
 4

METRICS NEWS

VOLUME 9 2004 NUMBER 1

CONTENTS

Announcement .. 3

Workshop Report ... 13

Position Papers .. 19

Daubner, B. and Henrich, A.:
Integration of software measurement into the software development
environment ..19

Monteiro, T.C., Pires, C.G.S. and Belchior, A.D.:
Estimations by Work Product Type: An extension of the UCP technique
for the CMMI-SW level 2 and 3 ..26

Déry, D. and Abran, A.:
Software Assets Management – Modeling Issues and Proposed Models39

Riekehr, A. and Schmietendorf, A.:
Quality Assurance of the project-related Software Development Process47

Kiebusch, S.:
An approach to a data oriented size measurement in Software-Product-

Families ... 60

Mendes, O. and Abran, A.:
Software Engineering Ontology: A Development Methodology68

New Books on Software Metrics ... 77

Conferences Addressing Metrics Issues ... 79

Metrics in the World-Wide Web .. 81

ISSN 1431-8008

 5

The METRICS NEWS can be ordered directly from the Editorial Office (address can be
found below).

Editors:

ALAIN ABRAN
Professor and Director of the Research Lab. in Software Engineering Management
École de Technologie Supérieure - ETS
1100 Notre-Dame Quest,
Montréal, Quebec, H3C 1K3, Canada
Tel.: +1-514-396-8632, Fax: +1-514-396-8684
aabran@ele.etsmtl.ca

MANFRED BUNDSCHUH
Chair of the DASMA
Sander Höhe 5, 51465 Bergisch Gladbach, Germany
Tel.: +49-2202-35719
Bundschuhm@acm.org
http://www.dasma.org

REINER DUMKE
Professor on Software Engineering
University of Magdeburg, FIN/IVS
Postfach 4120, D-39016 Magdeburg, Germany
Tel.: +49-391-67-18664, Fax: +49-391-67-12810
dumke@ivs.cs.uni-magdeburg.de

CHRISTOF EBERT
Dr.-Ing. in Computer Science and Director SW Coordination
Alcatel HQ
54, Rue La Boetie, F-75008 Paris, France
Tel.: +33-675-091999, Fax: +33-1-4076-1475
christofebert@ieee.org

HORST ZUSE
Dr.-Ing. habil. in Computer Science
Technical University of Berlin, FR 5-3,
Franklinstr. 28/29, D-10587 Berlin, Germany
Tel.: +49-30-314-73439, Fax: +49-30-314-21103
zuse@tubvm.cs.tu-berlin.de

Editorial Office: Otto-von-Guericke-University of Magdeburg, FIN/IVS, Postfach 4120,
39016 Magdeburg, Germany
Technical Editor: DI Mathias Lother
The journal is published in one volume per year consisting of two numbers. All rights
reserved (including those of translation into foreign languages). No part of this issues may be
reproduced in any form, by photoprint, microfilm or any other means, nor transmitted or
translated into a machine language, without written permission from the publisher.
© 2004 by Otto-von-Guericke-Universität Magdeburg. Printed in Germany

 6

C A L L F O R P A R T I C I P A T I O N

IWSM2004
14th International Workshop
on Software Measurement

MetriKon2004

DASMA Metrik Kongress

of the DASMA- Deutschsprachige Anwendergruppe für Software-Metrik und
Aufwandschätzung

GI FG 2.1.10 - German Interest Group on Software Metrics and the
CIM - Canadian Interest Group on Metrics

COSMIC – Common Software Measurement International Consortium
MAIN – International Network of Metrics Associations

In cooperation with:
University of Magdeburg, Germany, École de Technologie Supérieure - Université du

Québec, Canada, and T-Systems, Germany

November 2-5, 2004, Berlin, Königs Wusterhausen

http://iwsm2004.cs.uni-magdeburg.de, http://www.dasma.org
THEME & SCOPE
Software measurement and metrics application are some of the key technologies to control or
to manage the software development process. Measurement is also the foundation of both
sciences and engineering, and much more research in software is needed to ensure that
software engineering be recognized as a true engineering discipline in order to keep IT
companies successful in the marketplace.

TOPICS OF INTEREST
We encourage submissions in any field of software measurement, including, but not limited to

Software metrics foundations
Practical measurement application
Measurement processes and resources
Empirical case studies
Measurement acceptance
Software estimation
Measurement services
Functional size measurement
Software process improvement

Metrics validation
Measurement data bases
Web metrics

 7

Measurement tool support and infrastructures
Measurement experience and guidance
Theory of measurement
Measurement paradigms
Enterprise embedded solutions

PROGRAM COMMITTEE

Alain Abran, Ecole de Technologie

Supérieure, ETS, Montreal, Canada
Günter Büren, Büren & Partner,

Nuremberg, Germany
Luigi Buglione, Athos Consulting, Italy
Manfred Bundschuh, AXA Cologne,

Germany
François Coallier, ÉTS, Canada
Jean-Marc Desharnais, ETS Montreal,

Canada
Xavier Dolado, Universidad San Sebastian,

Spain
Reiner Dumke, University of Magdeburg,

Germany
Christof Ebert, Alcatel, Paris, France
Bernd Gebhard, Bayrische Motorenwerke,

Munich, Germany
Hans-Georg Hopf, GSO-Fachhochschule,

Nuremberg, Germany
Klaus Lewerentz, TU Cottbus, Germany
Marek Lezak, Lucent Technologies,

Nuremberg, Germany
Roberto Meli, Italy
Dirk Meyerhoff, SQS Software Quality

Systems, Cologne, Germany
Andreas Schmietendorf, T-Systems Berlin,

Germany
Harry Sneed, SES Munich/Budapest,

Hungary
Charles Symons, Software Measurement

Service Ltd, Edenbridge, UK
Hannuu Toivoinen, Nokia, Finland
Horst Zuse, TU Berlin, Germany

 4

ADVANCED PROGRAM

DASMA Metr iKon 2004

2. November 2004

09.00 Tutorials

Walter Tichy, Uni Karlsruhe

Claus Lewerentz, Uni Cottbus
„Metrikbasierte Qualitätsanalysen I“

13:00 Lunch Break - Networking

14:00 Tutorials or Community Sessions

 Ralf Kalmar, Fraunhofer IESE, Kaiserslautern

 Claus Lewerentz, Uni Cottbus
 „Metrikbasierte Qualitätsanalysen II“

17:30 Break

18:30 Exhibitors’ Reception

 DASMA Vorstandssitzung / DASMA Board Meeting

3. November 2004

08:00 Conference Registration Wintergarten

09:00 Welcome and Introduction Room 155

09:30 Keynote I Room 155

 Pekka Forselius:
 Making a move from function point counting to better project management

10:30 Coffee Break - Networking - Exhibition

11:00 Session A1 Room 155

 Eberhard Rudolph:

 5

 Measuring the size of application software overheads

 M. Lother, R. Braungarten, M. Kunz, R. Dumke:
 The Functional Size eMeasurement Portal (FSeMP) - A Web-based Approach for

Effort Estimation, Benchmarking and eLearning

 Luca Santillo:
 Software complexity evaluation based on functional size components

11:00 Session B1 Room 156

 José A. Cruz-Lemus, Marcela Genero, Mario Piattini:
 Validating Metrics for UML Statechart - Diagrams Through a Family of

Experiments

 Edgardo Palza, Alain Abran, Christofer Fuhrman:
 V&V Measurements Management Issues in Safety-Critical Software
 George Wilkie, M.P. Ware, B.A. Kitchenham, T.J. Harmer:
 Evaluating the Sensitivity of Coupling Metrics to Evolving Software Systems

12:30 Lunch Break - Networking - Exhibition

12.30 – 13.00 Industrial session 1
14:00 – 14.30 Industrial session 2

14:30 Session A2 - IWSM Room 155

 Alain Abran, Adel Khelifi:
 A System of References for Software Measurements with ISO 19761 (COSMIC-FFP)

 F.W.Vogelezang:
 Implementing COSMIC FFP as a replacement for FPA

 J. Cuadrado-Gallego, J. Dolado, D. Rodríguez, M. Sicilia:
 The Second Level Input Variables for Software Cost Estimation Models

14:30 Session B2 - MetriKon Room 156

 Lutz Winkler, Frank Schmeißner:
 ERP-Standard-SW-Anbieter im magischen Dreieck von Arbeitsweise, Kosteneffizienz

und Produktqualität

 A. Schmietendorf, D. Reitz, J. Lezius, E. Dimitrov, T. Walter:
 Aufwandsschätzung neuer Integrationsanforderungen im Rahmen einer bereits

etablierten Integrationslösung

15:30 Coffee Break - Networking - Exhibition

16:30 Session A3 - IWSM Room 155

 6

 Tom Koppenberg:
 Estimating maintenance projects using COSMIC FFP

 De Tran-Cao, Ghislain Lévesque, Jean-Guy Meunier:
 A Field Study of Software Functional Complexity Measurement

 Alain Abran, Blanca Gil:
 Statistical analysis of Function Point profiles

16:30 Session B3 - MetriKon Room 156

 Johannes Drexler, Francesca Saglietti:
 Eine einheitliche Kohäsionsmetrik für Methoden, Klassen und Komponenten

 Richter/Simon:
 Mit Code-Metriken Wartungskosten senken: Controlling technischer Qualität

18:00 Break

19:00 Community Sessions - Networking

 DASMA Mitgliederversammlung Room 156
 (DASMA annual general meeting)

 GI FG 2.1.10 Mitgliederversammlung Room 155
 GI FG 2.1.10 annual general meeting

 COSMIC IAC - Meeting Room tba

4. November 2004

08:30 Session A4 Room 155

 Alain A. April, Alain Abran, Reiner Dumke:
 Software Maintenance Productivity measurement: how to Assess the readiness of

your organization

 R. Dumke, M. Lother, U. Schäfer, C. Wille:
 Web Tomography - Towards an e-Measurement and Controlling

 Alain Abran, Luigi Buglione, Asma Sellami:
 Software Measurement Body of Knowledge - Initial Validation using Vincenti’s

Classification of Engineering Knowledge

08:30 Session B4 Room 156

 Christof Ebert:
 Portfolio-Management for Software Projects

 Thomas Fehlmann:

 7

 Metrics for Cooperative Development Processes

10:00 Coffee Break - Networking - Exhibition

10:30 Session A5 - IWSM Room 155

 J.-M. Desharnais, A. Abran, J. Vilz, F. Gruselin, N. Habra:
 Verification and validation of a knowledge-based system

 Cornelius Wille, Reiner R. Dumke, Nick Brehmer:
 Evaluation of Agent Academy: Measurement Intentions

 P. Bourque, S. Wolff, R. Dupuis, A. Sellami, A. Abran:
 Lack of Consensus on Measurement in Software Engineering: Investigation of

Related Issues

10:30 Session B5 - MetriKon Room 156

 Marek Leszak:
 The Versatility of Software Defect Prediction Models (or why it's so hard to replicate

related Case Studies)

 Hans-Georg Hopf:
 Software Reliability - Grundlagen und Berechnung

12:00 Lunch Break - Networking - Exhibition

12.00 – 12.30 Industrial session 3
13:30 – 14.00 Industrial session 4

14:00 Session A6 – IWSM Room 155

 Hamdan Msheik, Alain Abran, Hamid Mcheick:
 Measuring Components Unused Members

 Andreas Schmietendorf, Reiner Dumke:
 A Measurement Service for Monitoring the Quality Behaviour of Web Services

offered within the Internet

 Alain Abran, Miguel Lopez, Naji Habra:
 An Analysis of the Mc Cabe Cyclomatic Complexity Number

14:00 Session B6 - MetriKon Room 156

 Bela Mutschler, Manfred Reichert:
 Usability Metriken als Nachweis der Wirtschaftlichkeit von Verbesserungen der

Mensch Maschine Schnittstelle

 Jörg Robra:

 8

 Kreative Software-Messung - Kleiner Leitfaden statistischer Tricks

 Rüdiger Liskowsky:
 Bewertung der Gebrauchstauglichkeit mit Metriken

15:30 Coffee Break - Networking - Exhibition

16:00 Session A7 - IWSM Room 155

 Arlan Lesterhuis, F.W.Vogelezang:
 The COSMIC FFP Business Applications Guideline

 Alain Abran, Olga Ormandjieva, Manar Abu Talib:
 Functional Size and Information Theory-Based Functional Complexity Measures:

Exploratory study of related concepts using COSMIC-FFP measurement method as
a case study

 Juan Carlos Granja-Alvarez:
 Function Points Analysis Based on Requirement Specification, a Case Study

16:00 Session B7 - MetriKon Room 156

 Robert Hürten:
 Ergebnis einer internationalen Befragung zur Einführung und Nutzung der Software

Metrik

 Jürgen Bach, Björn Petersdorf:
 Zwischen Wunsch und Wirklichkeit: Einführung von Kennzahlensystemen in die IT-

Projekt- und Unternehmenssteuerung

 Der Träger des DASMA Diplomarbeitenpreises 2004 stellt seine prämierte Arbeit

vor.

17:30 Break

19:00 Social Event

IWSM / Metr iKon 2004

5. November 2004

09:00 Session A8 - Thema Room 155

 Olga Jaufman:
 Reusage Knowledge on Process Flexibility for Developing Measurement Programs

 Melanie Ruhe:

 9

 How do we measure process improvement?Examples from industry

 Ton Dekkers:
 IT Governance requires quantitative (project) management

09:00 Session B8 - Thema Room 156

 Maya Daneva:
 Patterns of Success or Failure in ERP Requirements Engineering: an Empirical

Study

 D. Natale, L. Santillo, I. Della Noce, S. Lombardi, G. Moretto:
 Proposals for project collection and classification from the analysis of the ISBSG

Benchmark

 Roland Neumann, Stamatia Bibi:
 Building Fault Prediction Models from Abstract Cognitive Complexity Metrics –

Analysing and Interpreting Fault Related Influences

10:30 Coffee Break - Networking - Exhibition

11:00 Keynote II

 Pam Morris:
 Metrics based Project Governance

12:00 Closing Session

12:30 Lunch Break - Networking – Exhibition

 10

Ankündigung des 6. Workshop „Performance Engineering in der
System- und Softwareentwicklung“ (PE2005) im Frühjahr des

Jahres 2005 an der Fachhochschule Köln

Der Performance Engineering Arbeitskreis (kurz PEAK) der GI-Fachgruppe 2.1.10
(Software-Messung und -Bewertung) beschäftigt sich mit dem Performance Engineering in
der System- und Softwareentwicklung. Wenngleich die Auswertung und Verarbeitung der
Ergebnisse des diesjährigen Workshops noch nicht abgeschlossen sind, gilt es bereits jetzt an
den Workshop im kommenden Jahr zu denken, welcher an der Fachhochschule Köln -
Fachbereich Informatik (Mai oder Juni) stattfinden wird. Im Folgenden finden sich einige
Themen zu potentiellen Beiträgen des kommenden Workshops.

Performance Management und Performance Messungen:

− Performance Management von Softwareanwendungen

− Techniken der Performancemessung für Services

− Performanceadaptive Lösungen (Komponenten/Services/Agenten)

Techniken der Modellierung und verfügbare Werkzeuge:

− Modell driven Architecture (OMG MDA) und SPE

− Modellierung von Nutzerverhalten und QoS-Anforderungen

− XML-basierte Performance Spezifikationen

Industrielle Software Performance Engineering Prozesse

− Performance-orientierte Phasen der Softwareentwicklung

− Mehrwertpotentiale und Aufwände für das Performance Engineering

− Management von Performanceanforderungen

Unterschiede und Gemeinsamkeiten der System- und Softwareentwicklung

− Einsatz von Hardware vs. Entwicklung/Einsatz von Software

− Performanceeigenschaften beim System- und Architekturentwurf

− Standardisierung von Hard- und Softwarekomponenten

Wie in jedem Jahr wird sich der Workshop wieder als Diskussionsforum zu aktuellen
Herausforderungen im Umfeld des Performance Engineering verstehen und auf aktuelle
Trends eingehen. Dabei werden insbesondere die Inhalte internationaler Workshops (CMG-
Conference, WOSP, UKPEW, …) im Umfeld des Performance Engineering beachtet. Weitere
Hinweise zu den entsprechenden Terminen für einzureichende Beiträge finden sich auf der
Webseite des Arbeitskreises.

