

The METRICS NEWS can be ordered directly from the Editorial Office (address can
be found below).

Editors:

Alain Abran
Professor and Director of the Research Lab. in Software Engineering Management
École de Technologie Supérieure - ETS
1100 Notre-Dame Quest,
Montréal, Quebec, H3C 1K3, Canada
Tel.: +1-514-396-8632, Fax: +1-514-396-8684
aabran@ele.etsmtl.ca

Manfred Bundschuh
Chair of the DASMA
Sander Höhe 5, 51465 Bergisch Gladbach, Germany
Tel.: +49-2202-35719
manfred.bundschuh@netcologne.de
http://www.dasma.org

Reiner Dumke
Professor on Software Engineering
University of Magdeburg, FIN/IVS
Postfach 4120, D-39016 Magdeburg, Germany
Tel.: +49-391-67-18664, Fax: +49-391-67-12810
dumke@ivs.cs.uni-magdeburg.de

Christof Ebert
Dr.-Ing. in Computer Science
Vector Consulting GmbH
Ingersheimer Str. 24, D-70499 Stuttgart, Germany
Tel.: +49-711-80670-175
christof.ebert@vector-consulting.de

Horst Zuse
Dr.-Ing. habil. in Computer Science
Technical University of Berlin, FR 5-3,
Franklinstr. 28/29, D-10587 Berlin, Germany
Tel.: +49-30-314-73439, Fax: +49-30-314-21103
zuse@tubvm.cs.tu-berlin.de

Editorial Office: Otto-von-Guericke-University of Magdeburg, FIN/IVS, Postfach
4120, 39016 Magdeburg, Germany
Technical Editor: DI Martin Kunz
The journal is published in one volume per year consisting of two numbers. All rights
reserved (including those of translation into foreign languages). No part of this issues
may be reproduced in any form, by photoprint, microfilm or any other means, nor
transmitted or translated into a machine language, without written permission from
the publisher.
© 2007 by Otto-von-Guericke-University of Magdeburg. Printed in Germany

mailto:manfred.bundschuh@netcologne.de

 Announcements 3

==

C A L L F O R P A P E R S
==

17th International Workshop on Software Measurement
IWSM 2007

& MENSURA 2007

Co-sponsored by:

École de Technologie Supérieure - Université du Québec

(Montréal, Canada)
Otto von Guericke University Magdeburg (Germany)

Universidad de los Baleares (Spain)
Universidad de Alcala de Henares (Spain)

Universidad del Pais Vasco (Spain)

In cooperation with:

COSMIC – Common Software Measurement International Consortium
German Interest Group on Software Metrics

Nov. 5-7, 2007

Palma de Majorque - SPAIN

==

GENERAL THEME & SCOPE: SOFTWARE MEASUREMENT

Software measurement is one of the key technologies to control or to manage the software
development process. Measurement is also the foundation of both sciences and
engineering, and much more research in software is needed to ensure that software
engineering be recognized as a true engineering discipline.

Over the past few years, a significant number of key institutional documents have
been brought into the public domain with a broad consensus based as ISO standards
and technical reports. Therefore, it is necessary to exchange between researchers and
practitioners the experiences on the design and uses of measurement methods to simulate
further theoretical investigations to improve the engineering foundations through
measurement.

 Announcements 4

The purpose of the conference is to review the set of issues such as the identification
of deficiencies in the design of currently available measurement methods, the
identification of design criteria and techniques and measurement frameworks.

We are looking for full papers in the area of software measurement, addressing
generic research issues, infrastructure issues or specific research and
implementation issues on the following topics (but not limited to):

A- Uses of measurements results in decision making:

• Productivity Analysis (foundations of productivity models, quality of productivity
models, experimental basis and constraints that limit it expandability to contexts
outside of the experimental basis).

• Estimation process (uncertainty, identification of inputs, expectations, technical
estimates versus business risks estimation, etc.).

B- Evaluation and assessment models:

• Performance assessment

• Quality assessment

• Maintenance assessment

• Support systems assessment

C- Objects and attributes to be measured

• Types of measurement object targets: functional domains, type of software –
layers, specific functional characteristics – algorithms.

• Timely adaptation of the designs of measurement methods to new and emerging
technologies: UML, Web-based applications, Agent based systems, etc.

• Size attributes categories: Functional and non-functional, etc.

D- Measurement methods: design issues

• Design issues of measurement methods: definition of base components to be
measured, ISO conformance, weights assignments and theoretical foundations
(Basis for consensus, degree of consensus, etc.

• Normalization issues: time dependence, technology dependence, infrastructure
changes

• Integration of measurement types: when and how.

• Quality of measurement methods: repeatability accuracy, correctness,
traceability, uncertainty, precision, etc.

Special Activities on Monday Nov. 5, 2007

 Announcements 5

To participate to the workshops, the participants must submit a Position Paper
by the specified deadline.

