations are required as early as possible – not only from the contractors but also
from every project leader. Because of the importance of early estimation methods Roberto

 Position Papers 8

Meli and Luca Santillo [MS 99] published a comparative overview of Function Point
estimation methods which shows a valuable collection of worldwide efforts in this direction.
Since Function Point counts are based on the requirements documentation so called Function
Point prognoses or approximations proved to be helpful in praxi to aid early estimations.

Our experience shows, that the necessary informations for such approximations can be gained
very early, at the beginning of a project (or in stable environments even before)in discussions
with the project leader. In a few cases we did use this Function Point Prognosis a year before
project start, of course with adding large percentages for error, uncertainty, early estimation
and risk.

We collect the informations about interfaces and parts of the project together with the
Competence Center staff and document it together with a diagram of the application boundary
which is also used for our architecture atlas and together with a so called counting log which
is a simple Word document giving important informations about special decisions conserning
the the FP counts. Since we developed a Function Point Prognosis (see FESMA Conferences
1998 and 1999) we approved this method for early estimation by a larger base of Function
Point Counts in 2001. The databases of the 1998 and 1999 investigations are published in
[BU 98] and [BU 99].

3 Project Register Database

We used our project register database (EXCEL) which shows detailed informations
(extracted from the Function Point Workbench) for each FP count, giving the quantity
as well as the Function Points of EI’s, EO’s, EQ’s, ILF’s and EIF’s for each of this
components and some informations more (platform, VAF, adjusted Function Points).
If a project was counted repeatedly only the most actual count is shown and older
counts are kept in a history table. There are sums of the quantity of EI’s and EO’s, of
ILF’s and EIF’s which were needed for our research.

IO means througout this paper the sum of the number (quantities) of EI and
EO.

The idea for this research was to find out if there were hidden informations in that data
collection. The results proved to be very productive.

In my first presentation1 on the FESMA Conference 1998 in Antwerp [BU 98] I presented the
results based on about 20 counts which increased to 39 counts a year later. Since there was
afterwards a break of 2 years in Function Point counting because the competence center staff
was involved in introducing a multiproject management tool with time accounting, the total
counts of all 78 application systems (AS) could not be accomplished until end of 2001.

This goal could only be reached with one of 5 Balanced Scorecards for the department
leaders, combining their success in counting all of their application systems with 20 % of
their financial bonus (this was an essential management support for the success of our metrics

1 M. Bundschuh, Function Point Prognosis, FESMA 98 „Business Improvement through Software

Measurement“, Antwerp, Belgium, May 6-8, 1998, pp. 463 - 472

 Position Papers 9

programme). Hence we were curious if the new results would be consistent and if parts of the
project data base would deliver confident findings.
4 Investigations

Besides the investigation of the formulae for prognosis we investigated also the
Function Point proportions and average function complexity of our Function Point
counts and compared it e.g. with the ISBSG (International Software Benchmarking
Standards Group) Data. The ISBSG (www.isbsg.org.au) publishes every year a
collection of metrics (The Benchmark, it can be ordered in Europe via the DASMA
e.V., www.dasma.de), in the actual release based on more than 1,300 projects
worldwide. Since we did this research several times during the last years we are
lucky to have now at least 3 historical annual metrics of our own data for comparison,
as can be seen in the following chapters.

4.1 Value Adjustment Factor

One of the first results of our data collection was the perception that the VAF (Value
Adjustment Factor) of our counts is typically in the range of 0.73 – 1.22, with an average of
0.95 in the 2001 data (0.93 in 1998) and an average of 0.94 for Host and 0.96 for PC
environment. The average for migrations is 0.73. We use this metrics for quality assurance of
our Function Point counts since 1998.

4.2 Function Component Proportions

The following Fig. 1 shows the historic development of the function component proportions
in AXA Service AG. Of course, the first two years are not very representative. The figures
from 1998 and 2001 are similiar and the division into Host and PC development shows
differences which should be carefully observed in future. The domination of the EI’S and
EO’s (61 % together) seems to be the reason for the strong correlation between IO’s and the
unadjusted FP’s - the main result of this research.

2001 Percent of Function Points
Platform Number of Application

Systems
EI EO EQ ILF EIF

Total 78 22 39 8 16 14
Host 69 21 40 8 16 15
PC 9 28 31 12 19 10
ISBSG Rel. 6 238 new development projects 33.5 23.5 16 22 5
Metricviews 26-

39
22-
24

12-
14

24 4-12

Checkpoint 20 24 10 43 3

1998 Total 39 25 39 14 17 6

1996/7 Total 20 27 39 11 18 5

1997 Total 12 18 43 12 18 9

http://www.isbsg.org.au/
http://www.dasma.de/

 Position Papers 10

1996 Total 8 34 35 11 18 2

Fig. 1: Function Component Proportions

It can easily be seen, that EO’s dominate in AXA Service AG (39%) compared with Morris‘
and Desharnais‘ publication [MD 96] (22%-24%), and the quick estimation mode of
Checkpoint, the estimation tool from Capers Jones‘ firm SPR (Software Productivity
Research) in Burlington, MA, (20 %) whereas ILF’s are of minor importance (16% vs. 24%,
43%, resp.). Because of this peculiarity one conclusion was not to use Checkpoint (EIF +
ILF = 46% vs. 23 % in AXA Service AG) in Quick Estimate mode for the estimation of FP’s.

The reason for the major importance of EO‘s may be that AXA Service AG has many
centralized management information.

In 2000 we accomplished an error calculation with the 1998 data by using the percentage of
each component to calculate 100 % from it and compared the result with the actual Function
Point count. The findings are published in [BU 00] and showed errors ranging from 37 %
(EO’s) to 48 % (EQ’s). Hence we do use the percentages of the components only as a rule of
thumb for the quality assurance of our Function Point counts.

4.3 Average Function Complexity

We used the EXCEL problem solver to calculate from the project register data base the
average function complexity of the five components, i.e. how many FP’s a „typical“ EI, EO,
EQ, ILF, EIF has in our environment. It is widely agreed that this measure is stable and can
be used as a rule of thumb for quick estimation of counts, since the components then need not
be classified as low, average or high. SPR Function Points e.g. use the average IFPUG
classification for Function Point estimation.

2001 Average Function Points
Platform Number of Application

Systems
EI EO EQ ILF EIF

Total 78 4.7 5.9 4.4 8.6 6.5
Host 69 4.7 5.9 4.6 8.7 6.5
PC 9 4.3 5.7 3.8 7.6 6.5
IFPUG 4 5 4 10 7

Release 5 4.3 5.4 3.8 7.4 5.5 ISBSG
Release 5 Europe 4.2 4.9 3.8 7.2 5.3

1998 Number of Application

Systems
EI EO EQ ILF EIF

Total 39 4.6 5.7 4.3 8.2 6.1
Host 28 4.8 5.7 4.5 8.5 6.2
PC 11 4.0 5.7 3.9 7.3 5.4

1997 Number of Application

Systems
EI EO EQ ILF EIF

 Position Papers 11

Total 20 4.6 5.5 4.3 8.1 5.7

Fig. 2: Average Function Complexity

It can easily be seen from Fig. 2, that the average Function Points increased in time, which
may be caused by growing complexity in application development environment.