 11

Webseite des Arbeitskreises:

 http://ivs.cs.uni-magdeburg.de/~gi-peak

Ansprechpartner des Arbeitskreises:

 andreas.schmietendorf@t-systems.com

 12

Bericht zum 5. Workshop „Performance Engineering in der
System- und Softwareentwicklung“ (PE 2004)

Andreas Schmietendorf (Sprecher des GI-PEAK)
 andreas.schmietendorf@t-systems.com

Überblick und Motivation

Der im Jahr 2000 gegründete Arbeitskreis zum Performance Engineering (kurz GI-PEAK)
führte am 14. Mai 2004 bereits zum 5. Mal seinen jährlich stattfindenden Workshop durch.
Gastgeber in diesem Jahr war die Siemens AG in München. An dieser Stelle sei noch einmal
Herrn Dr. Stefan Rugel für die hervorragende Organisation herzlich gedankt. Wie in den
vorherigen Jahren konnte auf der Basis der eingereichten Beiträge wieder ein anspruchsvolles
Workshop-Programm zusammengestellt werden. Abgerundet wurde es durch eine
entsprechende Panel-Diskussion zu aktuellen Herausforderungen im Umfeld des Performance
Engineerings. Für diejenigen Leser, die unseren Arbeitskreis noch nicht kennen, soll im
Folgenden noch einmal die Arbeitsdefinition des GI-PEAK zum Performance Engineering
aufgezeigt werden. Es handelt sich nicht um eine statische Festlegung, vielmehr erfolgt eine
zyklische Korrektur bzw. Anpassung entsprechend der neuen Erkenntnisse bzw. aktuellen
Herausforderungen.

"Performance Engineering versteht sich als Methode zur Berücksichtigung von zeit-
und ressourcenbezogenen Qualitätszielen während der System- und
Softwareentwicklung. Dabei sind sowohl wirtschaftliche als auch technische
Randbedingungen zu berücksichtigen bzw. unter Performancegesichtspunkten zu
determinieren."

Im Unterschied zu den entsprechenden Performance Engineering Workshops in den USA
(WOSP – Workshop on Software and Performance) und Großbritannien (UKPEW – United
Kingdom Performance Engineering Workshop) konnten wir auch in diesem Jahr mit fast 70%
der Teilnehmer wieder eine starke Beteiligung aus dem industriellen Umfeld feststellen.

Beiträge des Workshops

Die Beiträge des Workshops bildeten einen Canon zu Themen aus dem industriellen aber
auch akademischen Umfeld, wobei der Schwerpunkt - wie bereits in den vergangenen Jahren
- aus der Industrie kommt. So hatten wir in diesem Jahr Praxisbeiträge der Firmen Siemens,
Lucent, Softlab und der T-Systems sowie theoretische Arbeiten von den Universitäten
Magdeburg, Paderborn und Plovdiv (Bulgarien). Insgesamt beteiligten sich in diesem Jahr 20
Autoren an den durch das Programmkomitee akzeptierten Beiträgen; auch dies stellt in der
Geschichte des Workshops einen kleinen Rekord dar. Im Folgenden findet sich die Übersicht
zu den entsprechenden Vorträgen bzw. Postern.

− Dieter Stoll: Performance Engineering for large Embedded Systems in Practice
− Ndombe Cacutalua: Mehr Wert generieren unter Weiterverwendung des Bewährten:

Integration einer COBOL-Anwendung in ein J2EE-Umfeld
− Andreas Hennig, Rainer Wasgint, Lev Olkhovic, Boris Petrovic: Instant Performance

Prototyping of EJB/J2EE Applications – A car rental example
− Reiner Dumke, Uwe Schäfer, Cornelius Wille, Fritz Zbrog: Agentenbasierte Web-

Technologiebewertung für das Performance Engineering

 13

− Andreas Schmietendorf, Daniel Reitz, Dimitry Rud: Performancebetrachtungen im
Umfeld webservice-basierter Integrationslösungen

− Dietmar Weber, Antonius Erdmann: Performance measurements and prognosis for
large-scale multi-processor telecommunication systems

− Hans Mauser, Christoph Wincheringer: Performance Analysis of the IP Multimedia
Subsystem for 3rd Generation Mobil Communication

− Stanimir Stojanov: MALINA – eine agenten-orientierte Entwicklungsumgebung
− Henner Diederichs, Leena Suhl: Rescueing Software Projects through Complexity

Reduction - a System Theoretic Approach

Abbildung 1: Tagungsband PE2004

Alle Beiträge sind im Tagungsband [Schmietendorf/Dumke 2004] zum Workshop enthalten,
der über den Sprecher des Arbeitskreises zu einem Unkostenbeitrag von 15,- Euro noch
bezogen werden kann.

Ergebnisse der Panel-Diskussion
Die bereits auf dem letzten Workshop des GI-PEAK eingeführte Panel-Diskussion wurde
auch in diesem Jahr wieder zu einem interessanten Diskussionsforum. Angeregt wurde die
Diskussion von den folgenden Fragestellungen, die im Kontext des Workshops identifiziert
wurden:

• Wer ist der Kunde für das Performance Engineering?

• Auswirkungen von SOA auf das Performance Engineering?

 14

• Welche Themen sollte der GI-PEAK Workshop zukünftig aufgreifen?

Im Rahmen eines lockeren, aber dennoch sehr lebhaft geführten Gesprächs zwischen den
Workshop-Teilnehmern wurden Fragen, Ideen bzw. allgemeine Anregungen aufgeworfen.
Durch den Autor dieses Berichtes wurden die entsprechenden Wortmeldungen ausformuliert
und einer ersten groben Klassifizierung unterzogen:
Erhöhung der Akzeptanz des Performance Engineerings im Projektalltag:

− Immer wieder wurde die Frage der Anwendbarkeit von Performance-Engineering-
Methoden und deren praktikable Umsetzung diskutiert; dabei ging es auch um die
Frage, wie entsprechende Leistungen verkauft werden können bzw. wie die Akzeptanz
im Rahmen der Softwareentwicklung geschaffen werden kann.

− Erfolgsstories zu Projekten, bei denen die Anwendung des Performance Engineerings
maßgeblich zum Projekterfolg beigetragen hat, sollten auch publiziert werden.

− Aktuelle Rahmenbedingungen (Zeit- und Kostendruck) im Umfeld von
Softwareentwicklungsprojekten sind einer vorausschauenden Performance-Analyse
zumeist nicht förderlich. Hier gilt es, Aufwände für das Performance Engineering mit
entsprechenden Mehrwerten für den Kunden transparent in Verbindung zu setzen.

− Notwendiger Wandel des Performance Engineerings vor dem Hintergrund der immer
kürzer werdenden Produktzyklen; dementsprechend ist die Anwendung zeitintensiver
Methoden zum Performance Engineering nicht zielführend.

− Es sollte der Zusammenhang zwischen der Architektur auf der einen Seite und der
Statik auf der anderen Seite dargestellt werden und möglichst „10 goldene Regeln für
eine gute Architektur“ aufgestellt werden.

Im Rahmen des GI-PEAK zu bearbeitende Themenstellungen:

− Einigkeit herrschte zwischen den Teilnehmern des Workshops über die Zielstellung
des GI-PEAK. Dementsprechend sollte sich der Arbeitskreis als Katalysator für die
Umsetzung theoretischer Erkenntnisse aus dem akademischen Umfeld in die
industrielle Praxis verstehen. Dabei sollten sowohl methodische, technologische und
wirtschaftliche Aspekte berücksichtigt als auch der Einfluss der Ausbildung bzw. die
Ausprägung entsprechender Berufsbilder im Umfeld des PE aufgegriffen werden.

− Das Performance Engineering sollte sich klar zu anderen ähnlich gelagerten
Disziplinen abgrenzen, wie z.B. dem Traffic Engineering (hierzu existiert ebenfalls ein
Arbeitskreis im Rahmen der GI).

− Der diesjährige Workshop beschäftigte sich primär mit der Performanceanalyse
kommerzieller Hard- und Softwaresysteme, der Klassifikation potentieller
Einflussgrößen auf die Performance bzw. dem Test/Benchmarking.

− Die Anwendung stochastischer Modelle im Kontext des Performance Engineerings
schlägt sich derzeit nur unzureichend in den Beiträgen des Workshops nieder. Hier
sollte durch entsprechende Beiträge eine Verbindung mit praxisrelevanten
Performance-Problemen aufgegriffen werden.

Methodische und technologische Aufgabenstellungen:

− Wie kann mit divergierenden Zielstellungen im Umfeld des Performance Engineerings
umgegangen werden. So harmonieren die verschiedenen qualitativen Eigenschaften
des späteren Produktes, wie z.B. Performance/Effizienz und Wartbarkeit nicht
miteinander, sodass ein entsprechendes Optimum gefunden werden muss.

 15

− Neu zu entwickelnde Systeme sollten flexibel auf sich verändernde Performance
Anforderungen eingehen können. Hier wurden auch die Möglichkeiten und
Zielstellungen von „services on demand“ bzw. „performance on demand“ diskutiert
und die in diesem Kontext notwendigen Verrechnungen angesprochen. Insbesondere
im Umfeld sog. Serviceorientierter Architekturen (SOA) können gewaltige
Herausforderungen für das Performance Engineering erwartet werden.

− Gestaltung von Service Level Agreements und Service Level Objectives mit Hilfe der
Performance Engineering Methodik. (Berücksichtigung von ITIL – Information
Technology Infrastructure Library, Service Delivery).

− Optimales Verhältnis zwischen den Aufwänden, die im Rahmen der Software-Entwick
lung und der Hardware eingesetzt werden. Zum Teil kann es durchaus wirtschaftlicher
sein, entsprechende Probleme mit Hilfe eines erhöhten Hardwareeinsatzes zu lösen.

− Kontextabhängigkeit des Performance Engineerings - kann bei dieser Themenstellung
tatsächlich ein wichtiger Aspekt im Rahmen der System- und Softwareentwicklung
sein. Aus Sicht der Teilnehmer des Workshops hängt dieses maßgeblich von der Art
des zu entwickelnden Systems und den aus möglichen Performanceengpässen
resultierenden Risiken ab.

Förderung der Zusammenarbeit im Umfeld des Performance- und Software-Engineerings:

− Die Bekanntheit des Performance Engineerings ist immer noch relativ gering, so
existieren derzeit nur eine Hand voll von nationalen und internationalen
Interessensgruppen. Selbst bei internationalen Konferenzen (z.B. der WOSP-Tagung
[WOSP 2004]) gibt es zumeist nur um die 100 Teilnehmer.

− Noch immer fehlt im Internet ein Diskussionsforum für die Performance Engineering
Community. Hier sollten sich z.B. allgemeine Hinweise zu PE relevanten Themen,
Links zu weltweiten PE Quellen und FAQ wiederfinden.

− Um die Themenstellung des Performance Engineerings auch im Umfeld des Software-
Engineerings zu platzieren, sollte mit den entsprechenden Communities
zusammenarbeitet werden bzw. auch gemeinsame Workshop durchgeführt werden.

Neben den im Rahmen der moderierten Panel Diskussion aufgegriffenen Themen wurden
auch während der Vorträge interessante Denkanstöße gegeben. Im Folgenden sollen aus der
Vielzahl interessanter Wortmeldungen zumindest zwei Metaphern wiedergegeben werden, die
auch auf dem Workshop zu lebhaften Diskussionen geführt haben.
„In der Raumfahrt kann man auch nicht einfach einen Rechner dazustellen, wenn die
entwickelte Software einen höheren Ressourcenbedarf aufzeigt, als ursprünglich geplant“
(sinngemäß: R. Gerlich)
„Jedes Haus braucht sowohl einen Architekten als auch einen Statiker. Das Performance
Engineering unterstützt im Umfeld der System- und Softwareentwicklung die
Aufgabenstellung des Statikers, wobei die Rollen des Architekten und des Statikers auch
zusammenfallen können.“ (sinngemäß: A. Hennig)
Zusammenfassend kann festgehalten werden, dass es in immer stärkerem Maße darum geht,
Beziehungen zwischen Architekturentscheidungen und den daraus resultierenden
Performanceeigenschaften des späteren IT-Systems (bestehend aus Hard- und Software) im
Rahmen der System- und Softwareentwicklung zu erkennen und unter Zuhilfenahme
entsprechender Modelle, Methoden und Tools, soweit wie aus wirtschaftlicher Sicht nötig
(z.B. Risiken oder explizite Kundeanforderung), zu determinieren.

 16

Ausblick
Alle, die durch diesen Workshopbericht neugierig auf die Arbeit des Performance
Engineering Arbeitskreises (GI-PEAK) geworden sind, seien auf den im kommenden Jahr an
der Fachhochschule Köln stattfindenden Workshop PE 2005 verwiesen. Vielleicht hat der
eine oder andere Lust, seine Erfahrungen im Umfeld des Performance Engineerings im
Rahmen eines entsprechenden Beitrags auf dem PE 2005 zu publizieren. Wem das ein wenig
zu spät ist, sei auf die noch in diesem Jahr zum Thema Performance Engineering
stattfindenden Workshops verwiesen. So findet im Juli der UKPEW (United Kingdom
Performance Enginieering Workshop) an der University of Bradford statt. Auch die nächste
Tagung der MMB-Fachgruppe sowie die nächste CMG-Tagung in den USA werden
sicherlich vielfältige Aspekte des Performance Engineerings aufgreifen. Darüber hinaus findet
im Jahr 2005 der 5. Workshop on Software and Performance (WOSP) auf den Balearen in
Spanien statt - sicherlich aktuell das größte Ereignis, das sich speziell dem Performance
Engineering widmet.

Abbildung 2: ivs.cs.uni-magdeburg.de\~gi-peak

Für weitere Informationen zu den o.g. Workshops soll an dieser Stelle auf die Webseite des
Arbeitskreises (siehe dazu auch Abbildung 2) verwiesen werden.

Quellenverzeichnis

[Schmietendorf/Dumke 2004] Schmietendorf, A.; Dumke, R. (Hrsg.): Tagungsband PE2004,
OvG-Universität Magdeburg, FIN, Mai 2004 (ISBN: 3-929757-65-6)

[WOSP 2004] WOSP’04 – Proc. Of the Fourth International Workshop on Software and
Performance, Redwood Shores, CA/USA, ACM Press, Jan. 2004

 17

Integration of software measurement
into the software development environment

Bernhard Daubner

bernhard.daubner@uni-bayreuth.de

Andreas Henrich
andreas.henrich@wiai.uni-bamberg.de

Abstract: Although the benefit of software measurement is commonly accepted, in
operational practice one is often afraid of accomplishing the effort for the collection of
software measures, because it seems to be out of proportion to the benefit. Therefore,
software measurement should be automated as far as possible, which can be achieved by
the integration of software measurement into the software development environment.

This article describes two corresponding approaches on the basis of the development
environments IBM Rational Suite and SAP R/3.

1 Tool support for software measurement

ISO/IEC 15939 [Int02] is the standard for software measurement published by the
International Organization for Standards (ISO). This standard includes both a process model
for software measurement and an information model. The later describes the information
needs that lead to a choice of software measures and analysis techniques, whereas the
information needs themselves are derived in turn from the goals of the software measurement.
Thus, it is quite well known, which entities have to be measured in the context of the software
development process to reveal the status of a project including possible risks.

However, we think there is a lack of appropriate tool support, that would automate the
software measurement process as far as possible. Some measures, e.g. the number of open
bug reports, are measurable quite easily in an automatic way. For instance within bigger
projects one will certainly use a database for bug management and can therefore determine
and observe very comfortably the number of bugs according to several categories.

The project progress in the sense of already implemented functionality of the product being
developed can only be determined with a significant effort and only under certain
circumstances. For this, it is necessary that one can trace back from the software component
under development to the underlying functional requirement. From the development level of
the related software components one can then deduce which functionalities are just under
work, for which functions test cases exist and which software components have already
passed the unit tests. So one gets a quite good picture about the implementation progress. At
last, a requirement is classified implemented, if the corresponding software component has
passed all functional tests and all integration tests.

In the following we will look at these possibilities with respect to their realization within the
IBM Rational Suite and a possible integration into the SAP R/3 development environment.

2 Software measurement within the IBM Rational Suite

 18

Within the IBM Rational Suite requirements are administered by RequisitePro within a
relational database. Thereby the requirements can be linked with Microsoft Word texts or a
UML diagram of the underlying use case. For the handling of test cases the Rational Suite
includes the TestManager. This tool is able to generate test cases directly from requirements,
UML models or Microsoft Excel spreadsheets.

Thus, within the IBM Rational Suite requirements are linked either directly or indirectly by
means of a UML diagram to test cases. Additionally the requirements can be linked by means
of a UML model with source code, which has been generated out of the UML diagrams.

IBM Rational Software has published a White Paper about the possibilities of software
measurement that are provided by the IBM Rational Suite, especially if the tool
ProjectConsole is used [GWI04]. Astonishingly, the software measures described within this
paper are restricted to the mere enumeration of artefacts of the development process. For
example one describes the number of requirements, changes in the number of requirements,
the number of use cases with a certain status or things like that. Of course, one counts also the
total number of lines of code and the number of bugs.

But there is nothing said about a possibility to directly determine the implementation progress
from the software components under development. Corresponding software measures cannot
be gathered until the programming activities have proceeded so far that particular use cases
can successfully be tested against the developed software.

3 Software measurement with SAP R/3

3.1 Non object-oriented software development

Besides the object-oriented software projects there are also many development projects
concerning legacy applications that either have to be maintained or enhanced. Here one might
think for example of the huge host based accounting systems of banks and insurance
companies that mainly are written in COBOL and do not have an object-oriented but at best a
structured design. Besides there is a very large number of applications for SAP R/3, that are
written in ABAP. Thereby ABAP has got an exceptional position, since with roots in the
mainframe area it originally only supported structured programming, but has in the mean-
while been extended with object-oriented concepts.

Especially as far as SAP R/3 is concerned there are hardly any scientific reports about the
application of software measures within the SAP development process. There is only some
work in which the requirements management in the SAP R/3 area is analyzed [Dan03].
Thereby also measures for effort estimation und software reuse are inspected.

Therefore, it is of great interest which software measures are actually applicable within ABAP
projects, how the data for the software measures can be collected, and how this can be
integrated into the SAP software development environment.

Moreover there is the question, which development process is actually appropriate for such an
environment. From the authors point of view one might doubt, whether a use case driven
process like the Rational Unified Process (RUP) is perfectly adapted for the creation of SAP
applications, that are less characterized by user interaction but by mere data transactions. Here
possibly a more adapted process could be derived from a process framework like OPEN
[GHSY97].

 19

3.2 Software organization within the SAP R/3 development environment

The role of the software repository within the SAP R/3 development environment is taken by
a relational database system, that belongs to the R/3 system. This database system not only
contains the business data of the R/3 system but also programs, input forms, table definitions,
and data types. To access this data independently of the applied database system a general and
system independent interface to this dataset is provided by the Data Dictionary [Mat02].

Besides the Data Dictionary also the Correction and Transport System, which is centralized in
the Transport Organizer tool, plays a vital role within the SAP R/3 development. Beneath the
version control the Transport Organizer provides possibilities to transfer software changes to
other SAP systems and especially from the test system to the production system.

The actual organization of the software developed with SAP R/3 is done with packages, that
were called development classes within former SAP releases. A package is a container
combining development objects that belong together logically. Additionally packages can
include subpackages.

The logic of an SAP application resides either within ABAP programs and subprograms,
within function modules or within methods of ABAP Objects classes. Thereby, the classes
provide the highest and the subprograms the lowest level of data encapsulation [Kel02]. A
great part of present-day SAP functionality is indeed implemented with function modules
[KK01]. Therefore, we want to present the integration of software measurement by means of
function modules. These imply a very strict interface logic and are organized within function
groups, whereby reusability and data encapsulation are supported at least to a certain degree.

3.3 Traceability and monitoring of project progress

In contrast to the IBM Rational Suite there is no integrated tool support for requirements
management, modelling, and implementation within the SAP R/3 development environment.
The requirements management and modelling activities are accomplished outside of the R/3
system whereas the coding and testing is done within the SAP R/3 development environment.
In so far, there is first of all no automatic traceability guaranteed between the requirements,
the development model, and the implementation.

Since there are, however, appropriate possibilities for the source code organization given
within the SAP development environment, we want to present an approach, how this mapping
can be done manually. As we have stated in [DH03], the UML activity diagrams are also
suitable to represent data flows as they are used within the structured programming and
especially within the modelling of SAP applications. Thereby, data flow diagrams (DFD)
feature the possibility to adequately model the functionality of programs like SAP
applications. Moreover, one can derive effort estimations from the DFD already at a very
early stage of the project.

We propose to map the UML packages within which the activity diagrams are organized to
the packages of the SAP development environment, whereas being restricted to only one
lower level within the package hierarchy. One can then either associate each activity diagram
with an ABAP function group and the enclosed activities with a ABAP function module, or
the packages are structured in a more object oriented way combining all functions associated
with certain data into one function group. At the end it is crucial to have a mapping between

 20

the software model and the function groups and function modules. That means one must be
able to derive from the name of an element of the software model the identifier of the
associated function group and the function module respectively. If necessary the identifiers
within SAP must be preceded with a prefix that is mandatory for customer developments.

By means of the Data Dictionary it can be checked which function groups and function
modules have already been created within the SAP development environment, whereby at
least a rudimental monitoring of the project progress can be realized. We want to show that
this progress monitoring can be automated by determining the ABAP elements that belong to
a software project via appropriate database requests. Because of their defined identifiers they
can be assigned to the requirements modelled in the UML activity diagrams.

4 Progress measurement on an example application

Färber und Kirchner describe in [FK03] an example project, which deals with the
implementation of an accounting application with ABAP on an SAP R/3 system. We want to
use this example to explain our above ideas for progress measurement, because it is very
accuratly described in [FK03] including business processes, architecture description and the
resulting source code.

Within this example basically three functions have to be implemented that concern the
warehouse and the accounting of a pharmaceutical company. Whenever a change in inventory
within the warehouse takes place, a corresponding business transaction has to be stored in the
database. These business transactions are from time to time transformed into accounting
documents with respect to double entry bookkeeping. And finally an accounting list can be
generated. Figure 1 gives an overview on this application.

Since the business transactions and the accounting documents are the two main elements of
this application, it makes sense to pool them in two ABAP function groups with the identifiers
ZBTB00_OBJ_BTA and ZBTB00_OBJ_DOC. Here Z is a valid prefix for customer
developments within an SAP system, BTB00 is an identifier for this application, and the
authors of [FK03] use the identifier OBJ to characterize application logical functions in
contrast to e.g. interface functions. Altogether, we get the SAP function modules listed in
table 1.

Technically, a function group within the SAP system is nothing else than an ABAP program
and a function module is an included subprogram. The main difference to normal ABAP
programs is that function modules must not be edited with the standard editor but with the
Function Builder. All function modules of the system are listed in the table TFDIR of the
ABAP Data Dictionary. We now can query this table together with some other tables, that
contain additional maintenance information, for all function modules belonging to our two
function groups. Doing so we get the screenshot displayed in figure 2, where we can see that
all above mentioned function modules at least already exist within our SAP system.

register changes
in inventory

business
transactions

warehouse clerk

update
accounting
documents

accounting
documents

 21

Figure 1: Accounting Application

ZBTB00_OBJ_BTA

 zbtb00_obj_bta_edit edit business transaction

 zbtb00_obj_bta_save store business transaction into DB

 zbtb00_obj_bta_load get business transaction from DB

 zbtb00_obj_bta_mark_as_booked mark BT as booked within DB

ZBTB00_OBJ_DOC

 zbtb00_obj_doc_book create accounting document from BT

 zbtb00_obj_doc_save store accounting document into DB

 zbtb00_obj_doc_load get accounting document from DB

Table 1: Function Groups and Function Modules

 22

Figure 2: List of function modules as a means of progress management

What we have done hereby is to establish a link from the design model to the implementation
by means of a strict naming convention. This offers a rudimental possibility to monitor the
project progress, since one can check, which of the required functionality is already worked
on. To provide complete traceability we also need a link from the requirements to the design
model.

5 Further work to be done

So far we only know that someone has created the listed function modules in figure 2 within
the SAP system. We do not know whether they work or even whether actually any
programming work has been done. The next step could be to compute the sizes of code of
these function modules that could possibly be compared with calculated Function Point
measures.

We also have not yet considered, whether the corresponding entry masks to use this function
modules have already been created. And we do not know, whether the database tables used by
the function modules already exist.

The next step will be to provide a mechanism to derive these informations (definition of
database tables, required forms) from the design model. Therefore, it is necessary that the
modelling is done with an appropriate tool. Then this information must be read by an analysis

 23

software within the SAP system to check how far the corresponding ABAP elements have
been already created. The elements can be found because of their predetermined identifiers as
we have shown above.

And finally a testing tool should be integrated into this framework to assure that the required
ABAP elements not only exist but also work. Here the newly developed tool ABAP Unit
might be a promising approach.

References

[Dan03] Maya Daneva. Lessons Learnt from Five Years of Experience in ERP

Requirements Engineering. In 11th IEEE International Requirements
Engineering Conference (RE’03), page 45ff. IEEE, 2003.

[DH03] Bernhard Daubner and Andreas Henrich. Ein Plädoyer für Datenflussdiagramme
aus der Sicht der Aufwandsschätzung und der agilen Softwareentwicklung. In
Klaus R. Dittrich, Wolfgang König, Andreas Oberweis, Kai Rannenberg, and
Wolfgang Wahlster, editors, INFORMATIK 2003 - Innovative
Informatikanwendungen, Band 1, Beiträge der 33. Jahrestagung der
Gesellschaft für Informatik e.V. (GI), 2003 in Frankfurt am Main, volume 34 of
LNI, pages 191–195. GI, 2003.

[FK03] Günther Färber and Julia Kirchner. Praktischer Einstieg in ABAP Objects.
Galileo Press, Bonn, 2003.

[GHSY97] Ian Graham, Brian Henderson-Sellers, and Houman Younessi. The OPEN
Process Specification. Addison-Wesley, Harlow (England), 1997.

[GWI04] Bill Gilbert, Dave West, and Doug T. Ishigaki. IBM Rational Team Unifying
Platform: IBM Rational ProjectConsole Sample Measures. IBM Corporation,
2004.

[Int02] International Organization for Standardization. ISO/IEC 15939:2002 – Software
Engineering – Software Measurement Process, 2002.

[Kel02] Rainer Kelch. ABAP Objects – Ein Lehr- und Trainingsbuch für die klassische
und objektorientierte Programmierung. dpunkt-Verlag, Heidelberg, 2002.

[KK01] Horst Keller and Sascha Krüger. ABAP Objects – Einführung in die SAP-
Programmierung. Galileo Press, Bonn, second edition, 2001.

[Mat02] Bernd Matzke. ABAP – Die Programmiersprache des SAP-Systems R/3.
Addison-Wesley, München, fourth edition, 2002.

 24

Estimations by Work Product Type: An extension of the UCP
technique for the CMMI-SW level 2 and 3

Tatiana Cavalcanti Monteiro

Universidade de Fortaleza – UNIFOR
Mestrado em Informática Aplicada – MIA

Av. Washington Soares, 1321, 60811-341 – Fortaleza - CE – Brasil

Carlo Giovano S. Pires
Instituto Atlântico

R. Chico Lemos, 946, CEP 60822-780 – Fortaleza - CE – Brasil

Arnaldo Dias Belchior
Universidade de Fortaleza – UNIFOR

Mestrado em Informática Aplicada – MIA
Av. Washington Soares, 1321, 60811-341 – Fortaleza - CE – Brasil

Abstract. The concern in generating quality estimations, the closest possible to reality,
comes from the importance of these computations to estimate costs and time. Sometimes
these estimations are made based on specialists’ experiences, making it possible to
generate inaccurate information. Besides that, there are methods to perform those tasks.
One of those methods is the metric of Points per Use Case (PCU). This technique has
shown itself adequate for object oriented software products and based on use cases. The
CMMI-SW, level 2, recommends the implantation of size, effort, time and cost estimation
activities, as a way of improving the planning and accompaniment of software products.
However, this technique’s granularity for work products in the planning and
accompaniment activities hasn’t shown itself very adequate. This work presents an
extension of the UCP technique, so that it attends recommendations from CMMI-SW level
2, allowing a more detailed view from the estimations by type of work product, making it
possible to refine those estimations throughout the development process.

Keywords: Estimation, UCP (Use Case Point), Use Cases, CMMI-SW.

1 INTRODUCTION

One of the main risks that consummates the estimation process is the lack of credibility by the
development team [10]. This occurs when estimations are unreal, that is the project are under
or overestimated. The size estimations precision becomes fundamental for the elaboration of
realistic schedule and budget, because the size estimations constitute the background for the
derivation of effort, time and cost estimations [9].

One of the practices required by the model of CMMI-SW (Capability Maturity Model
Integration for Software) level 2 is the realization of estimates for size, effort, schedule and
cost. Some companies use proprietary methods to attend these practices, what makes very
difficult the sharing of experiences, the use of knowledge bases outside the company, besides
the effort and cost to define a proprietary method.

The estimates essentially support the planning and monitoring activities of a software project.
Efficient estimates allow the verification of project viability, the elaboration of technical and
commercial proposals, the development of plans and detailed schedules, and the effective
monitoring of projects.

 25

The estimates can be divided in two groups: bottom-up and top-down. The estimates bottom-
up are used to achieve estimates about the items of work individually and then, summarize or
aggregate them to obtain the complete estimate of the project. The estimates can be achieved
through an expert’s opinion or through the analogy of the database to determine the
complexity and the effort associated to a certain task. The appraisal topdown estimates the
project as a whole using specialized techniques. The granularity of the estimates of the work
products is determined by the whole project’s estimate. Information from analog products is
used as base to the top-down estimate.

There are several techniques to estimate a software Project. Among them, some are more used
than others, like: Functional Point Analysis (FPA) [7], MKII Function Points [7] and Use
Case Point (UCP) [1]. The last one is based on the first two methods. In spite of the small
divulgence, the UCP has been a goal to research studies and has shown growing utilization in
the industry. The UCP technique is the top-down type and it is adequate to a project which
describes its software requirements through use cases.

This work proposes an extension of the UCP technique – a Technical Use Case Point (TUCP)
to achieve estimates of size and effort for software projects that are used as base for schedule
and cost estimates, with the granularity proposed in the CMMI-SW level 2. Besides, the
proposal suggests calibrations in the productivity factors by work product type, allowing
better estimates for work products.

This work is organized in five sections. In section 2, we will describe how estimates are
presented in the model CMMI-SW level 2 [9]. In section 3, concepts of use cases techniques
are presented. In section 4, we present the description of the UCP method. We present our
approach of estimates based on the UCP technique in section 5. In section 6, we present a case
study for the extension of the proposed UCP method and finally in section 7, we draw
conclusions to our work.

2 ESTIMATES IN THE MODEL SWCMMI LEVEL 2

CMMI-SW provides to software organizations a guide to obtain control in your software
development and maintaining processes, and evolves in direction to a software engineering
culture. The CMMI was projected to guide the software organizations in the improvement
strategies selection process and identifying the most critical issues for quality and
improvement of the software process [9].

Having in mind the reality and the organizations needs, and aiming to provide a larger
flexibility, the CMMI adopts two approaches: one by staged representation, like the
traditional CMM, and the other one continuous, corresponding to the ISO/IEC 15504 [11].
The staged representation comprehends five levels of maturity: 1-Initial, 2-Managed, 3-
Defined, 4-Quantitavely Managed, e 5-Optimizing. The staged representation has the
following level 2 (Managed) process areas: Requirements Management, Project Planning,
Project Monitoring and Control, Supplier Agreement Management, Measurement and
Analysis, Process and Product Quality e Configuration Management. The CMMI-SW
continuous representation has six levels of maturity: Incomplete, Performed, Managed,
Defined, Quantitatively, Managed, e Optimizing [9]. In the CMMI-SW and in the SW-CMM
[9], the estimations process establishes a formal base for the planning and accompaniment of
software projects, parting from four activities: (i) estimate the size of the product being
generated; (ii) estimate the effort employed during the project execution; (iii) estimate the

 26

project duration; and (iv) estimate the project cost. These activities are referenced in the
CMMI-SW level 2 [9], in the Project Planning (PP) and Project Monitoring and Control
(PMC) process areas.

In the CMMI-SW level 2 the size estimations need to be done by all the main activities and
software products, and carried out with products with thin and adequate granularity for a
continuous accompaniment. Nevertheless, this model doesn’t specify the kind of
measurement that should be applied, not even the granularity in which the work products
should be decomposed. So that a project may be better estimated, their work products shall
have to be decomposed until a necessary granularity to obtain the estimation purpose.

Next the points per use case technique (PCU) will be presented, that will be used as base for
the project planning and accompaniment in organizations focusing on the CMMI-SW.

3 USE CASES DIAGRAMS

In Object Oriented Systems, use case modeling is commonly one of the first steps of the
software development process. It’s a technique used to describe and define the system’s
functional requirements. Use case diagrams represent the functional requirements. This
representation discloses actors, use cases and their relationships. The actors represent the role
of an external entity to the system. The use cases represent the system’s functionalities or a
classifier, like a subsystem or a class. The presented relationships may be of two types:
association (between actors and use cases) and generalization (extensions and inclusions
between use cases). The OMG is responsible for the formalization of these requirements
modeling [12].

The Object Management Group, Inc. (OMG) is an international organization supported by
over 600 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented technology in
software development. The organization's charter includes the establishment of industry
guidelines and object management specifications to provide a common framework for
application development [12].

Despite the attempt of the OMG to standardize the functional requirements description in the
use cases, organizations and project software teams don’t follow it.