In 1998 we tested the applicability of this typical FP’s for estimation purposes by multiplying
it with the quantities of the EI’s, EO’s, EQ’s, ILF’s, EIF’s, resp. and compared the results
with the unadjusted Function Points of the counts. The error was less than 26 %.

4.4 Function Point Ratios

One would expect 3 inputs (add, change, delete) at least, 1 output and 1 EQ for maintenance
of a file. The following results show the averages in AXA Service AG.

4.4.1 Ratios of Components

There are remarkable differences between the before mentioned expectations and also some
differences between the ratios in our application systems (AS) and the ISBSG findings.

Application Systems AXA Service AG ISBSG Rel. 5

 2001 1998 1997 Europe Total
Quantity 78 39 20 32 238
EI per ILF 2.6 2.7 2.7 3.8 2.9
EO per ILF 3.6 3.3 3.7 2.6 1.5
EQ per ILF 0.9 1.4 1.2 1.9 1.1
EIF per ILF 0.6 0.5 0.4 - -

We also calculated the ratios per input as well as the ratios per output.

78 Application
Systems

2001 78 Application Systems 2001

EO per EI 1.3 EI per EO 0.7
EQ per EI 0.3 EQ per EO 0.3
ILFper EI 0.4 ILF per EO 0.3
EIF per EI 0.2 EIF per EO 0.2

Fig. 3: Ratios of Components

4.4.2 Ratios of Function Points per Component

The ratios of Function Points per ILF, input and output were calculated, too.

78 AS 2001 78 AS 2001 78 AS 2001
EI FP‘s per ILF 12.2 EO FP‘s per EI 8.0 EI FP‘s per EO 3.4
EO FP‘s per ILF 21.0 EQ FP‘s per EI 1.5 EQ FP‘s per EO 1.1
EQ FP‘s per ILF 4.0 ILF FP‘s per EI 3.3 ILF FP‘s per EO 2.4

 Position Papers 12

EIF FP‘s per ILF 4.2 EIF FP‘s per EI 1.6 EIF FP‘s per EO 1.2

Fig. 4: Ratios of Functions Points per Component

 Position Papers 13

5 Function Point Prognosis

Regression analysis on our project register database was used in order to find correlations
between the number of the components and the unadjusted Functions points of the counts.
The idea for this regression analysis arose while reading John E. Gaffrey’s publication [GA
94]. The result of the research was, that the sum of the quantities of EI’s and EO’s (IO’s in
our diction) is correlated with about R2 ≥ 0.95 (R ≥ 0.97) to the total amount of FP’s of a
count and can thus be used as a „rule of thumb“ for the „Prognosis“ of FP’s when the FP’s of
EQ’s , ILF’s and EIF’s are not known.

An interesting result was, that the correlation was not as much reliable (R2 mostly less than
0,9) for other components as well as for data subsets of small, medium and large counts and
not better with polynomial regression. Of course the use of FP’s instead of the IO’s for the
prognosis gives a stronger correlation, but the higher effort for classification of the
components instead of only counting the inputs and outputs is not adequate for the higher
precision. One should always keep in mind, that estimation has to do with uncertainty per se.

The 1998 data were analyzed independantly by Damien Noel [NO 99], a doctorand
from Alain Abran, in a joint research with the Software Engineering Management
Research Laboratory, Department Informatique, Universite du Quebec a Montreal
(UQAM), Canada, who obtained the same results. He applied the same method to 7
projects with COSMIC Full Function Points (FFP’s), in order to find a similiar
correlation for FFP’s, but the sample seemed to be too small for reliable results. He
reported in his thesis an error margin of 20 %.

2001 Number of
counts

R2 Error in % Formula for
Prognosis

Total 78 0.9483 13 FP = 7.8 * IO + 43
Host 69 0.9498 12 FP = 7.9 * IO + 40
PC 9 0.9503 21 FP = 6.4 * IO + 172

1998 39 0.9589 20 FP = 7.6 * IO + 50
Host 28 0.9580 FP = 7.9 * IO + 11
PC 11 0.9760 FP = 6.5 * IO + 134

1997 20 0.9525 13 (Median

11)
FP = 7.3 * IO + 56

Fig. 5: Function Point Prognosis Formulae

The following Fig. 6 visualizes the regression analysis result for all counts.

 Position Papers 14

TOTAL

y = 7,7905x + 43,499
R2 = 0,9483

0
1000
2000
3000
4000
5000
6000
7000
8000

0 100 200 300 400 500 600 700 800 900 1000

IO

FP
's

 u
na

dj
us

te
d

Fig. 6: Regression Analysis Example

6 Conclusions

A good documentation of counting and estimation data is a treasure for metrics programmes.
Our investigations show that valuable metrics can be gained from the collected data. A
surplus benefit was the finding (via regression analysis) of our prognosis formulae which help
us to estimate FP’s very early. Since FP’s are an important measure for the estimation of
effort we thus gained the synergetic benefit to be able to do reliable estimations very early in
the lifecycle of our IT projects. Of course a complete count of FP’s ad the ende of the
requirements analysis is obligatory, as well as an improved estimation ad this time.

We heard from other firms that they did similiar research. There is strong evidence that
different environments will lead to other results. Hence each organisation should develop
iistown heuristic solutions. Nevertheless comparisons with other metrics are valuable for teh
enterprise.

There was a long way to arrive at this results of application counting from the start of the
introduction of our metrics programme in 1996. The success could only be achieved with
enough management support. The year 2002 is devoted to introduce project FP counting and
estimation as well as the introduction or productivity measures.

 Position Papers 15

References

[BU 98] M. Bundschuh: Function Point Prognosis, FESMA 98 „Business Improvement

through Software Measurement“, Antwerp, Belgium, May 6-8, 1998, pp. 463 – 472

[BU 99] M. Bundschuh: Function Point Prognosis Revisited, FESMA 99, Amsterdam,

Netherlands, October 4-7, 1999, pp. 287-297

[BU 00] M. Bundschuh: Function Point Approximation with the five Logical Components,

FESMA 00, Madrid, Spain, October 18-20, 2000

[BF 00] M. Bundschuh, A. Fabry: Aufwandschätzung von IT-Projekten, MITP Verlag, Bonn,

2000, ISBN 3-8266-0534-9

[GA 94] John E. Gaffney, Jr. from Corp. Software Productivity Consortium in

Herudon, Virginia 22070 in his Presentation: „A Simplified Function Point Measure“
at the IFPUG 1994 Fall Conference, Oct. 19-21, 1994 in Salt Lake City, Utah

[MD 96] M. Morris, J. M. Desharnais: „Validation of the Function Point Counts“, in:

Metricviews, Summer 1996, p. 30

[MS 99] Roberto Meli, Luca Santillo: Function Point Estimation Methods: A

Comparative Overview, FESMA 99, Amsterdam, The Netherlands, October 4-8,
1999, pp. 271 – 286

[NO 99] Damien Noel: Analyse statistique pour un design plus simple de la methode de

measure de taille fonctionelle du logiciel dans des contextes homogenes, doctorial thesis,
presented to Alain Abran, UQUAM, 2.8.