The concepts and bases of the standardized OMG use case techniques are indispensable
factors in the UCP technique, acquainted in the following section.

4 THE METHOD OF USE CASE POINTS (UCP)

The object oriented software projects already use frequently the Use Cases Diagrams to
describe the functionalities of the system according to the form of utilization by the users.
Having as base the use cases, a technique for project estimate was proposed in 1993 by
Gustav Karner [1], from Objectory (actually, Rational Software), allowing the possibility to
estimate the size of a system, still in its use cases specification step, using its own generated
documents as help for the dimensional calculation.

 27

In spite of being a recent metric, the UCP has been studied by many researchers in the
academic and industrial field. In [7], the practice results of the UCP estimating some
commercial projects are mentioned. In order for this technique to be efficient, the use cases
specification should be described in an appropriate detail level because this will influence
directly the final quality of the measurement.

Once the system’s main use cases are specified and described, it is possible to estimate the
size of the whole software based on a simple metrics set. The necessary steps to generate the
estimate based in UCP method are described below:

• Classification of Actors;

• Classification of Use Case;

• Definition of the Technical and the Environments Factors.

The summarize of this activities for generate the estimates are presents below.

The first step in the calculation of the system is to classify the actors involved in each use
case, obtaining an unadjusted sum of points. The classification of the actors is based on Table
1. The total weight of the system actors (Unadjusted Actor Weight - UAW) is calculated by
the sum of multiplication of the number of actors of each type by its respective weight.

Actor Type Description Weight

Simple Application with defined API 1

Average Another system interacting through
a communication protocol, like
TCP/IP or FTP

2

Complex A user interaction through a graphic
interface (stand-alone or Web)

3

Table 1: Classification of Actors

Once the weight of the system’s actors is calculated, it’s necessary to calculate the Unadjusted
Use Case Weight (UUCW). For calculation purpose, the use cases are divided into three
levels of complexity, according to the number of transactions involved in their processing. By
transaction, we mean a series of processes that should be accomplished in a set or canceled in
their totality, in case it’s not possible to complete the processing.
The calculation of UUCW is accomplished in a similar way to the calculation of the actors’
weight, adding the multiplication of the number of classified use cases in each type by its
nominal weight.

Table 2 shows the weight for each one of the kinds of classified use cases.

Use Case Type Number of Transactions Weight Weight

Simple Until 3 transactions 1

Average 4 to 7 transactions 2

Complex More than 7 transactions 3

 28

Table 2: Classification of Use Cases

To calculate the Unadjusted Use Case Points – UUCP as Eq. (1), it’s necessary to add the
value obtained by the actors measurement with the value obtained in the use cases
measurement.

 UUCP = UAW + UUCW Eq. (1)

The technical factors measure the complexity of a project regarding the non-functional
requirements. These factors influence the result of the UCP as Eq. (4). According to Karner
[1], the project complexity factors are the characteristics related to performance, portability,
security, reusability of the code, among others (See Table 3).

Factor Description Weight

T1 Distributed System 2

T2 Response adjectives 2

T3 End-user efficiency 1

T4 Complex processing 1

T5 Reusable code 1

T6 Easy to install 0.5

T7 Easy to use 0.5

T8 Portable 2

T9 Easy to change 1

T10 Concurrent 1

T11 Security features 1

T12 Access for third parties 1

T13 Special training required 1

Table 3: Technical Complexity Factors (TCF)
The environment factors are related with familiarity to the development process to be used in
the project, the experience in the application, motivation, stable requirements, among others
(See Table 4).

Factor Description Weight

F1 Familiar with RUP 1.5

F2 Application experience 0.5

F3 Object-oriented experience 1

F4 Lead analyst capability 0.5

F5 Motivation 1

F6 Stable requirements 2

 29

F7 Part-time workers -1

F8 Difficult programming language -1

Table 4: Environmental Factors (EF)

To calculate the Technical Complexity Factor – TCF as Eq. (2) of the system, it’s first
necessary to calculate the Tfactor. The Tfactor is the sum of the multiplication of the value
assigned in the project by each item and its weight. Calculation of the TCF:

 TCF = 0.6 + (0.01 * TFactor) Eq. (2)

To calculate the Environment Factors – EF as Eq. (3), it’s first necessary to calculate the
Efactor. The Efactor is the sum of the multiplication of the value assigned in the project by
each item and its weight. Calculation of the EF:

 EF = 1.4 + (-0.03 * EFactor) Eq. (3)

To adjusted use case points (UPC) are calculated as follows:

 UCP = UUCP * TCF * EF Eq. (4)

The Effort as Eq. (5) is obtained by the multiplication of the size in UCP by productivity that
is calculated by:

 Effort = UCP * Productivity Eq. (5)

The UCP as Eq. (4) count can vary among organizations and individuals because of the
variation of use cases styles mentioned. It’s reasonable to suppose that the productivity
associated to the development of 1 UCP (20 men-hour, in Karner’s original work [1]) varies a
lot as well. This way, the obtainment of reliability estimates of effort requires style
standardization of use cases in an extensive work of estimates model of calibration based on
UCP.

As follows, the approach for estimations of work products based on UCP, the TUCP in the
context of CMMI-SW.

5 AN APPROACH FOR ESTIMATES OF WORK PRODUCTS BASED ON UCP

According described in section 2, the CMMI-SW level 2 does not define which are the work
products or the level of granularity necessary to reach the goals of the estimates. The
companies are responsible for determining this level of granularity in their work products
according to the objectives and necessary strategies of each organization.

The original UCP technique presents the estimate of size for the whole project in UCP and the
estimate of effort can be obtained through productivity factors. However, this granularity does
not allow a detailed planning, an effective monitoring and proactive of the project.

In this context, this work proposes an extension of the PCU technique, to attend to
recommendations by CMMISW level 2, allowing a more detailed vision of the estimations by
tip of work product, enabling refinements on the estimations throughout the development

 30

process. This extension, the TUCP (Technical Use Case Point) comprehends the four
following points:

• Project size estimation;

• Size estimations by work products;

• Effort estimation with differed productivity factor;

• Time and cost estimations.

The four points proposed by the TUCP technique shall be presented below, together with an
utilization example.

Size Estimate of the project

Adjusted Use Cases Points – UCP as Eq. (4) consider the weight of the different kinds of
interface through the actors, the weight of functional requirements through the use cases, the
weight of the non-functional requirements through technical factors, and the weight of the
staff and the development environment through environment factors. One problem identified
with this approach is that the use of environment factors – EF can lead to different sizes,
depending on the staff or company that develops the project. In fact, what should change
should be only the effort according to the characteristic of productivity of the staff or
company.

The proposed technique in this work is to define the Technical Use Case Point – TUCP as Eq.
(6) metric to obtain a project size value based just on the functional and non-functional
requirements of the system. This metric is obtained by the adjustment of UUCP by the
Technical Complexity Factors - TCF.

 TUCP = UUCP * TCF Eq. (6)

Size Estimates of Work Products

To accomplish the estimates of the work products, it’s necessary to initially define the kinds
of the product [9], generally a software development company works with four main kinds of
products: Requirements, Analysis and Project, Implementation (Coding), and Test. One kind
of software product can still be distinguished into sub-types.

For example, for the work product Analysis and Project, we can have the following sub-types:
graphical project, architecture specification, detailed project, database specification and HCI
(Human Computer Interface) specification for each use case. This way, the granularity
becomes finer to estimate the use cases with easier accompaniment of the software project
and allowing corrective actions before the end of all analysis and project.

According to the UCP method, the effort of the project is directly proportional to its size in
use case points. This way, the size of a use case product can be based on the percentage of the
effort put into its development (See example of measurements of the percentage of effort by
the kind of product in Table 5).

Measurements accomplished for the Project, or for the kind of Project can be used to
determine a percentage of adequate distribution for the institution. The size of each use case

 31

product is then defined by a proportional form to its complexity factor and the percentage of
effort distribution for each product.

TUCP (use case product) = (Use Case Weight / (Sum
of Use Cases Weight)) * TUCP * PEA Eq. (7)

The work product size per use case, defined in Eq. (7) is given by the product of the division
result between the weight of the use case and the total sum of weights of the system use cases
by the size of the entire system – TUCP in Eq. (6) , which is multiplied by the effort
percentage per product – PEP (see Table 5).

Effort Estimate with Differentiated Productivity Factor

To obtain the effort estimate, the UCP method uses a common multiplication factor (or
productivity) for all kinds of project’s activities. However the productivity can vary
depending on the kind of project and the staff that accomplishes each kind of activity. For
example, in a company that has frameworks or reusable components, the productivity of the
coding activities are usually high.

However, the “specification of requirements” and “analysis and project” activities are not
going to be fast because of the reuse of code. By the measurements of effort accomplished for
each kind of activity and the TUCP’s calculated for the project, the company should maintain
a database with the productivity factor for each kind of activity and project characteristics.

The effort to generate a use case product is calculated by:

Effort (use case product) = TUCP (use case product)
* EF * PFKP Eq. (8)

The Effort defined in Eq. (8) consumed in a work product per use case is given by the product
of the use case size – TUCP, presented in Eq. (7), times system’s environment factor – EF,
presented in Eq. (3), times the productivity factor of the work product type – PF (see Table 6).

Time and Cost Estimates

The time and cost estimates should be accomplished by the estimated effort with the proposed
technique, resources availability, project restrictions and cost menhour. Notice that this
estimate can be accomplished for the project as a whole or for each work product through the
estimated effort for the product.

TUCP Example

To exemplify the technique, we are going to consider the use case Authenticate User as
average, with a graphic interface (complex actor) in a company that has measurements and
characteristics of project according to Table 5 and Table 6, a productive staff and a technical
factor of medium complexity. Let’s consider that there is also a use case Register User with
Simple characteristics.

Product Kind Effort Percentage

Requirements 20%

 32

Analysis and Project 30%

Implementation 35%

Tests 15%

Table 5: Percentage of effort the Product - PEP

Factor Value

EF 1.00

Sum of Weight:

Weight(Authenticate User) +
Weight(Register User)

15.00

TUCP of the whole system 18.36

PFKP - Productivity Factor
(Analysis and Project)

15.00

Table 6: Productivity Factors -PF

With these characteristics, the total size of the project would be 18.36 TUCP’s and for the use
case we would have:

TUCP (Use Case Project Authenticate User) = (Weight (Authenticate User) / (Weight
(Authenticate User) + Weight (Register User)) x (TUCP of the whole system) x (PEP- by
Analysis and Project) = (10/ (10 + 5)) x 18.36 x 0.30 = 3.62 TUCPs.

Considering the productivity factor of the activity of Analysis and Project as 15 (See Table 6)
we would have an effort of:

Effort (Authenticate User) = TUCP (Authenticate User) * EF * PFKP (Analysis and Project)
= 3.62 * 1 * 15 = 54.03 men-hour for the Analysis and Project of the use case Authenticate
User.

6 CASE STUDY

This case study was accomplished in a research and development company certified as SW-
CMM level 2 that uses the process RUP (Rational Unified Process) [4] in research and
development projects in many areas of information technology and telecommunications, in
different platforms (J2EE, J2ME and .NET).

The estimate technique proposed in this article is applied to every software projects of the
institution. For this case study, it will be presented two projects with different characteristics
and size. The projects are denominated A and B for confidential matters.

The project A has as characteristic the development of a process automation system and was
developed in the platform J2EE with 28.000 men-hours. The project B is a system for register
and consult materials developed in the platform. NET with 2.000 men-hours.

 33

The results presented in Table 7 and Table 8 show the percentage of relative error between
estimated and accomplished values. For comparison effects, Table 7 presents estimated values
with an only productivity factor for all kinds of products, while Table 8 presents the calibrated
productivity factor for each kind of work products.

To calculate the percentage of estimated error for each activity using the proposed technique,
the Symmetric Relative Error (SER) metric proposed by M. Jorgensen e D.Sjobeg [2] was
used.

SER = Real - Estimated / Real, if Real =< Estimated

SER = Real - Estimated / Estimated, if Real => Estimated,

Where “Real” is the real effort of the Project and “Estimated” is the estimated effort using the
technique proposed in this article.

In Table 8, the results presented show that the percentage of total error related to the real is
much smaller if compared with Table 7, where there was not distribution of the productivity
factor.

Project REQ A&P COD TEST Total
A -2.00 24.88 -49.03 29.08 -11.05
B -47.81 -86.26 -32.96 -52.59 -46.61

Table 7: Percentage of errors without distribution of productivity by work product type

Project REQ A&P COD TEST Total
A -1.93 24.81 -11.76 29.08 3.24
B -10.85 7.37 0.29 -34.61 -3.59

Table 8: Percentage of errors with distribution of productivity by work product type

The calibration on the productivity factor used in Table 8 considers that the factor of
productivity in projects A and B were:

• Productivity Factor of requirements: between 15 and 20 men-hour.

• Productivity Factor of analysis and project: between 20 and 25 men-hour.

• Productivity Factor of coding: between 15 and 20 men-hour.

• Productivity Factor of tests: between 10 and 15 men-hour.

These values can be redistributed if the project and the staff’s characteristics influence some
activity during the software development. According to Table 8, the values presented in
project A for the products Analysis and Project and Test had a percentage of error bigger than
the real.
I

 34

n spite of the deviations in the percentage of errors in some work products being bigger than
20%, the total deviation in the effort is very small if compared with the individual values for
each work product.

For Project B (see Table 8), the percentage of relative errors for the “Analysis and Project”
and “Coding” were low. This happened because of the distribution of the main work products,
that took into consideration that the “Analysis and Project” of a system of consult and register
requires a smaller effort. During coding, the effort was also low because of the generation of
the code that allowed a faster development.

Analyzing Table 7 and Table 8, we can verify that the distribution of the productivity by
every kind of work product helped in the accuracy of the effort estimate. However, a
historical base to be used in the calibration of the productivity is important because the factors
as project characteristic, used platform and staff performance can influence this productive
factor.

7 CONCLUSIONS

This article presented a technique for estimate of software based on UCP and compatible with
CMMI-SW level 2. This technique, TUCP, can be used in projects that utilize use cases for
specification of software requirements.

The main contributions to this work were:

• The extension of the UCP method through TUCP which allowed a more detailed

view of estimates by kind of workflow;

• The productivity factor by work products type generates smaller error in the total
estimate of the Project and in the estimate of each work products, making it possible
to generate a more effective planning and monitoring;

• The proposed approach makes it possible to improve the estimates in many phases of
the development process.

• A supply of an estimation technique adherent to the practices from the models
CMMI-SW and SW-CMM [6] [9].

We can mention as the most important conclusions of this work:

• A historical base with the estimates of the company that should be implemented, in
order to serve as grounding in the calibrations, in the factors of productivity for
future projects;

• The inexistence of universal standards to the construction of use cases makes it
difficult to compare projects from different companies. There’s no guarantee that the
TUCP’s are going to be measuring the same thing, if the criteria used to build the use
cases are very diversified;

• The use case elaboration should be described in an adequate detailed level, in order
to the estimate based on UCP to be efficient.

 35

REFERENCES

 [1] Karner, G. Metrics for Objectory. Diploma thesis, University of Linköping, Sweden.

No. LiTH-IDA-Ex-9344:21. December 1993.

 [2] Ribu, K. Estimating Object-Oriented Software Projects with Use Cases. Masters
thesis, University of Oslo. November 2001.

 [3] Kruchten, Philippe. The Rational Unified Process - An Introduction. 2nd ed. New

Jersey: Addison-Wesley, 2000.

 [4] Rational Software Corporation, Rational Unified Process, version 2001.3, CD-ROM,

Rational Software, Cupertino, Calif.:2001.

 [5] Schneider, G., Winters, J. Applying Use Case: A Practical Guide. 2nd ed. Addison-

Wesley, 2001. ISBN 0-201-70853-1.

 [6] Paulk, M., Weber, C. The Capability Maturity Model: Guidelines for Improving
the Software Process, 17th ed. Addison-Wesley, 2003. ISBN 0-201-54664-7.

 [7] Symons, C.R. Software Sizing and Estimating, MKII FPA. Jonhn Wiley and Sons,
1991.

 [8] Anda, B. Comparing Effort estimates Based on Use Case Points with Expert

Estimates, 4th International Conference, Toronto, Canada, October 1-5, 2001, LNCS
218, 2001.

 [9] SEI, 2002. CMMISM for Systems Engineering/Software Engineering ,Version 1.1-

CMU/SEI-2002-TR-012. Disponível em: http://www.sei.cmu.edu/
publications/documents/02.reports/02tr002.html. Acessado em
27/04/2004.

[10] Boehm, B., Software Cost Estimation with COCOMO II. Prentice Hall, New

Jersey, 2000.

[11] ISO, 2003. ISO/IEC 15504: Information Technology – Process Assessment, Part 1

to Part 5.

[12] Object Management Group, Inc. OMG Unified Modeling Language Specification,

Version 1.5 formal/03-03-01, March 2003. Disponível em:
http://www.omg.org.

 36

Software Assets Management – Modeling Issues
and Proposed Models

David Déry

CGI
1350, boul. René-Lévesque Ouest,Montréal, Canada H3G 1T4

Tel: +1 (514) 415-3000x4946
david.dery@cgi.com

Alain Abran

École de Technologie Supérieure - ETS
1100 Notre-Dame Ouest, Montréal, Canada H3C 1K3

Tel: +1 (514) 396-8632
aabran@ele.etsmtl.ca

Abstract. Too often, software intensive organizations can only track the initial
assignment of a software to a resource but not necessarily thereafter. In such
organizations, Software Asset Management (SAM) is often a reactive process. The
lack of defined software asset management processes limits the ability of several
organizations to manage the whereabouts of software once it is assigned to a
resource. This puts the organization in a passive role so it is important to add
planning and control processes, including for the retirement of software. To
improve management of assets, the IT industry can learn from other disciplines, in
particular from public works engineering. Through active assets management an
organization will be better positioned to make choices to optimize and tune its
Software Asset portfolio while complying with corporate policies.

1 Introduction

In several software intensive organizations (SIO), a purchasing group handles software
purchase orders. However, the lack of defined software asset management processes limits
their ability to manage the software whereabouts. Too often, such organizations can only track
the initial assignment of a software to a resource but not necessarily thereafter. In such
organizations, Software Asset Management (SAM) is often a reactive (e.g. passive) process
(see Figure 1): the purchasing group assigns the software to a resource (i.e. an individual, an
organizational group or a server) and subsequently, on the basis of a pre-set contractual
period, an invoice for a maintenance fee is received from a licensor/vendor and is paid. In
such a reactive mode, decisions are taken one at a time, and the whole set of software assets is
not managed from an integrated perspective: as a consequence, assets cannot be optimized
and related maintenance costs cannot be minimized.

 37

Software
Acquisition

Assign to a
resource

License fees
Period

Adjust as necessary

Pay Software
fee

S
of

tw
ar

e V
en

do
r

in
vo

ic
e

Figure 3: Reactive asset management process

This example illustrates the need to work towards a better understanding of the software asset
management process and a better identification of the steps and external forces that influence
these assets. Section 2 presents two related works: one found in the IS/IT industry and another
found in public works engineering. In section 3, the methodology which is used to combine
the two related works is described and explained. Section 4 presents the outcome of the
combination between these two related works and finally, section 5 summaries the findings of
this paper.

2 Related work

2.1 Information technology

Industry groups have proposed several best practice models and processes. In the field of
information technology (IT), a set of best practices can be found in ITIL (Information
Technology Infrastructure Library) [1]. ITIL is based on the collective experience of
commercial and governmental practitioners worldwide and provides best practices for IT
service management. It originated in the UK at the OGC (Office of Government Commerce)
to address a high turnover of consultants. The OGC’s motivation was to leverage the
knowledge gathered by the outside consultants and capture this knowledge under the umbrella
of a set of best practices.

This ITIL initiative is divided into two sections: Service Support and Service Development.
The Service Support section identifies 5 processes and 1 service: Configuration Management,
Change Management, Incident Management, Problem Management and Release Management
processes and the service desk. On the other hand, the Service Development section identifies
5 other processes; Service Level Management, Financial Management for IT Services,
Capacity Management, IT Service Continuity Management and Availability Management.

ITIL does not include asset management as a core process even though the need to interface
with asset management is recognized. It is noted only that some organizations start with asset
management before moving on to configuration management. This is because configuration
management is considered to be a more complex process since the relation between assets are
stored (i.e. technological dependencies), while asset management does not necessarily store
this information.

 38

Furthermore, in ITIL, the assignment process of software to a specific resource (Fig. 1) is part
of release management with information about the software stored in the Definitive Software
Library (DSL). This DSL, which, if properly maintained can be a good source of information
for asset management, contains all the software (and versions of the software) in use.. In
summary, ITIL does not identify asset management per se as a core process, the asset
management process is not described and its components are not described anywhere in this
best practices compendium.

2.2 Other disciplines

Other disciplines, such as public works engineering, have developed mature processes that are
built exclusively for the management of assets. Some of these processes have become
international standards such as the IIMM (International Infrastructure Management Manual)
[2] which puts significant emphasis on assets planning.

At the heart of the IIMM is the Lifecycle Management Plan (LMP) that must provide
background data on a variety of aspects such as Asset Capacity/Performance, Asset
Condition, Asset Valuations and Historical Data.

Since IIMM focuses on planning, it includes several detailed plans: a Routine Maintenance
Plan, a Renewal/Replacement Plan and a Disposal Plan. The Routine Maintenance Plan refers
to the regular ongoing day-to-day work necessary to keep assets operating, including
instances where parts of the asset fail and need immediate repair to make the asset operational
again. The Renewal/Replacement Plan reminds the user that actions should be taken to ensure
that the asset is either renewed (i.e. contractual) or replaced according to a pre-determined
plan or agreement. The Replacement Plan is also required because if the asset is not renewed
or needs to be replaced, a disposal plan should exist to explain how the asset will be disposed
of.

3 Methodology used to build the model

As illustrated in figure 1, simply purchasing software and paying maintenance fees as bills are
received is a very passive and reactive mode.

To be more proactive, planning is required. The IIMM applies these principles very well and
it would make sense to apply these same principles to the management of software assets.

Figure 2 depicts (in the column on the left) what happens in the case of software purchasing:
the software is ordered, allocated, recorded and a maintenance bill is received. This passive
mode of operation has no planning and no control mechanism.

On the other hand, the IIMM spends a significant amount of time focusing on planning and
outlining the importance of a good plan. But a plan is not of much use if it is not updated as
required. This implies that there is a control mechanism to monitor and report on differences
when they occur. This is illustrated in the right side of Figure 4, under “Engineering”. The
differences identified by the control process help adjust the plan to better meet the corporate
SAM requirements.

 39

Passive
Purchasing Engineering

Order
Software

Pay
Maintenance

fee

Monitor
usage

Evaluate
need

Adjust
Plan

Plan
Purchase

Allocate
Software

Record in
Asset

repository

+ / -

Planning

Control

Figure 4: Adding planning and control to software purchasing

Adding planning and control to a passive process is only one element of the model. In the
IIMM model, choices have to be made before adjusting the plan. These choices affect the very
nature of the asset; to be operational, the asset must not only be maintained or upgraded but it
may also need to be completely removed from the company’s asset portfolio. Retiring
software assets in a planned and controlled manner is not well documented in the IT industry
whereas such a retirement process is quite common in public works engineering. To improve
its SAM, the IS/IT industry can learn from public works engineering on how to plan for
software retirement.

4 Proposed model

To provide adequate management of software assets, it is necessary that all relevant processes
be included. Our proposed improved model of software asset management has been
constructed by combining the strengths of both ITIL and IIMM frameworks. This approach
has lead to the identification of a 5 step approach to SAM (see also Figure 5):

• Step 1: Corporate planning

• Step 2: Planning and purchasing of software

• Step 3: Assignment and monitoring

• Step 4: Reconciling needs and asset holdings

• Step 5: Asset portfolio tuning and optimizing

 40

Asset Purchase
Plan

Unplanned Asset
purchases

Sof tware /
License Order
Management

Resource
Assignment

Usage
Monitoring

Sof tware/
license renewal

Sof tware
Upgrade

Sof tware
Retirement

Inv estigate
Options

Financial
Management

Asset
Repository

Serv ice Desk

Inv entory
Management

Business
Needs

Corporate
Requirements

Legislativ e
Requirements

Customer and Stakeholder
Expectations

End of sof tware
license agreement

Step 1: Corporate direction

Step 2: Plan and
Purchase

Step 3:
Assign and

Monitor

Step 4:
Reconciliate
needs Vs

current
assets

Step 5: Adjust

Figure 5: Software asset management (SAM) process

 41

Step 1: Corporate planning

Planning plays an important role in the asset management process as is highlighted in IIMM
[2]. It is important to decide upfront how much effort and budget will be assigned to asset
management. This is the responsibility of senior management and the outcome is usually a
tactical plan to help achieve the organization’s long term goals.

This tactical plan plays a key role in determining corporate SAM requirements. These
corporate requirements are also based on external input: it is important to take into account
customer expectations (such as expected level of service and expected revenues from these
services) as well as legislative requirements (such as financial and environmental constraints).
This tactical plan, in addition to identifying how much to spend on software, will also specify
how much formalism and tracking will be necessary to maintain control on software
introduced and how it is to be used within the organization.

Step 2: Planning and Purchasing of Software

Guided by senior management input, an asset management plan is prepared to manage
software purchases. It will feed purchase order management and provide guidance as to the
type of software, the volume and the licensing scheme to buy.

In this planning process it is important to consider that in practice not all software purchases
will have been included in the high-level plan, nor be fully aligned with the tactical
orientations from senior management. Unplanned purchases may still be acquired in-between
planning cycles but, once identified, must become integrated within the next asset purchasing
plan.

Order management or purchasing is where the actual software purchase order takes place.
These purchases will have a financial impact not only because of the purchase price but also
because of the licensing costs which might include maintenance and upgrade costs. For this
reason, it is important to feed IT financial management with any new licenses and contracts
agreement with software vendors.

Financial Management as defined by ITIL [1] may include budgeting and IT accounting and
charging. It is also the finance department that determines the budgeting rules and monitors
and reports on the budget plans. It is therefore important to maintain alignment with the
financial management process to ensure that purchases adhere to financial directives and that
spending be kept under control.

Step 3: Assign and monitor

Once bought, the software is assigned to an owner-stakeholder: an individual or a corporate
entity. Currently, this initial assignment is usually well recorded. However, any subsequent
assignment to another individual or server may not be recorded. This explains how
organizations risk losing track of the software. This inability to keep track of software might
lead to unplanned overspending and at the end of the licensing period organizations then find
out that they still are paying for a software they did not know they still had and, in many
cases, that they might not be using anymore.
To minimize the risk of losing track of reassigned software, it is important to record any
movement of software, server and related individuals within organizations. This tracking
requires a formal asset repository where all information about the software, server and owner-

 42

stakeholder is recorded. This repository bears some resemblance to the DSL described in
Release Management of ITIL, but its content and level of detail must be aligned with
corporate requirements.

Knowing who has a specific software and where it resides is, however, only part of the
required information for SAM. Software vendors offer a variety of licensing schemes and
determining which one is the most appropriate is not easy. This is where monitoring how the
software is used can contribute and help make better decisions later on.

Furthermore, usage monitoring helps the service desk to determine the appropriate number of
support staff to be assigned and to validate that the purchased licensing scheme is appropriate.
Indeed, the service Desk as defined by ITIL is the single point of contact for customers and
for operational needs to resolve incidents. This means that the Service Desk is also aware of
software that causes the most problems and which ones are most requested for installment.

Step 4: Reconcile needs and assets holdings

Software licensing compliance is important but it should not be the only goal of software asset
management processes. It must also include cost control to ensure that the appropriate license
scheme is selected and is aligned with corporate objectives such as growth, flexibility and
security. This means that the appropriate combination of quantity, license scheme, is
purchased and maintained throughout the fiscal year with the right number of support people.

If software licensing compliance were the only goal, the organization might keep buying more
and more software in order to avoid paying penalties for potential breaches of contract. When
the organization is clearly buying too much to avoid non-compliance problems, the
organization is paying more than the optimal amount because it lacks the information to
determine the appropriate amount. To avoid this, software usage must be monitored and
compared to business needs. A snapshot of current software asset is obtained though
inventory management which can be conducted by monitoring the software used on a
network and by performing scans on the network’s computers to identify all software
residing on individual computers (of course, additional procedures must be planned for
computers which are not part of the scanned network). The list of software obtained through
inventory management should be compared and matched to those in the asset repository. If a
discrepancy is observed, corrective measures should be applied to reconcile the two views.

Aligning inventory management with the asset repository ensures that an organization knows
what software it owns, but it does not tell about the adequacy of the licensing scheme, nor
about the appropriate number of licenses required or even if the appropriate software is being
used. For instance, business needs can be identified from corporate requirements and by
analyzing what kind of calls the service desk receives for each software type. From this
exercise, the company may need to make adjustments to its existing software portfolio.

Step 5: Asset portfolio tuning and optimizing

Once an organization has identified its assets portfolio, the question is what choices are to be
made, and how to optimize and tune its Software Asset portfolio while complying with
corporate policies. The decision for each individual software will usually be one of three
major choices: keep the software (renew license), upgrade to a new version of the product or
simply remove/retire the software and stop paying licensing costs.

 43

Although there may be some variations, these three choices cover several cases. When a
software is deemed satisfactory or if no alternative is found, this software is often kept and the
licensing costs are renewed. If business needs or server requirements change, an upgrade is
required and a new licensing scheme is usually necessary. Such upgrades occur following
significant changes in requirements or business needs, and do not have to be with the same
vendor. Finally, the software may no longer be needed and in order to stop paying, licensing
fees must be retired. It is then particularly important to update the asset repository that, in
turn, feeds financial management which pays incoming bills. This last item is often
overlooked; when not properly managed organizations end up paying licensing fees for
software they do not use anymore.

5 Summary and next steps

To better understand and identify what influences asset management processes and enable
better software asset management, two related industry frameworks were investigated. By
combining two such standards, ITIL[1] and IIMM[2], an integrated model was designed to
include several enabling processes.

The next step includes validation of its content by experts who will verify completeness and
relevance. Once this validation step is completed, it will then be tested in an industrial
environment. This initial version of this asset management model is therefore subject to
change and adjustments as more research is carried out and lessons are learned.

This model also addresses a need formulated by the industry and that is being worked on by
ISO who is planning a Software Asset Management standard for 2006 [3].

References

[1] (OGC), "IT Infrastructure Library (ITIL)," 2001.
 (see http://www.ogc.gov.uk/index.asp?id=2261 for details.)

[2] (IPWEA), "International Infrastructure Management Manual," 2002.
 (see http://www.ipwea.org.au/ for details).

[3] (ISO/IEC), "Software Asset Management", TC JTC1/SC SC7/WG 21 WD 19770-1,

International Organization for Standardization - ISO (Geneva), www.jtc1-
sc7.com, Date: 2003-05-13 N006 ."

 44

Quality Assurance of the project-related
Software Development Process

Antje Riekehr

Otto-von-Guericke-University Magdeburg,
Fakultät Informatik, Institut für Verteilte Systeme,

Postfach 41 20, D-39016 Magdeburg,
riekehr@ivs.cs.uni-magdeburg.de

Andreas Schmietendorf

T-Systems International, Entwicklungszentrum Berlin,
Integration Services Wittestraße 30G, D-13476 Berlin,
andreas.schmietendorf@t-systems.com

Abstract. Benchmarks are widely used to verify the maturity of project organizations.
This paper shows our experiences with the implementation of a project related
assessment. The assessment was driven from the wish to receive more transparency
within an introduced project organization. We used as method for the evaluation our own
benchmark process. This benchmark based on the identification of the process maturity,
the realization of a strengths and weaknesses profile and the size measurement of the
whole implementation. Based on the size measurement we derived the project related
effort by the use of the COCOMO and Function Points method. Finally we compare the
effort estimation with the real effort.

1 Background and Motivation

The management and controlling of a complex software development project with several
distributed teams is a very hard job. For the successful development of a software solution
plays the quality of the underlying processes an important role. Quality aspects within the
software development process deals not only with the quality behaviour of the product itself
but also the qualities of all activities, that are necessary to the fulfilment of given
requirements. This activities must be integrated in the process of the quality assurance during
the whole time of the software development. [5] describes the integration of metrics in the
software development as the intelligence behind successful software management.

Our goal was to implement a quality assurance process for a large software development
project. This project deals with the implementation of a complex asset management solution.
During the first version of the project the management team start with a chaotic process. In
the first version it was important to reach a running system. Very often we can observe in
early projects that the requirements are to complex. From our point of view it is important to
find a pragmatic base.

o Identification of potential risks within the different project teams

o Effort estimation of specific development tasks

- requirements engineering

- design and implementation (divided in GUI and Kernel)

- test and integration

o Implementation of a lasting improvement process

o Improvement of the communication culture in the project

 45

The used benchmarking process and the interpretation of the results was carry out in
cooperation with Software Measurement Laboratory of Otto-von-Guericke University
Magdeburg and the Integration Services Group of the EZ Berlin/T-System International. [4]

2 Used evaluation process
The used evaluation process (benchmark) was developed on our own. In several projects, this
already was applied successfully (see also [7]). This benchmark process based on experiences
and also well established evaluation models. These evaluation models are the Capability
Maturity Model (CMM) to benchmark the development processes and the Constructive Cost
Model (CoCoMo, version II 2000) to measure the resources and the products as well as to
post estimate the used effort of the product lines. Furthermore we estimated Function Points
by the use of the backfire method. An other important part is the automatic source code
analysis by the use of a tool. (see also [1], [2] and [3])

The whole analysis of the project subdivided into the following areas, which were worked off
also in the following sequence.