 Position Papers 16

QUANTIFICATION OF SURVIVABILITY AT THE CODE LEVEL
THROUGH SOFTWARE MEASUREMENT

Nadine Hanebutte

University of Idaho, Department of Computer Science, Moscow, ID 83844, USA
hane@cs.uidaho.edu

Abstract: This paper attempts to discover the possibility of quantifying software
survivability at the code level. Furthermore, the framework for a code metric will be
established that will allow the estimation of software survivability.
The term "survivability'' is not formally defined according to the literature and research
conducted in this field. While an informal definition allows an intuitive understanding, it
does not specify how to quantify observations in a way that two people would agree about
the state of survivability of a system.
This paper will establish a definition framework and technique for quantification under
consideration of commonly used informal definitions, as in [Mead2000] or
[Neumann2000].
A quantification of survivability on the code level would allow measuring the effect of any
changes to the system in terms of their impact on survivability. Additionally, a
quantification of survivability will increase the understanding of the term itself and will
help to clarify its meaning in the context of other terms like reliability, safety, fault
tolerance, intrusion tolerance or security [Voas2002].

Keywords: Software Measurement, Software Survivability, Source Code Metrics

1 Introduction

Recently there has been recognition that absolute security is unattainable [Dietrich2002]. As a
result, a research area has formed known as survivability. Its focus is the creation or
improvement of systems that are able to continue to deliver services even through security
measures have failed.

With a constantly increasing number of discovered vulnerabilities [CERT], systems are to be
built that can deal with these possible threats. But any attempt to increase or introduce
survivability to a system can not be verified, since there is no clear criteria against which to
measure success or progress [Dietrich2002].

This is because there is only an intuition-based agreement on what survivability means. Two
of the most commonly used definitions are: "We define survivability as the capability of a
system to fulfill its mission, in a timely manner, in the presence of attacks, failures, or
accidents. We use the term system in the broadest possible sense, including networks and
large-scale systems of systems'' [Mead2000] and "For the purposes of this report,
survivability is the ability of a computer-communication system-based application to satisfy
and to continue to satisfy certain critical requirements (e.g., specific requirements for security,
reliability, real-time responsiveness, and correctness) in the face of adverse conditions.''
[Neumann2000]

From these definitions, it is apparent that the cornerstones of a general understanding of
survivability are:
• The something that has to function

 Position Papers 17

• The threat which wants the something to stop functioning
• The fact that the threat is driven by an intelligent force

The first two points above imply a conditional robustness. The third point gives the nature of
the conditions, which are to be taken into consideration.

Threats to a system are manifold. Besides classifying them into either intentional or
accidental, they can be categorized according to their source fault2. These can be logical
errors, insufficient implementation of requirements, or "bad" coding

While both definitions allow an intuitive understanding, they do not specify how to measure
or state changes in the survivability of a system. This is insufficient.

Without quantification it is not possible to state the survivability of a system unambiguously.
Furthermore, there is no way to determine whether any applied method to increase
survivability succeeded. Therefore, assessment is one of the key challenges, which can only
be solved after a sound definition is found [Voas2002].

The focus of this research is to define and make possible quantification of survivability of the
source code in terms of the statements that can make the code vulnerable. These are functions
or statements which are badly implemented in the programming language itself. These
expressions, when used with certain syntax, or without a check of processed arguments, can
yield an exploitable expression. For instance the string copy function snprintf() can be used to
read from random memory addresses.

2 Survivability

According to [Avizienis2001] a general definition of survivability in military standards can be
traced back to the late sixties, where it is was defined as “a system’s capacity to resist a
hostile environment so that it can fulfill its mission” (see e.g., MIL-STD-721 or DOD-D-
5000.3).

This definition features a rather important term - hostile. As opposed to reliability, where
threats are mostly seen as unintentional, hostility implies that there are not just "natural"
causes to be dealt with, like component aging or the fact that a human using software enters
an invalid input. Hostility adds an important flavor, which is the fact that when talking of
survivability, an intelligent source has to be considered that is creating or taking advantage of
faults. Therefore, probabilistic assumptions about the occurrences for certain fault types (as
used for systems reliability analysis) are not valid.

Survivability can be defined as:

A property of a system, subsystem, equipment, process or procedure that
provides a defined degree of assurance that the named entity will continue to

2 For hardware, a fault can trigger an error. This error can cause a failure. In the context of software, the error is

seen as the root event, which results in a fault, and can eventually cause failure. For the purposes of this paper,
the terminology from the hardware community will be used even when talking about software.

 Position Papers 18

function during and after a natural or man-made disturbance; e.g. nuclear
burst. [US1037C]

The most interesting statement within this definition is the term degree. Degree implies that
survivability is an attribute, which can be quantified for a specific entity with a value.
(The author continues)

Note: For a given application, survivability must be qualified by specifying
the range of conditions over which the entity will survive, the minimum
acceptable level of post-disturbance functionality, and the maximum
acceptable outage duration.

There is another point to be considered: the condition or the environment under which any
statement about the observed entity must hold. This can be the expected operational
environment as well as the possible threats. Another measure of system dependability is
availability as a measure of the current state of a system.

Availability A(t) is a function of time, defined as the probability that a
system is operating correctly and is available to perform its functions at the
instant of time t. Availability differs from reliability in that reliability
depends on the interval of time, whereas availability is taken at an instant of
time. [Johnson1989]

If the survivability of a system is seen as a constant, there has to be another measure to
account for the system at any specific point in time during run-time and therefore under any
threat. This run-time measure corresponds to survivability just like availability does to
reliability. For the purpose of this paper it will be called dynamic survivability to differ from
survivability which is here seen as a static measure. Another problem to be considered is the
operational profile of a system as it influences the overall survivability as well.

Survivability is not all or nothing. There are different degrees to which you
can achieve it. ... Survivability is highly context sensitive and environment-
sensitive. Thus for system A, the survivability of A in environment B may
or may not equal the survivability of A in environment C [Voas2002].

Besides a measure of survivability on the program or system level, there has to be a way to
combine the measures of interacting systems into a composite survivability, just as is done for
reliability. Constructs like fault trees or reliability block diagrams allow modeling of system
reliability.

There are basically four cornerstones that can be found in the aforementioned definitions of
survivability:

1. The entity : The something whose attributes are to be measured
2. The degree : The measured value
3. The context : The condition in terms of the given environment
4. The threats : Driven by an intelligent force

 Position Papers 19

This four-tuple is seen in other research areas that are closely related to survivability, as well.
This sometimes leads to mistakes in differentiating the research fields and their medium. For
example, the ability of a system to recover after a threat or to deal with an intrusion is often
considered as a part of the security measures. However, security is defined as the absence of
unauthorized access to, or handling of, system-state [Avizienis2001] and therefore merely
focuses on the detection of intrusions only.

The reason why survivability is so closely aligned to the area of security can be seen in the
fact that the intelligent adversary is most difficult environmental threat to which to respond or
survive. The intelligent adversary targets primarily the traditional security attributes:
confidentiality, availability and integrity [Longstaff2002].

2.1 Decomposition of System Survivability

In [Mead2000] the survivability is described as the capability of a system to fulfill a mission,
where mission is seen as a higher goal, objective or a set of high-level requirements. The term
system is used in a broad sense including networks and system of systems.

This research project attempts to assess survivability by decomposing a system into its sub-
components. Therefore the smallest components that make up a system are to be identified.
The system survivability than will consist of a composite survivability of all its components.

On the software level, each system can be decomposed into a set of operations. Executing
system functionalities performs these operations. Finally, each functionality is implemented
in a set of software modules [Elbaum1999]. A module here is equivalent to a function in, for
example, the C programming language. The module is considered the smallest measurable
unit.

The overall system survivability is therefore a composite of all modules required for the
system to fulfill its mission. A mission can only be fulfilled if this minimum set of software
modules is functioning. Depending on the system composition, there can be more than one set
of modules that allows mission fulfillment. These sets can be partially overlapping as well as
disjoint.

Mission fulfillment fails if none of these minimum sets is complete during a threat or if at
least one module from each set is compromised. For instance if there is one module that is
part of each minimum set, and this module is compromised, the mission will fail.

In both the mission-centric as well as the system-centric view of survivability, the module can
be seen as the smallest measurable unit.

Survivability measured on the code level is based on the fact that, given a specific language,
there are code constructs that can be exploited. For instance, if the snprintf function from the
C standard library is used to process user input without restrictions on the input character set;
this function can be used to read from and write to arbitrary memory addresses
[Newsham2000]. An analysis of the syntax and the appearance of tokens like snprintf can
used as an indicator of weather a function can be exploited on the code level.

 Position Papers 20

The following sections discuss the research fields related to survivability.

2.2 Security

Security and Survivability are often mentioned together in the context of survivability
architectures. But security is only one technique to protect system components [Yurcik2000].
It focuses on how to prevent or detect threats. These are mechanisms that are introduced to a
system to put a system into or maintain a system in a state of inviolability from hostile acts or
influences. Survivability seen as a system attribute does not introduce any changes to a
system. It merely observes the system-state.

Topics that are addressed under the term security include confidentiality, integrity and
availability [Avizienis2001]. These are same attributes that usually are targeted by an
intelligent adversary. The attack by this intelligent adversary is among the threats a system
should be able to survive.

Both concepts, survivability and security, are focused on the concern of protection from
malicious intents. Security addresses protection improvement. Survivability, on the other
hand, addresses how any kind of change within a system and all its components will affect the
systems ability to deliver a certain service. Intuitively, security deals with prevention or
recognition of unauthorized behavior, while survivability research deals with behavior issues
once a fault has occurred.

2.3 Reliability

Reliability R(t), is defined as the conditional probability that a component operates correctly
throughout the interval [t(0),t(n)] given that it was operating correctly at time t(0)
[Johnson1989]. Reliability is a function of the number and types of faults that can occur.
Looking at the classification of faults, the following assumptions are generally made: faults
occur independently as well as randomly. These assumptions draw a distinction between
survivability and reliability. Faults can be divided into three categories: permanent faults,
intermittent faults, and transient faults [Johnson1989]. Permanent faults are the most likely
ones to occur, followed by intermittent faults. The least likely category of faults is transient
faults. These faults do not follow a certain pattern, they might occur once and never again
afterwards. This order of likelihood according to fault type only holds if independence and
randomness is assumed. If an intelligent source is coordinating these faults, the order does not
hold.

Reliability can only be stated correctly in the context of the operational profile. An example is
given in [Rivers1998]:

…probability that a real-time system will give specified functional and
timing performance for the duration of a ten hour mission when used in the
way and for the purpose intended. The usage information is quantified
through operational profiles.

Survivability research focuses on the fact that software usage can happen outside the
operational profile.

 Position Papers 21

2.4 Fault and Intrusion Tolerance

As the word tolerance implies, the goal of the research in these fields is to find mechanisms
that allow a system to tolerate a known threat or fault. The assumption is that not every fault
can be avoided, but with enough information about their nature, the fault will not result into a
system failure.

Fault tolerant techniques include the detection of an error, damage assessment,
reconfiguration, and eventually recovery. Intrusion tolerance is based on fault tolerance and
intrusion detection [Cheung1999]. Fault tolerance as well as intrusion tolerance include
methods and techniques that are applied to improve an existing solution to increase system
attributes like reliability or availability. For a given system, this can result in an increase in
survivability, as well.

Given the definition of reliability, this means that the probability that a system will function
in a fixed time interval can be increased by invoking fault tolerant approaches. One outcome
of the research introduced in this paper will be to show that the same relationship must exist
for survivability and intrusion tolerance. Intrusion tolerance and fault tolerance research are
somewhat overlapping. In fault tolerance, faults are generally assumed to be independent and
their activation unintentional. This assumption of independence and unintentionality is not
made for intrusion tolerance, but the fault types that can lead to a failure are the same.

2.5 Fault and Intrusion Avoidance

The basic idea of fault avoidance is to prevent faults due to design and implementation
mistakes from occurring in the first place. Fault tolerance, high availability or reliability can
not be ensured by only measuring and testing, but have to be designed into the system. This
implies that there has to be an a priori awareness about which faults could happen and how
these can avoided in the first place. Selecting high quality components, enforcing design
rules, and reviewing and verifying the result of development steps are examples of fault
avoidance techniques [Johnson1989]. While fault tolerance deals with faults once they occur,
fault avoidance is used to prevent faults from being designed into the system [Johnson1989].

Intrusion avoidance discovers techniques to prevent attacks from happening. It can be seen a
sub-discipline of security, and includes areas like authentication, access control and
encryption. A survivability measure can be a tool to aid the design of fault and intrusion
avoidance methods. It can support the decision making process about whether a goal was
reached in terms of avoidance or if improvements are required by measuring the survivability
before and after any changes to the system.

3 Measuring Code-Level Survivability

Survivability is an attribute. For each distinct observed entity there can be a value assigned to
this attribute. The question is how can this value be found. Survivability is an external metric
in terms of measurement. It can only be approximated through internal metrics.

This paper discusses the framework for a metric that will allow this approximation for the
survivability of software. The smallest unit that is measured is the module, as introduced in

 Position Papers 22

section 2.1. The metric should relate certain constructs and tokens within the source code of a
module to the survivability attribute. Therefore, internal attributes have to be found which
influence the survivability of software. Changes to those attributes will change the
survivability of the system on the source code level. The existence, absence, and values of
these internal attributes can be used to state the degree of survivability.

3.1 Software Reliability Measurement

Software reliability engineering is the applied science of predicting, measuring, and managing
the reliability of software-based systems to maximize customer satisfaction [Musa1990].
Some areas of software reliability engineering include predicting reliability from
characteristics from both the product and the development process or estimating it from
failure data in test, based on models and expected use [Musa1990].