1. Evaluation of the current situation in the project

- Evaluation of the project documentation

- Short questions to each members in the project

- Use of external expertises (suppliers and customers)

- Establishment of a goal driven procedure

2. Process assessment by the use of an adopted Capability Maturity Models (CMM)

- Preparation of a corresponding questionnaire

- Execution of structured interviews

- Preparation of the interview results

- Discussion of the reached results within a common workshops

3. Strengths and weaknesses analysis

- Derived from the results of the CMM related interviews

- Improvement potentials identify

- Definition of a measure catalogue

- Definition of measurable success criterions

4. Metric based analysis of the source code (e.g. LoC, Comments, used languages)

- Use of measurement tools like RSM (Resource Standards Metrics) or others

- Spot checks and estimations

- Conclusions of the quality of the system (e.g.: reusability, maintainability)

5. Effort estimation

- after the COCOMO II 2000 model

- after Function Points (backfire method)

- Comparison with the actual effort

- Derives the own productivity

 46

This here broadly described procedure, has to adjust for a concrete project in a suitable
manner. In order to be able to receive diverse aspects of the project with help of the
interviews, these should be prepared well. Results of the interview should cover general
system requirements, answers for the CMM-related questionnaire and input parameters for the
effort estimation. Furthermore it is important to discuss the expected goals of the benchmark
with the project stakeholders.

3 Reached results
Within this section, selected results of the Benchmarks should be introduced shortly. The
results refer to the initial application of the Benchmarks.
3.1 Evaluation of the current situation

Only by the knowledge of the actual condition of a project, possible measures can be
introduced in order to improve this condition. For the analysed project we used also check
lists to the investigation of the current state. These check lists contain statements about the
product, to the resources (staff, hard- and software), to the process and to the requirements of
the customers. Among other things following topics were taken into account within the first
analysis:

o Project related topics:

- Goals and content of the project: an asset management solution

- Used programming languages and technologies

GUI – ASP.net, C#, XML, Java Script
Business components – J2EE, Java, XML, SQL

- Degree of the automation: Model Driven Architecture approach

o Resource related topics:

- Organization and structure of the team:

Requirement engineering team
GUI development team
Business component development team
Test and integration team
Quality assurance team

- Tasks and skill of the staff

o Development process:

- Used process models: incremental and iterative

- Identification of new requirements: by the help of a change request procedure

o Requirement Engineering

- Functional requirements: use cases (order request, order information, …)

- Non-functional requirements: concurrent users

- Process- and system-related requirements: integration solution

 47

3.2 Process evaluation with CMM

Within the evaluated project we used an adopted question catalogue under consideration of
the CMM-level 2. Our own question catalogue covers the following main topics to reach the
CMM-level 2. We used the question catalogue within our 4 project teams.

o Management of the requirements (6 questions)

o Planning of the software project (7 questions)

o Supervision and tracking of the software project progress (7 questions)

o Supplier management, like the used frameworks and other products (8 questions)

o Software quality assurance (8 questions)

o Software configuration management (8 questions)

To the achievement of the CMM-level 2 all 44 questions must be answered positively as well
as with "yes". Figure 1 shows the results of the interviews with the 4 project teams.

0
20
40
60
80

100

P
ro

ce
nt

Dev I Dev II Req Test

Dev I 83,20 57,10 57,10 0,00 0,00 37,50

Dev II 83,30 85,70 57,10 50,00 50,00 25,00

Req 100,00 85,70 85,70 87,50 87,50 50,00

Test 50,00 28,60 57,10 0,00 0,00 73,50

Requirement
management

Project
planning

Progress
management

Supplier
management

Quality
assurance

Conf ig.
management

Figure 6: Proportionally with "yes" answered questions

Interesting is the very different assessment of the process maturity through the several teams.
Absolutely typically, the very critical view is at the process maturity of the test team.

Requirements;
81,80%

Test &
Integration;

27,30%

Development I;
36,40%

Development II;
56,80%

 48

Figure 7: Overall fulfilment degree after CMM (level 2)

Under consideration of the interview results it is possible to derive a specific strengths and
weakness profile for the evaluated project. Furthermore this profile allows the definition of
activities to improve the process maturity under the consideration of project goals.
3.3 Strengths and weaknesses analysis

Within the executed interviews, the following strengths and weaknesses of the project could
be identified. These were discussed within a workshop with all participants of the interviews.
In the result, concrete measures (e.g.: procedure to deal with change requests) for the
improvement of the process kindliness could be defined.

Identified strengths of the project (at the time of analysis):

o Estimations for the project planning are executed

o Tracking of the project through comparisons of the actual results and estimations

o Well defined project structure - responsibilities are clearly defined

o Activities of the configuration management are planed und executed

o Supplier management follows a selection procedure

o The project staff became well trained in accordance with her activities

o Correction measures are executed

o Results of quality evaluations are communicated to the project participant.

Identified weaknesses of the project:

o Difficult and partially unclear handling of change requests

o No periodic audits of the configuration management's contents

o Alterations of tasks to the sub contractors imply high risks

o Incomplete documentation of the project planning
3.4 Metrics based analysis of the source code

Another important part of the assessment was a metrics based analysis of the source code.
These measurements offer an insight into the project to the management. In the following one,
some selected measurements should be introduced.

 49

Overview LOC

105150

618694

0

100000

200000

300000

400000

500000

600000

700000

LOC

GUI (whole)
Kernel (whole)

Figure 8: Overview about the whole project size in LoC

Overview - number of files

391

2234

0

500

1000

1500

2000

2500

Number of files

GUI (whole)
Kernel (whole)

Figure 9: Number of used files within the project

Summarizing could be won the following information about the analysis of the source code.

o The share of generated commentaries within the GUI-implementation is 25 percent and
within the KERNEL-implementation 22 percent.

o The used programming languages within the GUI-implementation covers:

- C# - 74014 LoC (from it automatic generated 21689 LoC)

- ASP.Net – 8340 LoC

- XML – 3458 LoC

- CSS – 784 LoC

- JScript – 527 LoC

- VBScript – 9 LoC

 50

- WSDL – 18018 (from it automatic generated 18018 LoC)

o The used programming languages within the GUI-implementation covers:

- Java – 559044 LoC (from it automatic generated 533710 LoC)

- XML – 39336 LoC

- XSL – 3756 LoC

- SQL – 16558 LoC (from it automatic generated 918 LoC)

o The KERNEL-system contains following components:

- Activitivmanagement

16497 LoC, 12550 eLoC, 8419 ILoC, 16531 comment, 40241 lines

- Delegate

6880 LoC, 5755 eLoC, 2947 ILoC, 1145 comment, 9120 lines

- Exception

25 LoC, 17 eLoC, 12 ILoC, 111 comment, 166 lines

- ProvisioningSystem

14424 LoC, 10506 eLoC, 6788 ILoC, 6068 comment, 22717 lines

- Root

655 LoC, 577 eLoC, 538 ILoC, 792 comment, 2201 lines

- Staffmanagement

5545 LoC, 3970 eLoC, 2900 ILoC, 7260 comment, 15790 lines

- Stockmanagement

14319 LoC, 10874 eLoC, 7448 ILoC, 19375 comment, 41062 lines

- Taskmanagement

2633 LoC, 2105 eLoC, 1465 ILoC, 2681 comment, 6633 lines

- xCBL

168708 LoC, 121434 eLoC, 91793 ILoC, 179479 comment, 398799 lines

- xCBL Validation

75670 LoC, 61211 eLoC, 39407 ILoC, 20246 comment, 106582 lines
3.5 Effort estimation

The development effort were estimated with help of the COCOMO II 2000 (Constructive
Cost Model) model. The COCOMO II 2000 model supports a fast and coarse estimation of
the accruing efforts and if necessary the costs. The more exactly the result of the estimation
should be, the earlier, in the development process, this should be executed. The result can be
adjusted by the use of 22 influence sizes, 17 cost drivers and 5 scale factors. These required
influence sizes were identified within the interviews. (see also [2])

 51

Figure 10: Used tool to the calculation (Source: QuantiMetrics)

Within the examined project, we have to consider a very high share of automatically
generated source code. For the expenditure after-estimation the Excel-Tool
"COCOMO_Calculator" was used. (Source: QuantiMetrics Ltd.). This allows the calculation
of the required persons months, the calculation of the development time period and the
number of required developers. The "COCOMO_Calculator" requires only the LOC, the scale
factors and the cost driver as input parameters in order to calculate the wished efforts. The
representation of the results took place in diagrams and tables. The estimated values were
compared afterwards with the values of the real project and appraised.

For the comparison the number of developers and the time for the development are important
information. All calculations of the project effort considers a fixed software version, therefore
it was possible to compare the different implementations. The information about the real
effort of the project were analyzed during the interviews with the project staff. Therefore we
can examine that the time for development was 7 month. For the development of the user
interface (GUI), 3 co-workers were appointed and for the KERNEL implementation 8 co-
workers were appointed on average. Since the results of the COCOMO-calculation differed
strongly from the reality, another after-estimation method were executed by means of
Function Points. The Function Points were derived through the application of the backfire
method. The backfire method based on the use of the „Gearing Factor“ and allows the
calculation of Function Points (FP) derived from measured LoC [6]. By the help of estimated
functions points it is possible to read the effort from available function point graphs.

In the following figures, the results of the COCOMO calculation are graphically represented:

 52

effort in person month (PM)

27
1,

1

21
6,

9

17
3,

5

11
4,

4

14
2,

9 17
8,

7

0

50

100

150

200

250

300

optimistic neutral pessimistic

GUI (1)
Kernel (1)

Figure 11: COCOMO - Calculated effort in PM

time to development (TDEV) in month

18

17

15 16

14

14

0

2

4

6

8

10

12

14

16

18

20

optimistic neutral pessimistic

GUI (1)

Kernel (1)

Figure 12: COCOMO - Calculated development time

 53

numer of developers

15

13

11

12

10

8

0

2

4

6

8

10

12

14

16

optimistic neutral pessimistic

GUI (1)
Kernel (1)

Figure 13: COCOMO - Calculated number of needed developers

4 Conclusions
It is recognizable that the results of the used estimation methods (COCOMO and also
Function Points) differ strongly from the real effort. The real effort for the implementation in
the project is less than the results calculated by COCOMO or Function Points. Also the real
development time is shorter than the results calculated by COCOMO or Function Points. This
result allows the conclusion that the productivity of the individual programmers significantly
higher was than in other projects.

0

2

4

6

8

10

12

14

16

18

time - FP time - COCOMO time - real

tim
e

in
 m

on
th

Kernel
GUI

Figure 14: Comparison of the development time (FP/COCOMO/real)

 54

0

2

4

6

8

10

12

14

programmers - FP programmers -
COCOMO

programmers - IST

nu
m

be
r o

f p
ro

gr
am

m
er

s

Kernel
GUI

Figure 15: Comparison of the needed programmers (FP/COCOMO/real)

The development process of the project can be characterised as ad hoc. The costing, quality
and development time is therefore unpredictable. From the negatively answered questions, the
weak points of the process were determined.

The most important results of the assessment can be summarized as follows:

o Recognizes of potential project risks

o Prepares another view on the project

o Stimulates a discussion and communication between the project-teams

o Experiences with project sizes and resultant efforts

o Baseline for the process improvement

The described method is very useful for a project assessment during a running project.
Furthermore it is recommended to realize an effort estimation at the beginning of the project
by the use of Function Points, but not the here used backfire method. Original Function Points
considers the required functionalities for the size measurement and not technical
measurements like lines of code. In this way, the very high degree of automatically generated
source code can not influence the result of effort estimation.

 55

Old process

New Process

Assessments Evaluation

Strengths and
weaknesses profile

Action catalog of the CMM
TSI-PM-Book

Improvement

Goals:
Quality

Productivity

Development time

Costs

Controlling

Procedure

Riscs

?

Figure 16: Summary of the chosen procedure

Next steps include also the repeated use of the evaluation model, an expansion of the
assessment for other project types (e.g. integration project, introduction project) and the
publication of the analyses within a web based portal.

References
[1] Ahern, D. M., Clouse, A., Turner, R.: CMMI Distilled – A Practical Introduction to

Integrated Process Improvement. 2nd edn. Addison-Wesley, Boston (2003)

[2] Boehm, B. W. et al: Software Cost Estimation with COCOMO II. Prentice Hall Inc.
(2000)

[3] Reiner Dumke, „Software Engineering“, 3. Auflage, Vieweg Verlag Braun-
schweig/Wiesbaden (2001)

[4] Ebert, C.; Dumke, R.; Bundschuh, M.; Schmietendorf, A.: Best Practices in Software
Measurement - How to use metrics to improve project and process performance,
Springer, Berlin Heidelberg New York (2004)

[5] Putnam, L.H.; Myers, W.: Five Core Metrics – The Intelligence behind successful
software management, Dorset House Publishing, NY/USA (2003)

[6] QSM. http://www.qsm.com/FPGearing.html. downloaded 21.07.2004

[7] Reitz, D.; Dumke, R.; Schmietendorf, A.: Metrics based comparison of project lines in
the industrial software development, in Dumke, R.; Abran, A. (Hrsg.): Investigations in
Software Measurement S. 131-143, Shaker-Verlag, (2003)

 56

An approach to a data oriented size measurement
in Software-Product-Families

Sebastian Kiebusch
Universität Leipzig

Wirtschaftswissenschaftliche Fakultät
Institut für Software- und Systementwicklung

Professur für Wirtschaftsinformatik, insbes. Informationsmanagement
Marschnerstraße 31, D-04109 Leipzig

kiebusch@wifa.uni-leipzig.de

Summary. This elaboration describes the adaptation of the first three Function-Point
steps as a partial approach to estimate the effort in Software-Product-Families. The
examination is based on general Product-Family requirements to a proceeding of cost
estimation with a view to generative programming.

Introduction

A SPF is a “… collection of products that share common requirements, features, architectural
concepts, and code, typically in the form of software components” [1]. This modern software
engineering paradigm is a promising solution for the current requirements of software
products, consisting of high functionality and flexibility in combination with low costs.

The requirement of a holistic realization of process focused commonalities and variabilities is
based on cross branch workflows of organizations in a dynamic and global market [cf. 2].
Therefore a lack of combination between the synergetic areas of Workflow-Management and
SPF is illustrated. In addition, models to estimate the effort for projects and products in
process oriented SPF are necessary.

Function-Point oriented methods for effort estimation are based on an indirect cost evaluation
by accessing the size of a software system. The starting point of this size measurement is the
requirement specification which is translated into function points. Empirical data of process
directed SPF do not exist. In consequence the abstract proceeding of size measurement by the
International Function Point User Group (IFPUG) as you can see in [3] is suitable for an
accommodation to the paradigm of SPF oriented software engineering.

This new engineering paradigm in combination with generative programming and domain
specific languages embrace fundamentally shifted cost structures. As a result there are
different requirements to a cost estimation model for process focused SPF:

1. Type of count: You have to differ between effort estimation for a product or project
in a SPF which is to develop or to modify or to reuse.

2. Time of estimation: Early forecasting because the majority of financial outlay fall on
to the initial steps like domain scoping, analysis and modeling.

3. Information keystones: The useable data base is restricted to the declarations in the
requirements specifications and to the facts from the Scoping-Product-Map.

4. Commonalities: The reuse of components in every product lead to a decrease of
development costs despite increased demands of quality and compatibility.

 57

5. Variabilities: Product individual elements increase the total effort for generating
variants of applications in a SPF.

6. Process complexity: Variant dependant aspect of effort within the framework of
construction and maintenance in process focused SPF.

7. Quality: You need to consider the outlay for realizing the necessary requirements of
quality by the quality model which is standardized in [4].

8. Structure: Explicit separation between the efforts of products, projects and SPF for a
well structured cost management.

The identified requirements put a strong request at a meta method for effort estimation in
process oriented SPF. Furthermore the described requirements are the partial principles for the
following adaptation of the first three steps from the Function-Point-Analysis.

Type of count

In relation to the first requirement you have to distinguish between the following types of
counts at the beginning of the meta method:

• Development project count: Delivered functionalities which are ready for use by the
consumer after the development of a SPF and the generation of a product variant.

• Reuse project count: Functional size of a product which is generated out of an
existing SPF. In addition you have to differentiate between complete (SPF
utilization) and partial (SPF modification) functional covering of a variant by the
SPF.

• Application count: Measure of the actual provided functionality which is directly
attached with the installed product and initialized after the project.

Figure 1: Types of counts for SPF and its relationships
Figure 1 graphically describes these relationships of the types of counts for SPF based on
three alternative projects. All scenarios of the illustration support the consideration of
additional functionality that was not specified in the requirements but identified during
development (scope creep). Furthermore the construction of an empirical keystone is
facilitated by repeated counting and the documentation of this act. Within the framework of

 58

an entire functional covering between the product and the SPF you can exclude the
phenomenon of the scope creep. For that reason the execution of a second calculation is in
project C obsolete and therefore coloured grey in figure 1.

Counting scope and application boundaries

With dependence on [3] you have to treat the counting scope and the application boundary
differently like it is described in the following items [cf. 5]:

• Application boundary: Distinction among internal and external functionalities as well
as demarcation of the software which then is measured.

• Counting scope: Application independent border which can be embrace more or less
functionality as a single software program.

Figure 2: Counting scope and boundaries of the SPF

In consideration of the eight requirement a distinction between the counting scope of the SPF
and the generated product is necessary like shown in figure 2.

An additional distinction is based on the fourth and fifth requirement and is situated in the
SPF as well as in the single product. Correspondingly you have to differentiate between
commonalities and variabilities by virtue of unequal effort outcomes. Furthermore there is a
need to assign the variabilities to the appropriate product variants of the considered SPF.
Count data functions

In addition to the locality it is important to regard the reuse of the counted data function
because of the fourth and fifth identified requirement. According to table 1 there are four data
functions to measure projects and products in SPF.

 59

Table 1: Data functions to measure the size of SPF

The typification in table 1 is based on the following assumptions:

• External maintained files are referenced through internal interfaces.

• Contemplation of logical coherent data from the perspective of the customer.

The traditional Function-Point-Analysis includes a general accepted and historical grown
method to determine the functional complexity of data assets. A detailed description of the
captured IFPUG- complexity identification is explained in [3].

The following transformation of the DVE and DVI rely basically on the origin conversion
factors of the Function-Point-Analysis. The reason for this is that an equal implementation
effort between variabilities and traditional developed components is assumed. These
individual components are characterized by a reuse in reliance on their product independent
implementation frequency (IH, germ. Implementierungshäufigkeit).
Within the framework of keeping the high requirements of quality and modular interfaces for
a generic component implementation, the DGE and DGI are especially critically. Therefore
the complexity dependent conversion factors for commonalities in SPF are higher than their
pendants for the transformation of variabilities.

There is a need to embrace the reuse of DGE and DGI in every generated product of a SPF.
The absolute amount of effort decrease behaves itself proportionate to the number of
generated products (PA, germ. Produktanzahl) in a SPF.

Complexity dependent correction factors for variabilities (KV, germ. Korrekturfaktor
Variabilität) and commonalities (KG, germ. Korrekturfaktor Gemeinsamkeit) supplement the

 60

conversion factors. They enable the consideration of historical experiences and influences of a
SPF orientated development. Components with a high degree of complexity profit above
average from the visual support of domain specific languages and code generation.
Consequently the KV-/ KG-Values for high complex components in a SPF are lower than the
correction factors for less complex components.

Finally for a definite differentiation of four data functions in three complexity mouldings, you
have to enlarge the original IFPUG- conversion factors by two new values. Furthermore it is
necessary to reflect the authentic conversion factors {5; 7; 10; 15} in [3] as a sequence of
numbers by the following linear independent, cubic function:

By utilization of this third degree function it is possible to calculate 23 and 35 as additional
conversion factors. At this point it is possible to measure the size of variabilities in units of
unadjusted Process-Family-Points (PFP)s by using the next function:

In addition the following formula determines the unadjusted PFP for commonalities:

The final outcomes of the explained examinations regarding data functions in SPF are
summarized in table 2. Here you see twelve transformation quotients which take account of
historical experiences (KV/ KG), reuse (IH/ PA) and complexity (low/ medium/ high) as well
as locality (external/ internal) of data functions in a SPF.

 61

Table 2: Transforming complexity weighted data functions

For a hypothetical, high complex DGI which is part of a SPF consisting of four products and
characterized via an empirical KG of 8/10 you will measure seven unadjusted PFP. The next
equation describes the calculation for this theoretical example:

Conclusion and outlook

The explained method, referring the first three Function-Point steps, realizes an unadjusted,
data oriented size measurement of product variants in SPF.

Figure 3 illustrates the entire PFP concept to estimate the effort for process oriented SPF in
multiple domains. The research work for every dark grey coloured component is published in
this article. Each module with a light grey emphasis is also concluded in terms of
investigations for the present moment [cf. 6]. The derivation of a micro analysis for technical
domains is under development and will be supplemented by the other white sections which
are focused in future scientific exertions.

 62

Figure 3: The PFP approach to estimate the effort in process oriented SPF

Necessity of additional research exists in terms of regarding generalized aspects of ISO/ IEC
14143 and different features of methods that are derived from the original Function-Point-
Analysis.1 At this stage the development of the approach for effort estimation in process
focused SPF could result in a developer perspective and the consideration of characteristics
from real time applications.

The total absence of empirical data is the main problem in further activities of investigation.
A hypothetical SPF derived from the domain of automotive will support the solving of this
difficult situation. In addition to this attunement the derivation of a regression function is
required to estimate the effort of products and projects in process oriented SPF.

In the end the final effort estimation system must cover all the identified requirements of
process focused SPF as explained in chapter one of this paper.

References

[1] Riva, C., Del Rosso, C. Experience with Software Product Family Evolution. In:

Proceedings of the sixth International Workshop on Principles of Software Evolution
(IWPSE’03), Helsinki, September 2003.

[2] Scheer, A., W. Wirtschaftsinformatik: Referenzmodelle für industrielle

Geschäftsprozesse. 7. edition, Berlin 1997.

[3 The International Function Point Users Group (Ed.). Function Point Counting Practices

Manual: Release 4.2, Clarkston 2004.

[4] International Organization For Standardization/ International Electrotechnical

Commission (Ed.) Software engineering – Product quality – Part 1: Quality model. ISO/
IEC 9126:2001(E), Geneva 2001.

[5] Bundschuh, M., Fabry, A. Aufwandschätzung von IT-Projekten. 2. edition, mitp-

Verlag, Bonn 2004.

1 An intensive investigation and partial adoption of the COSMIC Full Function Point method
is planned as well as a narrow study of the following approaches: Mark II Function-Point-
Analysis, NESMA Functional Size Measurement, Function Bang, (SPR-) Feature Points, 3-D
Function Points, Data Points, Object Points and Widget Points.

 63

[6] Franczyk, B., Kiebusch, S., Werner, A. Stakeholderanalyse im Scoping- Prozess sowie
Metriken der Umfangsmessung von prozessorientierten Softwareproduktfamilien der
eBusiness-Domäne. PESOA- Report No. 08/ 2004, Universität Leipzig, October 2004,
to be published by www.pesoa.org.

 64

SOFTWARE ENGINEERING ONTOLOGY: A DEVELOPMENT
METHODOLOGY

Olavo Mendes

DECOM/CCHLA/UFPB
Federal University at Paraiba – Brazil

PhD Student Cognitive Informatics
Quebec University at Montreal - UQAM

olavomendes@hotmail.com

Alain Abran

École de Technologie Supérieure - ETS
1100 Notre-Dame Ouest, H3C 1K3 Montréal Québec , Canada,

aabran@ele.etsmtl.ca

Keywords: SWEBOK, Software Engineering Body of Knowledge, Ontology, Ontology
development, Ontology methodologies, SWEBOK Ontology

Introduction

According to Gruber’s definition an ontology [1] is “a formal specification of a
conceptualization”. A conceptualisation being a simplified, abstract way of perceiving a
segment of the world (a piece of reality), for which we agree to recognize the existence of a
set of objects and their interrelations, as well as the terms we use to refer to them and their
agreed meanings and properties.

Thus, ontologies represent a consensual, shared description of the pertinent objects considered
as existing in a certain domain of knowledge (the domain of discourse). They constitute a
special kind of software artefact conveying a certain view of the world (conceptualization),
specifically designed with the purpose of explicitly expressing the intended meaning of a set
of agreed existing objects.

Ontologies could play an important role in Software Engineering, as they do in other
disciplines, where they: 1) provide a source of precisely defined terms that can be
communicated across people, organisations and applications (information systems or
intelligent agents); 2) offer a consensual shared understanding concerning the domain of
discourse; 3) to render explicit all hidden assumptions concerning the objects pertaining to a
certain domain of knowledge [2].

Despite some initial efforts to develop partial (sub domain) ontologies [3] [4] [5] [6], as a
field of knowledge, Software Engineering still does not have a comprehensive detailed
ontology which describes the concepts that domain experts agree upon, as well as their terms,
definitions and meanings. Such ontology would also need to look at the more pertinent
interrelations where concepts participate in the creation of the semantic network in which
they are inserted.

The development of a “software engineering domain ontology” will allow us to: 1) share and
reuse all knowledge accumulated until now in the Software Engineering field; 2) open news
avenues to automatic interpretation of this knowledge, using information systems or intelligent
software agents.

 65

2 The SWEBOK Project

The SWEBOK project - Software Engineering Body of Knowledge [7] [8], is the result of a
collaborative effort between the IEEE Computer Society and Université du Québec (École de
Technologie Supérieure and UQAM). Over the years, close to 500 reviewers from very
diverse domains including the industrial and academic fields, government agencies,
professional societies, international standard organisation, as well as research centers, have
been involved in the project, which has thus earned an international reputation in the software
engineering field.

The resulting SWEBOK Guide is the result of great effort of declarative and procedural
knowledge mining, acquisition and structuring that was, until then, scattered in an myriad of
very diverse documents (scientific papers, congress proceedings, books, chapters, technical
reports, technical standards), and of background knowledge from field experts, consultants
and researchers.

The SWEBOK project team established the project with five objectives [7]:

1) To characterize the contents of the software engineering discipline; 2) To provide topical
access to the software engineering body of knowledge; 3) To promote a consistent view of
software engineering worldwide. 4) To clarify the place—and set the boundaries—of software
engineering with respect to other disciplines such as computer science, project management,
computer engineering, and mathematics; 5) To provide a foundation for curriculum
development and individual certification material.

The SWEBOK project allowed to build a consensus (using the Delphi technique) on: 1) the
knowledge areas consensually agreed to integrate the software engineering field; 2) the
knowledge content associated to each domain, as well as the related major references; 3) the
scientific disciplines participating in each area of knowledge.

Figure 1: Knowledge Areas of the Software Engineering Body of Knowledge [7] [8]

Figure 1: Knowledge Areas of the Software Engineering Body of Knowledge [7]
[8]

The resulting product of the SWEBOK project it is not the body of knowledge itself, but
rather a guide to it, permitting to gain consensus on the core subset of knowledge
characterizing the software engineering discipline [7] [8]. As a result, ten knowledge areas
have been identified as integrating the Software engineering field: KA.01 Software
requirements, KA.02 Software design, KA.03 Software construction, KA.04 Software testing,
KA.05 Software maintenance, KA.06 Software configuration management, KA.07 Software
engineering management, KA.08 Software engineering process, KA.09 Software engineering
tools and methods, KA.10 Software quality.

3 Project Goal
Our ultimate project goal is to build and validate an ontology for the Software engineering
field, using the knowledge already acquired, structured, validated and made available, by the

 66

SWEBOK project in the form of the SWEBOK Guide (last version Iron Man, 18.05.2004), as
well as other scientific knowledge sources such as technical standards (ISO and IEEE).

Besides the benefits already mentioned in section 1, the use of the “software engineering
ontology” which is a result of this project may also contribute to the development of
additional content validation by automatic cross-correlation validation (besides that which is
already done already done continuously by the SWEBOK review team) across the ten areas of
knowledge integrated in the SWEBOK Guide. This would ensure that all concepts and
definitions are used in a consistent fashion throughout all SWEBOK’s areas of knowledge.
An automatic validation would also be useful in the ISO/IEC JTC1/SC-7 SWG5 development
toward’s the harmonisation of all vocabulary used by the various working groups involved in
software engineering technical standards.

4 The Problem
The ontology development process involves many activities that can present a high level of
complexity, depending on the intended scope, size and level of detail of the ontology under
construction [9] [10] [11].

As a consequence, the construction of an ontology cannot be conducted in an improvised or
ad hoc fashion. The complexity of activities like conceptualisation, knowledge
structuring/ontologisation, ontology evaluation, etc., require the use of management
processes, in order to control cost, risks, schedules and to ensure that the artefacts produced
are of the intended quality..

An important number of methodologies are presently described in the literature. The problem
however is that 1) there is presently no consensus about the best practices to adopt concerning
the construction of an ontology; 2) these ontology development methodologies make use of
different construction methods, and frequently offer guidance to different portions of the
ontology development cycle; 3) finally, until now, the ontology development process did not
have any technical standard (official or de facto) to guide the development process, despite
major efforts in this direction.

Thus a number of questions remain open:

 Which ontology development methodology provides the best guidance to attaint our
established goal (the development of comprehensive software engineering ontology)?

 Which life-cycle model (cascade, incremental prototyping, evolutionary prototyping,
etc.) is best suited to the planned ontology development?

 Which are the inputs, outputs and activities to be performed in order to develop the
aimed ontology?

 Which are the key activities in the ontology development process?

 This paper presents some preliminary results aimed at answering the above stated questions.

5 Methodology
In order to attain the stated goal, the following activities have been developed in this study:

 A detailed literature review of the ontology development methodologies;

 Preliminary classification of construction methodologies according to the mode of
construction. Special emphasis was given to methodologies permitting ontology
construction from scratch (Figure 2);

 Analysis of the ISO/IEC 12207-95 software life-cycle standard;

 67

 Analysis of the surveyed methodologies from the ISO/IEC 12207-95 perspective;

 Preliminary identification of the differences and commonalities between the stated
ontology development activities and the ISO/IEC standard;

 Proposal of a conceptual framework to compare and analyse the ontology development
activities considered in the different methodologies;

 Additional literature reviews and refinement of the proposed conceptual framework;

 Identification and comparison of the ontology development activities proposed in the
methodologies surveyed;

 Identification of the most and least frequently mentioned activities;

 Identification of key activities,

Figure 2: Framework for ontology development methodologies

6 Results
Some of the results produced by this study include:

A total of forty-eight ontology development methodologies have been identified in the
literature review. Among these, fourteen corresponding to methodologies for the construction
from scratch (the most recent in 2003) and seven for ontology evaluation. These figures
indicate the dynamics in this area of research and the lack of an international standard or even
of a de facto standard.

Leading ontology development methodologies authors [9] [11] [12] [13], agree that the
process must be managed like any other software development project, in order to ensure that
cost, schedule, risk and quality of the produced artefacts always remain under control.
Nevertheless some project phases like Feasibility study, Project Planning, Tracking and
Control are mostly absent from the methodologies surveyed. Configuration management, and
quality assurance are also activities which are somehow absent. Despite being considered as
primary life-cycle processes in the software development life-cycle, activities such as
Deployment, Utilisation and Maintenance, are still very absent from the surveyed
methodologies.

The activities mostly frequently mentioned in the literature are: Ontology specification,
Conceptualisation, Ontologisation and Implementation. Authors consider these to be the three
key ontology development activities.

 68

It must be noted however, that there is a wide variation between methodologies concerning
the terms used to name these activities, and the boundaries which define them. Sometimes,
certain activities are absent or amalgamated with others.

Ontology evaluation and integration are examples of activities which share a large consensus
between the surveyed methodologies that must be present in the process of ontology
development.

Finally, among the fourteen ontology development methodologies surveyed, only two have a
sufficient degree of coverage and detailed guidelines for users (domain experts and
knowledge engineers/ontologists). We will adopt the guidance principles and activities
prescribed by these methodologies in our project to develop a comprehensive Software
Engineering ontology.

7 Towards a Software Engineering Ontology
We have chosen to implement the SWEBOK ontology using the OWL formalism due to its
knowledge representation capabilities (by defining classes, individuals, properties,
relationships in which these classes participates and axioms), and the possibility to reason
about these classes and individuals. Other major web ontology languages are: SHOE (1996),
XML (1996, 97), RDF (1997), OIL (late nineties), DAML – DARPA (2000), DAML+OIL
(2001). OWL, the Web Ontology Language is the more recently ontology language (2001,
Feb 2004).

At the root class of the ontology we find a concept, which corresponds to the SWEBOK
Guide. Under this class (subclass of owl: Thing, a class that contains all classes), we find the
main classes corresponding to the ten areas of knowledge that integrate the Guide, linked to
the root class by the hasParts property. Each area of knowledge represents the agreed
knowledge about the domain class, and can be successively exploded, revealing new classes
with growing levels of detail. An example of the SWEBOK ontology (presented in the OWL
formalism) is depicted at figure 3 (corresponding to the SWEBOK main level presented in
figure 1).