Ultimately, the reliability of a product is only known after the product has gone out of service.
At this point it is known when and hopefully why the software failed; how reliable it was.
This can only be used to validate predictions about product quality, but not to estimate the
quality beforehand.

Software reliability can be expressed as the mean time to failure (MTTF) or mean time
between failures (MTBF). There are generally two ways to approximate these numbers.
MTTF and MTBF can be estimated through testing according to the operational profile.
Furthermore, the MTTF can be approximated through measurement of internal attributes of
the code and/or other parts of the software creation process.

The second methodology allows the creation of a relative measure of reliability before the
actual MTTF data is available. For example, it allows deciding which of a set of alternative
solutions to the same problem should be included in the final software product or to support
decision making about redesign. The technique attempts to identify internal attributes of
software that influence the reliability of the final product [Hanebutte2000]. A relative
measure of an external attribute does not give the exact MTTF or reliability, but it allows
ordering entities according to their attribute value. Furthermore, it shows if a redesign
increased (or decreased) the count for this measure. This allows one to state if any changes
are actually improving the entity in terms of the observed attribute.

3.2 The Attributes

The idea of a survivability metric is based on the fact that certain code constructs make source
code more vulnerable to malicious input. These code constructs, which can be single
keywords as well as fixed sequences, can be counted. Previous research and documentation
has shown that most of the code exploited has very similar features that made the code
particular vulnerable [CERT].

This research will focus on potential vulnerable functions within C. For example, the majority
of buffer overflows are due to the usage of C functions like memcpy and strcpy. These are
functions that don't perform boundary checking when copying values into main memory and
therefore can overwrite parts of the memory and alter the behavior of the application in a way
that it is outside the operational profile. Furthermore, there are functions from the printf

 Position Papers 23

family that, when confronted with special input characters, allow access to arbitrary memory
addresses.

Theoretically, anytime a value is accessed by an application, a function could be confronted
with malicious data. Input can be performed through, but is not limited to:

• user input
• file access
• access to shared memory
• incoming network traffic

Additionally, there is a problem with temporary data, which is created as part of the execution
method but not intended to be observed by a third party, including:

• temporary files
• network traffic
• temporary variables

Finally, a program can be interacting with other software or a privileged user. Its outgoing
traffic could be intercepted for information retrieval or even to modify the transferred
information. This can be:

• outgoing network traffic
• output to configuration files
• output to shared memory

The scope of this work includes neither malicious alteration of source code outside the
specified requirements nor the incorrect implementation of requirements. It is assumed that
the observed software is not altered in terms of changes to the operational profile.

It can be said that survivability has to be measured especially around the interfaces of an
application. Attributes to be counted are the usage of C library functions, which do not
perform thorough length checking. These set of functions include sprintf(), memcpy(), strcpy()
and, gets(). Other functions, such as members of the printf family, are rather sloppy in the
way they process input and can therefore be used to access arbitrary memory.

The usage of the system() and members of the exec() family are other survivability attributes.
If these are used within the source code of a program that is run as suid root, the invoked
program will be run as the root user as well. This invoked program can then hold the
exploitable vulnerability.

A program that inputs and outputs data many times is more likely to have an access point for
a malicious intent. Here the number of input and output operations can be counted.

Furthermore, the complexity of software should be taken into consideration. Complex and
long source code modules are more likely to contain faults, since they are usually more
difficult to test and to audit for faults.

 Position Papers 24

It cannot be said that if any of the constructs described above are part of a piece of code, this
code is automatically more vulnerable. However, it is valid to assume that the likelihood of
exploitability of code increases with an increased count of these measures.

Therefore, a set of trade-off measures is necessary to weigh the found tokens. For instance, in
[Rosenberg1997] the metric Source Lines of Code (SLOC) is suggested as a covariate to
“normalize” other measures. The covariate adjusts the measures of the number of potential
vulnerable tokens found for the size, complexity, and information flow of the measured
module. For instance, if a number of potentially vulnerable function calls were found in a
simple module, the chances that these are securely used are higher than the same number
found in a highly complex or cryptically written program.

Measures of code size, complexity and module communication will therefore be used as
covariates. A set of 14 quality measures that can used are discussed in [Hanebutte2000].
These measures include derivatives of McCabe's Cyclomatic complexity [McCabe1976],
Halstead’s number of unique operators and operands [Halstead1977], and Zage’s control flow
metrics [Zage1993].

All metrics should be combined into a survivability index. The index will consist of a set of
measures that state the number of potentially vulnerable function calls found. The impact of
these numbers are weighted or “normalized” by a set of covariate metrics from the domains:
size, complexity and module communication.

The relationship between all these metrics is analyzed and correlation is to be removed to
allow the metrics to be input into a multi-regression model (Figure 1).

The survivability index is merely a relative rather than an absolute measure. It can put source
code modules into a partial order in terms of survivability. This allows comparison of
alternative code solutions for the same task. Theoretically, thresholds can be assigned as
knowledge and understanding of the behavior of a module emerges, e.g. an experiment shows
how many real vulnerable code sequences are in the sources code and which index was
measured for the same code.

The raw metrics need to be combined into the survivability index. This usually requires that
the measures are screened using Principle Component Analysis and if a high correlation
among the raw metrics exists, Factor Analysis can be used to build abstract metric groups.
These independent groups can be combined into a multi-regression model. Factor Analysis is
required to ensure that regression model assumption of variable independence is not violated.

4 Future Perspective – a Real-time Survivability Measure

The Survivability Lab at the University of Idaho created a technique to instrument the Linux
kernel or any other application. The instrumentation inserts so-called “hooks” into the code.
This allows access to the number of calls to any instrumented function within the source code
for any desired unit of time during runtime. If the survivability index for an instrumented
module is known, it is possible to state an overall dynamic system survivability ξsys by
combining the frequency of a module with its survivability-index In.

 Position Papers 25

For a given system at the end point of each time interval t, the system state can be stated as a
function f of all modules frequencies φn and the survivability index for each module. The
module frequency is number of times a module was invoked within a measured time interval.

ξsys(t) = f((φ1,I1),(φ2,I2), …,(φ n,In))

where n is number of instrumented modules.

C-functions with
vulnerability potential

Covariates for Normalization

• snprintf() • size - SLOC
• gets() - unique operands
• memcpy() - unique operators
• strcpy () - etc.
• system() • complexity - cyclomatic complexity
• etc. - number of paths

 - nesting level
 - etc.

• intermodule communication - fan-in
 - fan-out
 - exchanged variables

- etc.

Analysis and Application of Factor Analysis

Combination into Multi-regression Model

 Survivability Index

Figure 1: Sample Metrics to be combined into a Survivability Index

This would allow observation of the availability-like measure – the dynamic survivability.

Therefore, for each time interval, it would be known how vulnerable the system is in the
context of usage, environment and ongoing threats. For example, if several instances of a
module with a low survivability are invoked, additional security measures could be taken.
Another option could be that the system state is not allowed to fall below a certain ξsys, and if
it does fall below this threshold certain non-essential services will not be available until the
overall ξsys rises again above a defined threshold.

5 Summary

This paper describes an attempt to analyze the meaning of term survivability with the goal of
quantification of system survivability. Survivability is a newer research field, which has
gotten increased attention in the last decade in computer science, when it was realized that

 Position Papers 26

absolute system security is unattainable. The goal of survivability research is to create
systems that are capable of providing essential and reliable services even though parts of the
system are down or compromised.

Quantification or measurement survivability would allow the verification if an attempt to
increase the system survivability was successful or if a change to the system had an impact to
its survivability.

This paper discusses a survivability measure at the source code level. The source code module
is identified as the smallest measurable unit. A system is therefore composed out of these
units. Therefore, a system’s survivability should be stated as a composite measure from the
measures for each unit used. The metrics that build the survivability index are those tokens
that have been identified in past research [CERT] to be likely to yield vulnerabilities.
Furthermore, measures of module complexity, size, and coupling should be part of a
survivability metric as covariates.

References

[Aviziens2001] A. Avizienis, J. Laprie, and B. Randell. Fundamental concepts of

dependability, Research Report N01145, LAAS-CNRS, April 2001.

[CERT] CERT/CC Vulnerability Notes Database. http://www.kb.cert.org/vuls/

[Cheung1999] Steven Cheung, An Intrusion Tolerance Approach for Protecting Network

Infrastructures. PhD thesis, UC Davis 1999.

[Dietrich2002] S. Dietrich and P. A. Y. Ryan. The survivability of survivability. In

Proceedings of the 4th Information Survivability Workshop, (ISW-2001/2002), March
18-20 2002.

[Elbaum1999] Sebastian Elbaum and John Munson. Intrusion detection through dynamic

software measurement. In Proceedings of the 8th USENIX Security Symposium, August
20-26 1999.

[Hanebutte2000] Nadine Hanebutte and Reiner R. Dumke. Analyzing software design using a

measurable program design language. Metric News, 5:23-32, 2000.

[Halstead1977] Maurice H. Halstead. Elements of software science. Operating, and

Programming Systems Series. 7. New York, NY: Elsevier, 1977.

[Johnson1989] Barry W. Johnson. The Design and Analysis of Fault Tolerant Digital

Systems. Addison Wesley, 1989.

[Longstaff2002] Thomas A. Longstaff. Survivability as quality. In Proceedings of the 4th

Information Survivability Workshop, (ISW-2001/2002), March 18-20 2002.

[McCabe1976] Thomas J. McCabe. A complexity measure. IEEE Transactions on Software

Engineering 4: 308-320, 1976.

 Position Papers 27

[Mead2000] Nancy R. Mead, Robert J. Ellison, Richard C. Linger, Thomas Longstaff, and
John McHugh. Survivable network analysis method. Technical Report CMU/SEI-2000-
TR-013 ESC-2000-TR-013, CMU/SEI, 2000.

[Musa1990] John D. Musa and William W. Everett. Software-reliability engineering:

technology for the 1990s. IEEE Software, 7:36-43, 1990.

[Neumann2000] Peter G. Neumann. Practical Architectures for Survivable Systems and

Networks. Technical report, SRI, 2000.

[Newsham2000] Tim Newsham. Format string attacks. White paper, September 2000.

[Rivers1998] Anthony T. Rivers. Modeling Software Reliability During Non-Operational

Testing. PhD Thesis, North Carolina State University, 1998.

[Rosenberg1997] Jarrett Rosenberg. Some misconceptions about lines of code. In

Proceedings of the 4th International Software Metrics Symposium, (METRICS’97),
November 5-7, 1997.

[US1037] U.S. Department of Commerce. 1037C. In Federal Standard. National

Telecommunications and Information Administration, Institute for Telecommunications
Services, 1996.

[Voas2002] Jeffrey M. Voas. Ten challenges in information survivability. In Proceedings of

the 4th Information Survivability Workshop, (ISW-2001/2002), March 18-20 2002.

[Yurcik2000] William Yurcik and David Doss, Hans Kruse. Survivability-over-security:

providing whole system assurance. In Proceedings of the 3rd Information Survivability
Workshop, (ISW-2000), October 24-26 2000.

[Zage1997] W.M. Zage and D.M. Zage. Evaluating design metrics on large-scale software.

IEEE Software 7:75-81, 1997.

 New Books on Software Metrics
28

Dumke, R.; Rombach, D. (Eds.):
Software-Messung und -Bewertung

Deutscher Universitätsverlag (DUV), Wiesbaden, 2002, (254 pages)
ISBN 3-8244-7592-8

This book includes the proceedings of the annual Workshop of the GI FG
2.1.10 held in Kaiserslautern in Spetember 2001. Main categories of the

papers collection are

• National initiatives for a virtual competence center of software engineering
knowledge services and web-based experimentation,

• Overviews and new results of the methodologies of functional size
measurement and cost estimation,

• New measurement approaches for distributed CORBA-based software, agent-
based and object-oriented systems,

• New intentions of software measurement for special aspects such as quality
model-based risk analysis, performance engineering and cost estimation,

• Further measurement application for software maintenance and project
controlling.

The book will be of interest to software engineering researchers, as well as to
practitioners in the areas of project management and quality improvement programs,
for both software maintenance and software development in general.

Schmietendorf, A.; Dumke, R.; Hopfer, R.; Scholz, A. (Eds.):

Tagungsband vom 3. Workshop Performance Engineering
in der Softwareentwicklung (PE 2002), Mai 2002, Dresden, Germany

This proceedings includes the papers from the annual Workshop on
Performance Engineering (PE2002) held in Dresden in May 2002. The

main topics are

• Software agent-based performance tuning and controlling,

• Performance analysis of enterprise application integration (EAI) solutions,

• Software systems speed management,

• Performance engineering of agent-based systems and system development.
This proceedings can order by a message to Reiner Dumke, University of
Magdeburg, Faculty of Informatics.

New Books on Software Metrics
29

Dumke, R.; Bundschuh, M. (Eds.):

Software-Metriken in der Praxis
Shaker Verlag, Aachen, 2002, (154 pages)
ISBN 3-8322-0470-9

This book includes the papers or slices from the presentations of the annual DASMA
conference as Metrikon 2001 held in Dortmund in October 2001. Some of the
conference topis are

• Software metrics and project controlling as general approach and as lesson
learned from long time experience,

• Psychological aspects of software metrics applications,

• Metrics-based quality analysis of large object-oriented software systems,

• Automation in sourcecode analysis and metrics databasis,

• GQM applications and experiences in industrial environments.

For more information please contact the DASMA office or see the
contents description in the GI FG2.1.10 home page (http://ivs.cs.uni-

magdeburg.de/us/giak/).