Figure 3: The SWEBOK Ontology main level

The classes (superclasses and subclasses) are organized in a structured hierarchy, using
generalization/specialisation links to produce a taxonomy. Other types of links are also
present (ex: contains, hasTopic, defines, and the inverse relations pertainsTo, isTopicOf,
isDefinitionOf, etc.), capturing the existing semantics conveyed by multiples concept
associations.
A zoom on the concept representing chapter 11 of the SWEBOK guide, reveals additional
concepts, representing the knowledge associated with this topic. Figure 4 presents the four

 69

subtopics which exist under the Software Quality topic. The C* links represents the hasParts
link with a many cardinality.

à

Figure 4: The Software Quality Ontology (a partial view, levels 1 and 2)

KA 11
Software Quality

Quality MeasurementSQA and V&V
Activities and Techniques

Software Quality Concepts SQA and V&V
Purpose and Planning

C* C* C* C*

Quality Measurement
 Cost and Value Sw dependability Special quality needs

ISO 9126 (1998)
Quality Description

Other

C* C* C* C* C*

 70

The above topic of the SWEBOK ontology represented in the OWL formalism is depicted in
figure 5. Topics contained in the area of Software Quality knowledge are shown in the left
side panel. The subtopics integrating the first element (Software quality concepts) are also
partially shown. The central widget (asserted conditions) are used to compose the axioms
(logical expressions) that describes (using a set of necessary conditions) and define (using
sets of necessary and sufficient conditions) the concepts that integrate the SWEBOK ontology.

With concept KA11 Software Quality as an example, some axioms are shown: the KA11
Software Quality is an area of Knowledge, part of the SWEBOK guide that has other areas
(mutually disjointed). The axioms describe also that Software Quality is composed of four
topics (Quality concepts, SQA and V&V Purpose and planning and SQA and V&V Activities
and techniques)

The OWL widget (at the right side) contains the properties (attributes and relationships,
describing the concept and linking this one to other concepts). As an example, three inherited
and modified (locally overriden) properties are shown: KA11 has authors, is part of the
SWEBOK guide and has topics (four already mentioned).

Figure 5: The Software Quality Ontology in OWL(a partial view), levels 1 and 2

8 Conclusion
This paper has presented the results of the first phase of a project aimed at developing a
comprehensive ontology of the Software Engineering field. The major contributions provided
by this study are: 1) Identification of the ontology development methodologies providing the
best guidance to attaint our established goal; 2) Identification of a life-cycle model best suited
to the planned ontology development; 3) Identification of main inputs, outputs and activities
to be performed in order to develop the aimed ontology; 4) Identification of key activities in
the ontology development process. Some preliminary results of the software quality ontology
are also presented and developed using the May 2001 version of the SWEBOK Guide.

 71

References

 [1] T.R. Gruber. Towards Principles for the Design of Ontologies Used for Knowledge
Sharing. In Roberto Poli Nicola Guarino, editor, International Workshop on Formal
Ontology, Padova, Italy, 1993. Technical report KSL-93-04, Knowledge Systems
Laboratory, Stanford University.

 [2] Gruninger, M., Lee, Jintae., Ontology Design and Applications, Communications of
the ACM, February 2002, 45 (2), 1-2, 2002.

 [3] C. Wille, A. Abran, J-M Desharnais, R. Dumke, The Quality concepts and sub
concepts in SWEBOK: An ontology challenge, in International Workshop on Software
Measurement (IWSM) , Montreal , 2003 , pp. 18,

 [4] C. Wille, R. Dumke, A. Abran, J-M, Desharnais, E-learning Infrastructure for
Software Engineering Education: Steps in Ontology Modeling for SWEBOK, in
Ontology Modeling for SWEBOK , in Software Measurement European Forum ,
Rome, Italy, 2004

 [5] A. Qasem, A prototype DAML+OIL Ontology IDE, International Semantic Web
Working Symposium, Stanford, 2001. http://www.semanticweb.org/
SWWS/program/position/soi-qasem.pdf

 [6] A. Qasem, The WOSE Portal, http://java-emporium.com/
projects/wose/index.html

 [7] P. Bourque, R.L. Dupuis, A. Abran, The Guide to the Software Engineering Body of
Knowledge, IEEE Software, November/December, 1999.

 [8] A. Abran, J. Moore, P. Bourque, R.L. Dupuis, L. Tripp, Guide to the Software
Engineering Body of Knowledge – SWEBOK, Trial Version 1.0, IEEE-Computer
Society Press, May 2001, URL: http://www.swebok.org

 [9] M. Uschold and Michael Gruninger, Ontologies; principles, Methods and
Applications, Knowledge Engineering Review, Vol 11, No 2, Jun 1996

 [10] D. Jones, T. Bench-Capon and P. Visser, Methodologies for Ontology Development,
Proceedings of the IJCAI-99 workshop on Ontologies and Problem-Solving Methods,
1999

 [11] R. Mizoguchi, Fundamental Aspects of Ontology Engineering, to appear in
Proceedings of the ACFAS Congress, Colloque d’Informatique Cognitive (C622),
Montréal, May 2004

 [12] M. Uschold, and M. King, Towards a Methodology for Building Ontologies.
Proceedings of IJCAI95's Workshop on Basic Ontological Issues in Knowledge
Sharing. 1995.

 [13] M. Fernandez, A. Gomez-Perez, and N. Juristo, METHONTOLOGY: From
Ontological Art to Ontological Engineering. In Workshop on Knowledge Engineering:
Spring Symposium Series

 72

Ebert, C.; Dumke, R.; Bundschuh, M.; Schmietendorf, A.:
Best Practices in Software Measurement

Springer Publ., 2004 (320 pages)
ISBN 3-540-20867-4

The software business is challenging enough without having to contend with recurring errors.
One way repeating errors can be avoided is through effective software measurement. In this
book is offered a practical guidance built upon insight and experience. The authors detail
knowledge and experiences about software measurement in an easily understood, hands-on
presentation and explain many current ISO standards.

Dumke, R.; Abran, A.: (Eds.):

Investigations in Software Measurement

Shaker Publ., Aachen, 2003 (326 pages)
ISBN 3-8322-1880-7

The book includes the proceedings of the 13th International Workshop on Software
Measurement (IWSM2003) held in Montreal in September, 2003, which constitute a
collection of theoretical studies in the field of software measurement and case reports on the
application of software metrics in companies and universities in Argentinia, Canada, Finland,
Germany, India, Italy, Japan and the Netherlands.

John C. Munson, PH.D.:
Software Engineering Measurement

Auerbach Publications, Boca Raton, Florida, 2003 (443 pages)
ISBN 0-8493-1503-4

The author describes how to manage software development measurement systems, how to build
software measurement tools and standards, and how to construct controlled experiments using
standardized measurement tools.

The book answers three fundamental questions. First, exactly how do you get the measurement data?
Second, how do you convert the data from the measurement process to information that you can use to
manage the software development process? Third, how do you manage all of the data?

By demonstrating how to develop simple experiments for the empirical validation of theoretical
research and showing how to convert measurement data into meaningful and valuable information,
Software Engineering Measurement will show you how to use your measurement information for
immediate, software process improvement.

Endres, A.; Rombach, D.:

A Handbook of Software and Systems Engineering

Pearson Education Limited, Essex, 2003 (327 pages)
ISBN 0-321-15420-7

 73

Computers are the most pervasive tools of modern society. Their development relies on
advanced methods of software and systems engineering. Based on repeated and consistent
observations, key lessons of these fields can now be formulated into rules or even laws,
providing initial building blocks towards a theoretical foundation that is essential for further
research, for teaching and for the practice of software development.

Intended as a handbook for students and professionals alike, this book is the first to identify
and discuss such rules and laws. They are largely independent of technologies, and thus form
a basis for the principles underlying software and system engineering. Software and system
engineers should be aware of this proven body of knowledge, to ensure professionalism and
due diligence in their work.

The book is structured around the software development lifecycle. It begins with requirements
definition and goes on to maintenance and withdrawal. In different process models, these
tasks have different importance or are applied in a different sequence, or even cyclically.

Büren, G.; Bundschuh, M.; Dumke, R.: (Eds.):

Software-Messung in der Praxis

Shaker Publ., Aachen, 2003 (169 pages)
ISBN 3-8322-2146-8

The book includes the proceedings of the DASMA Metric Conference MetriKon2003 held in
Ulm in November, 2003, which constitute a collection of theoretical studies in the field of
software measurement and case reports on the application of software metrics in companies
and universities.

Pandian, C. R.:

Software Metrics – A Guide to Planning, Analysis, and Application

CRC Press Company, Boca Raton, 2004 (286 pages)
ISBN 0-8493-1661-8

The book simplifies software measurement und explains its value as a pragmatic tool for
management. Ideas and techniques presented in this book are derived from best practices.
Some of the keywords are fundamentals of software measurement, metrics system
architectures, regression models, exploring metrics for defect management, and strategic
visions.

 74

PE2004:

5. Workshop Software Performance Engineering
14. Mai 2004 in München,
see: http://ivs.cs.uni-magdeburg.de/~schmiete/peak/

ISESE 2004:

IEEE International Symposium on Empirical Software Engineering
August 19-20, 2003, Redondo Beach, CA
see: http://www.cs.umd.edu/~mvz/isese2004/

Metrics 2004:

10th International Symposium on Software Metrics
September 14-16, 2004, Chicago
see: http://swmetrics.org/

ASQT 2004:

 Softwarequalität und Test 2004
 September 15-17, 2004, Klagenfurt, Austria

see: http://www.asqt.org/

IFPUG 2004:

IFPUG 2004 Annual Conference
September 19-24 , 2004, San Diego
see: http://www.ifpug.org/conferences/

CONQUEST 2004:

Conference on Quality Engineering in Software Technology
September 22-24, 2004, Nuremberg, Germany
see: http://www.conquest 2004.de

UML 2004:

Fourth International Conference on the Unified Modelling Language
October 11-15, 2004, Lisbon, Portugal
see: http://www.umlconference.org/

 75

IWSM2004/Metrikon2004:

14th International Workshop on Software Measurement,
DASMA Metrik Kongress
November 3-5, in Berlin, Germany
see: http://iwsm2004.cs.uni-magdeburg.de

EuroSPI 2004:

European Conference on Software Process Improvement
November 10 - 12, 2004, Trondheim, Norway
see: http://www.eurospi.net/

see also: OOIS, ECOOP and ESEC European Conference

Other Information Sources and Related Topics

 76

• http://rbse.jsc.nasa.gov/virt-lib/soft-eng.html
 Software Engineering Virtual Library in Houston

• http://www.mccabe.com/
 McCabe & Associates. Commercial site offering products and services for

software developers (i. e. Y2K, Testing or Quality Assurance)

• http://www.sei.cmu.edu/
 Software Engineering Institute of the U. S. Department of Defence at

Carnegie Mellon University. Main objective of the Institute is to identify and
promote successful software development practices.

 Exhaustive list of publications available for download.

• http://dxsting.cern.ch/sting/sting.html
 Software Technology Interest Group at CERN: their WEB-service is

currently limited (due to "various reconfigurations") to a list of links to other
information sources.

• http://www.spr.com/index.htm
 Software Productivity Research, Capers Jones. A commercial site offering

products and services mainly for software estimation and planning.

• http://www.qucis.queensu.ca/Software-Engineering/
 This site hosts the World-Wide Web archives for the USENET usegroup

comp.software-eng. Some links to other information sources are also
provided.

• http://www.esi.es/
 The European Software Institute, Spain

• http://www.lrgl.uqam.ca/
 Software Engineering Management Research Laboratory at the University of

Quebec, Montreal. Site offers research reports for download. One key focus
area is the analysis and extension of the Function Point method.

• http://www.SoftwareMetrics.com/
 Homepage of Longstreet Consulting. Offers products and services and some

general information on Function Point Analysis.

• http://www.utexas.edu/coe/sqi/
 Software Quality Institute of the University of Texas at Austin. Offers

comprehensive general information sources on software quality issues.

• http://wwwtrese.cs.utwente.nl/~vdberg/thesis.htm
 Klaas van den Berg: Software Measurement and Functional Programming

(PhD thesis)

• http://divcom.otago.ac.nz:800/com/infosci/smrl/home.htm
 The Software Metrics Research Laboratory at the University of Otago (New

Zealand).

 77

• http://ivs.cs.uni-magdeburg.de/sw-eng/us/
 Homepage of the Software Measurement Laboratory at the University of

Magdeburg.

• http://www.cs.tu-berlin.de/~zuse/
 Homepage of Dr. Horst Zuse

• http://dec.bournemouth.ac.uk/ESERG/bibliography.html
 Annotaded bibliography on Object-Oriented Metrics

• http://www.iso.ch/9000e/forum.html
 The ISO 9000 Forum aims to facilitate communication between newcomers

to Quality Management and those who have already made the journey have
experience to draw on and advice to share.

• http://www.qa-inc.com/
 Quality America, Inc's Home Page offers tools and services for quality

improvement. Some articles for download are available.

• http://www.quality.org/qc/
 Exhaustive set of online quality resources, not limited to software quality

issues

• http://freedom.larc.nasa.gov/spqr/spqr.html
 Software Productivity, Quality, and Reliability N-Team

• http://www.qsm.com/
 Homepage of the Quantitative Software Management (QSM) in the

Netherlands

• http://www.iese.fhg.de/
 Homepage of the Fraunhofer Institute for Experimental Software Engineering

(IESE) in Kaiserslautern, Germany

• http://www.highq.be/quality/besma.htm
 Homepage of the Belgian Software Metrics Association (BeSMA) in

Keebergen, Belgium

• http://www.cetus-links.org/oo_metrics.html
 Homepage of Manfred Schneider on Objects and Components

• http://dec.bournemouth.ac.uk/ESERG/bibliography.html
 An annotated bibliography of object-oriented metrics of the Empirical

Software Engineering Research Group (ESERG) of the Bournemouth
University, UK

News Groups

 78

• news:comp.software-eng

• news:comp.software.testing

• news:comp.software.measurement

Software Measurement Associations

• http://www.aemes.fi.upm.es
 AEMES Association Espanola de Metricas del Software

• http://www.asqf.de
 ASQF Arbeitskreis Software-Qualität Franken e.V., Nuremberg, Germany

• http://www.cosmicon.com
 COSMIC Common Software Measurement International Consortium

• http://www.dasma.org
 DASMA Deutsche Anwendergruppe für SW Metrik und Aufwands-

schätzung e.V.

• http://www.esi.es
 ESI European Software Engineering Institute in Bilbao, Spain

• http://www.mai-net.org/

Network (MAIN) Metrics Associations International

• http://www.sttf.fi
 FiSMA Finnish Software Metrics Association

• http://www.iese.fhg.de
 IESE Fraunhofer Einrichtung für Experimentelles Software Engineering

• http://www.isbsg.org.au
 ISBSG International Software Benchmarking Standards Group, Australia

• http://www.nesma.nl
 NESMA Netherlands Software Metrics Association

• http://www.sei.cmu.edu/
 SEI Software Engineering Institute Pittsburgh

• http://www.spr.com/
 SPR Software Productivity Research by Capers Jones

• http://fdd.gsfc.nasa.gov/seltext.html
 SEL Software Engineering Laboratory - NASA-Homepage

• http://www.vrz.net/stev

 79

 STEV Vereinigung für Software-Qualitätsmanagement Österreichs

• http://www.sqs.de
 SQS Gesellschaft für Software-Qualitätssicherung, Germany

• http://www.ti.kviv.be
 TI/KVIV Belgish Genootschap voor Software Metrics

• http://www.uksma.co.uk
 UKSMA United Kingdom Software Metrics Association

Software Metrics Tools (Overviews and Vendors)

Tool Listings

• http://www.cs.umd.edu/users/cml/resources/cmetrics/
 C/C++ Metrics Tools by Christopher Lott

• http://mdmetric.com/meastl1.htm
 Maryland Metrics Tools

• http://cutter.com/itgroup/reports/function.html
 Function Point Tools by Carol Dekkers

Tool Vendors

• http://www.mccabe.com
 McCabe & Associates

• http://www.scitools.com
 Scientific Toolworks Inc.

• http://zing.ncsl.nist.gov/webmet/
 Web Metrics

• http://www.globalintegrity.com/csheets/metself.html
 Global Integrity

• http://www.spr.com/
 Software Productivity Research (SPR)

• http://jmetric.it.swin.edu.au/products/jmetric/
 JMetric

• http://www.imagix.com/products/metrics.html
 Imagix Power Software

 80

• http://www.verilogusa.com/home.htm
 VERILOG (LOGISCOPE)

• http://www.qsm.com/
 QSM