Dumke, R.; Rautenstrauch, C.; Schmietendorf, A.; Scholz, A. (Eds.):

Performance Engineering. State of the Art and Current Trends
LNCS 2047, Springer-Verlag, Heidelberg 2001 (349 pages)

ISBN 3-540-42145-9

The performance analysis of concrete technologies has already been discussed by a multitude
of publications and conferences, but the practical application was often neglected. An
engineering procedure was comprehensively discussed for the first time on the “International
Workshop on Software and Performance: WOSP 1998” in Santa Fe, NM in 1998. Teams
were formed, which examined the integration of performance analysis into the software
engineering in particular. Practical experiences from industry and new research approaches
were discussed in these teams. Diverse national and international activities, e.g., the
foundation of a working group within the German Association of Computer Science followed.

This book continues the discussion of performance engineering methodologies. On the one
hand, it is based on selected and revised contributions of conferences that were carried out in
2000:

• Second International Workshop on Software and Performance - WOSP 2000,
September 17 – 20 in 2000 in Ottawa, Canada,

• First German Workshop on Performance Engineering within the Software Development
May 17th in Darmstadt, Germany.

 New Books on Software Metrics
30

On the other hand, further innovative ideas were considered by a separate call for
chapters. With this book we would like to illustrate the state of the art, current
discussions and development trends in the area of performance engineering.
In the first section of the book, the relation of software engineering and performance
engineering is discussed. In the second section, the use of models, measures and tools is
described. Furthermore, case studies with regard to concrete technologies are discussed in the
third section.

The contributions published in this book underline the international importance of this field of
research. 20 contributions were considered from Venezuela, Spain, Cyprus, Germany,
Canada, USA, Finland, Swedes and Austria.

Juristo, N.; Moreno, A.M.:
Basics of Software Engineering Experimentation

Kluwer Academic Publishers, 2001 (395 pages)
ISBN 0-7923-7990-X

Basics of Software Engineering Experimentation is a practical guide to

experimentation in a field which has long been underpinned by
suppositions, assumptions, speculations and beliefs. It demonstrates to
software engineers how Experimental Design and Analysis can be used

to validate their beliefs and ideas.

The book does not assume its readers have an in-depth knowledge of
mathematics, specifying the conceptual essence of the techniques to use
in the design and analysis of experiments and keeping the mathematical

calculations clear and simple.

Basics of Software Engineering Experimentation is practically oriented
and is specially written for software engineers, all the examples being

based on real and fictitious software engineering experiments.

“If you are a researcher, you should master the approaches to empirical
software engineering described by Juristo and Moreno ...

If you area practitioner, the advice in this book will enable you to read
an assess the studies you find in your journals and at your conferences

...

If you are an educator, this book will help you to guide your students in
understanding that software engineering is far more than simply having

a good technology idea and trying it out on a project.” (Pfleeger, S.L.)

 Conferences Addressing Metrics Issues 31

PE2002:
 3rd Workshop on Performance Engineering für die Softwareentwicklung
 May 22, 2002, HfTW Dresden, Germany
 see: http://www-wi.cs.uni-magdeburg.de/pe2002/

Metrics 2002:
 8th International Symposium on Software Metrics
 June 4 – 7, 2002, Ottawa, Canada
 see: http://www.software-metrics.org/

WOSP 2002:
 Third International Workshop on Software and Performance
 July 24 – 26, 2002, Rome, Italy
 see: http://univaq.it/~wosp02/

CONQUEST 2002:

Conference on Quality Engineering in Software Technology
September 18 – 20, 2002, Nuremberg, Germany
see: http://www.asqf.de/deu/conquest/2002/

IFPUG 2002:

Annunal IFPUG Conference
September 24 – 27, 2002, San Antonio, Texas
see: http://www.ifpug.org/conferences/call.htm

IWSM 2002:
 12th International Workshop on Software Measurement
 Ocotber 7 – 9, 2002, Magdeburg, Germany
 see: http://iwsm2002.cs.uni-magdeburg.de/

IWCMQ 2002:

International Workshop on Conceptual Modeling Quality
October 7-11, 2002 Tampere, Finland

see: http://alarcos.inf-cr.uclm.es/iwcmq02/

EuroSTAR 2002:

http://univaq.it/~wosp02/
http://alarcos.inf-cr.uclm.es/iwcmq02/

 Conferences Addressing Metrics Issues 32

10th European International Conference on Software Testing Analysis &
Review November 11 - 15, 2002, Edinburgh, Scotland
see: http://www.testingconferences.com/eurostar/home/

WWW 2003:
International World Wide Web Conference
May 20-24, 2003, Budapest, Hungary
see: http://www2002.org/ with the Alternate Track Web Enginnering
http://webengineering.org/events/

ASM 2003:
Applications of Software Measurement

June 2-6, 2003, San Jose, CA
see: http://www.sqe.com/asm/events.asp

see also: OOIS, ECOOP and ESEC European Conferences

http://www.testingconferences.com/eurostar/home/
http://webengineering.org/events/

 Metrics in the World-Wide Web 33

Other Information Sources and Related Topics

• http://rbse.jsc.nasa.gov/virt-lib/soft-eng.html
 Software Engineering Virtual Library in Houston

• http://www.mccabe.com/
 McCabe & Associates. Commercial site offering products and services

for software developers (i. e. Y2K, Testing or Quality Assurance)

• http://www.sei.cmu.edu/
 Software Engineering Institute of the U. S. Department of Defence at

Carnegie Mellon University. Main objective of the Institute is to identify
and promote successful software development practices.

 Exhaustive list of publications available for download.

• http://dxsting.cern.ch/sting/sting.html
 Software Technology INterest Group at CERN: their WEB-service is

currently limited (due to "various reconfigurations") to a list of links to
other information sources.

• http://www.spr.com/index.htm
 Software Productivity Research, Capers Jones. A commercial site

offering products and services mainly for software estimation and
planning.

• http://fdd.gsfc.nasa.gov/seltext.html
 The Software Engineering Laboratory at NASA/Goddard Space Flight

Center. Some documents on software product and process
improvements and findings from studies are available for download.

• http://www.qucis.queensu.ca/Software-Engineering/
 This site hosts the World-Wide Web archives for the USENET

usegroup comp.software-eng. Some links to other information sources
are also provided.

• http://www.esi.es/
 The European Software Institute,Spain

• http://saturne.info.uqam.ca/Labo_Recherche/lrgl.html
 Software Engineering Management Research Laboratory at the

University of Quebec, Montreal. Site offers research reports for
download. One key focus area is the analysis and extension of the
Function Point method.

• http://www.SoftwareMetrics.com/
 Homepage of Longstreet Consulting. Offers products and services and

some general information on Function Point Analysis.

 Metrics in the World-Wide Web
34

• http://www.utexas.edu/coe/sqi/
 Software Quality Institute at the University of Texas at Austin. Offers

comprehensive general information sources on software quality
issues.

• http://wwwtrese.cs.utwente.nl/~vdberg/thesis.htm
 Klaas van den Berg: Software Measurement and Functional

Programming (PhD thesis)

• http://divcom.otago.ac.nz:800/com/infosci/smrl/home.htm
 The Software Metrics Research Laboratory at the University of Otago

(New Zealand).

• http://ivs.cs.uni-magdeburg.de/sw-eng/us/
 Homepage of the Software Measurement Laboratory at the University

of Magdeburg.

• http://www.cs.tu-berlin.de/~zuse/
 Homepage of Dr. Horst Zuse

• http://dec.bournemouth.ac.uk/ESERG/bibliography.html
 Annotaded Bibliography on Object-Oriented Metrics

• http://www.iso.ch/9000e/forum.html
 The ISO 9000 Forum aims to facilitate communication between

newcomers to Quality Management and those who, having already
made the journey have experience to draw on and advice to share.

• http://www.qa-inc.com/
 Quality America, Inc's Home Page offers tools and services for quality

improvement. Some articles for download are available.

• http://www.quality.org/qc/
 Exhaustive set of online quality resources, not limited to software

quality issues

• http://freedom.larc.nasa.gov/spqr/spqr.html
 Software Productivity, Quality, and Reliability N-Team

• http://www.qsm.com/
 Homepage of the Quantitative Software Management (QSM) in the

Netherlands

• http://www.iese.fhg.de/
 Homepage of the Fraunhofer Institute for Experimental Software

Engineering (IESE) in Kaiserslautern, Germany

• http://www.highq.be/quality/besma.htm

http://www.qsm.com/
http://www.iese.fhg.de/

 Metrics in the World-Wide Web 35

 Homepage of the Belgian Software Metrics Association (BeSMA) in
Keebergen, Belgium

• http://www.cetus-links.org/oo_metrics.html
 Homepage of Manfred Schneider on Objects and Components

• http://dec.bournemouth.ac.uk/ESERG/bibliography.html
 An annotated bibliography of object-oriented metrics of the Empirical

Software Engineering Research Group (ESERG) of the Bournemouth
University, UK

News Groups

• news:comp.software-eng

• news:comp.software.testing

• news:comp.software.measurement

Software Measurement Associations

• http://www.aemes.fi.upm.es
 AEMES Association Espanola de Metricas del Software

• http://www.asqf.de
 ASQF Arbeitskreis Software-Qualität Franken e.V., Nuremberg,

Germany

• http://www.cosmicon.com
 COSMIC Common Software Measurement International Consortium

• DANMET: Danish Software Metrics Association

• http://www.dasma.de
 DASMA Deutsche Anwendergruppe für Software Metrik und

Aufwands-schätzung e.V.

• http://www.esi.es
 ESI European Software Engineering Institute in Bilbao, Spain

• http://www.fesma.org/
 FESMA Federation of European Software Metrics Associations

• http://www.sttf.fi
 FiSMA Finnish Software Metrics Association

http://dec.bournemouth.ac.uk/ESERG/bibliography.html
news:comp.software-eng
news:comp.software.testing
http://www.aemes.fi.upm.es/
http://www.asqf.de/
http://www.cosmicon.com/
http://www.dasma.de/
http://www.esi.es/
http://www.fesma.org/
http://www.sttf.fi/

 Metrics in the World-Wide Web
36

• FFPUG: French Function Point User Group

• FPUGA: Function Point User Group Austria

• http://www.iese.fhg.de
 IESE Fraunhofer Einrichtung für Experimentelles Software

Engineering

• http://www.isbsg.org.au
 ISBSG International Software Benchmarking Standards Group,

Australia

• http://www.nesma.nl
 NESMA Netherlands Software Metrics Association

• http://www.sei.cmu.edu/
 SEI Software Engineering Institute Pittsburgh

• http://www.spr.com/
 SPR Software Productivity Research by Capers Jones

• http://fdd.gsfc.nasa.gov/seltext.html
 SEL Software Engineering Laboratory - NASA-Homepage

• http://www.vrz.net/stev
 STEV Vereinigung für Software-Qualitätsmanagement Österreichs

• http://www.sqs.de
 SQS Gesellschaft für Software-Qualitätssicherung, Germany

• http://www.ti.kviv.be
 TI/KVIV Belgish Genootschap voor Software Metrics

• http://www.uksma.co.uk
 UKSMA United Kingdom Software Metrics Association

Software Metrics Tools (Overviews and Vendors)

Tool Listings

• http://www.pitt.edu/~ddarcy/isprof/intotool.html#intro
 Metrics Tool Listings by Dace Darcy

• http://www.cs.umd.edu/users/cml/resources/cmetrics/
 C/C++ Metrics Tools by Christopher Lott

http://www.iese.fhg.de/
http://www.nesma.nl/
http://www.sei.cmu.edu/
http://www.spr.com/
http://fdd.gsfc.nasa.gov/seltext.html
http://www.vrz.net/stev
http://www.sqs.de/
http://www.ti.kviv.be/
http://www.uksma.co.uk/
http://www.pitt.edu/~ddarcy/isprof/intotool.html

 Metrics in the World-Wide Web 37

• http://davidfrico.com/mettools.htm
 Software Metrics Tools by Dave

• http://mdmetric.com/meastl1.htm
 Maryland Metrics Tools

• http://cutter.com/itgroup/reports/function.html
 Function Point Tools by Carol Dekkers

Tool Vendors

• http://www.mccabe.com
 McCabe & Associates

• http://www.scitools.com
 Scientific Toolworks, Inc.

• http://zing.ncsl.nist.gov/webmet/
 Web Metrics

• http://www.globalintegrity.com/csheets/metself.html
 Global Integrity

• http://www.spr.com/
 Software Productivity Research (SPR)

• http://jmetric.it.swin.edu.au/products/jmetric/
 JMetric

• http://www.imagix.com/products/metrics.html
 Imagix Power Software

• http://www.verilogusa.com/home.htm
 VERILOG (LOGISCOPE)

• http://www.qsm.com/
 QSM

http://mdmetric.com/meastl1.htm
http://www.mc/
http://www.qsm.com/

 38

METRICS NEWS

VOLUME 7 2002 NUMBER 1

CONTENTS

Call for Participation .. 3

Position Papers ..7

Manfred Bundschuh:
Function Point Prognosis Approved – Regression Analysis for
Approximation of Function Point Counts7

Nadine Hanebutte:
Quantification of Survivability at the Code Level Through
Software Measurement ...15

New Books on Software Metrics ...27

Conferences Addressing Metrics Issues31

Metrics in the World-Wide Web ..33

ISSN 1431-8008

	1Environment
	2Motivation
	3Project Register Database
	4Investigations
	4.1Value Adjustment Factor
	4.2Function Component Proportions
	4.3Average Function Complexity
	4.4Function Point Ratios
	4.4.1Ratios of Components
	4.4.2Ratios of Function Points per Component

	5Function Point Prognosis
	6Conclusions
	References
	
	
	
	Software-Messung und -Bewertung
	Tagungsband vom 3. Workshop Performance Engineering
	Software-Metriken in der Praxis

	LNCS 2047, Springer-Verlag, Heidelberg 2001 (349 pages)
	
	Basics of Software Engineering Experimentation

	Kluwer Academic Publishers, 2001 (395 pages)
	ISBN 0-7923-7990-X
	October 7-11, 2002 Tampere, Finland
	Applications of Software Measurement

	Other Information Sources and Related Topics
	VOLUME 7 2002 NUMBER 1
	CONTENTS