Workshop 1:
• Software Measurement Body of Knowledge (Basis for discussion: the Draft of a

Measurement Body of Knowledge on the IEEE SWEBOK website)

Workshop 2:
• Fundamentals principles of software engineering

Certification exam:
COSMIC-FFP – ISO 19761: Entry Level

PROGRAM COMMITTEE

Alain Abran, École de technologie supérieure - Université du Québec, Canada
Ali Idri, INSIAS, Morocco,
Luigi Buglione, AtosOrigin, Italy
Manfred Bundschuh, DASMA, Germany
François Coallier, ÉTS, Canada
Juan Cuadrado Gallego, U. Alcala de Henares, Spain
Jean-Marc Desharnais, ÉTS, Canada
Javier Dolado, Universidad San Sebastian, Spain
Ton Dekkers, Shell, Netherlands
Reiner Dumke, University of Magdeburg, Germany
Christof Ebert, Vector Consulting, Stuttgart, Germany
Naji Habra, FUNDP, Namur, Belgium
Nadine, Hanebutte, St. John Fisher College, Rochester, USA
Adel Khelifi, U. Al Hosn, URA
Mathias Lother, Bosch, Germany
Roberto Meli, DPO, Italy
Olga Ormandjieva, Concordia University, Canada
Mercedez Ruiz Carrera, U. Cadiz, Spain,
Andreas Schmietendorf, FHW Berlin, Germany
Harry Sneed, Anecon Wien/Budapest, Hungary
Charles Symons, Software Measurement Service Ltd, Edenbridge, UK
Hannu Toivonen, Nokia, Finland
Horst Zuse, TU Berlin, Germany

SUBMISSIONS – Research Track – Full papers
Authors should send proposed papers by e-mail to the conference co-chairs

- Deadline for proposed papers: May 30, 2007

- Notification of acceptance: June 20, 2007
- Paper - final version for the proceedings: Sept 15, 2007

SUBMISSIONS – Industry Track (presentations only)

 Announcements 6

- Abstract (max. 1 page): Sept 15, 2007

- Notification of acceptance on: Sept 30, 2007
- Final Powerpoint presentation: Oct 15, 2007

Position papers (1 to 5 pages) for the workshops on Nov. 5

- Deadline: Sept 15, 2007

All proposals should be sent to:

Alain Abran

alain.abran@etsmtl.ca

École de technologie Supérieure

 Reiner Dumke

dumke@ivs.cs.uni-magdeburg.de

Otto-von-Guericke-Universitaet Magdeburg

FEES for authors: to be determined
FEES for participants: to be determined

NEWS: For the latest news about IWSM-MENSURA 2007, see:

http://gelog.etsmtl.ca/iwsm-mensura2007

mailto:alain.abran@etsmtl.ca
http://gelog.etsmtl.ca/iwsm-mensura2007

 Announcements 7

 Announcements 8

Call for Papers
Evaluation of Service-Oriented Architectures

BSOA 2007
Aufruf zur Einreichung von Beiträgen zum 2. Workshop
„Bewertungsaspekte serviceorientierter Architekturen“

der GI FG „Software-Messung und -Bewertung“
im November 2007

MOTIVATION

Glaubt man den Aussagen führender IT-Analysen, wie z.B. der Gartner-Group, so wird die
Etablierung serviceorientierter Architekturen (kurz SOA) die Vorgehensweise bei der
Entwicklung neuer Anwendungssysteme in den kommenden Jahren grundlegend beeinflus-
sen. In diesem Kontext wird nicht selten vom Ende der Dominanz monolithischer
Softwarearchitekturen gesprochen. Hintergrund dieser Überlegung ist die Tatsache, dass bei
einer servicebasierten Architektur neue Anforderungen primär auf der Basis bereits
existierender Serviceangebote realisiert werden können. Vor diesem Hintergrund werden
neue Bewertungsmodelle benötigt, die prozess-, produkt- und ressourcenbezogene Aspekte
im Kontext einer SOA berücksichtigen. Der Workshop (BSOA07) wird sich unter anderem mit
den folgenden Themen beschäftigen:

- Bewertung der Mehrwertpotenziale einer SOA

- Erarbeitung von Richtlinien zu Serviceentwicklung für eine SOA

- Qualitätsbewertung angebotener Services

- Mess- und Bewertungsansätze im Kontext einer SOA

- Services Level Agreements (SLAs) und Verhandlungsaspekte

WORKSHOP-BEITRÄGE

Praktiker und Wissenschaftler, die auf dem Gebiet der Konzeption, Entwicklung und
Management serviceorientierter Architekturen tätig sind, werden gebeten, Beiträge im doc-
oder pdf-Format einzureichen. Der Umfang der Beiträge sollte 3000 Wörter nicht
übersteigen. Die Formatierungsrichtlinien werden in Kürze auf der unten genannten
Webseite veröffentlicht. Angenommene Beiträge werden innerhalb eines 30-minütigen
Vortrags präsentiert bzw. in Form eines Posters vorgestellt. Angenommene Beiträge
erscheinen in einem Tagungsband.

Bitte senden Sie ihre Beiträge per E-Mail an

gi-bsoa@ivs.cs.uni-magdeburg.de

WEBSEITE ZUM WORKSHOP

http://ivs.cs.uni-magdeburg.de/~gi-bsoa

mailto:gi-bsoa@ivs.cs.uni-magdeburg.de
http://ivs.cs.uni-magdeburg.de/%7Egi-bsoa

Workshop Report 9

Our 16th Workshop on Software Measurement (IWSM 2006) and DASMA Software
Metrik Kongress (MetriKon 2006) took place in Potsdam, Germany in November
2006. The following report gives an overview about the presented papers.
Furthermore, the papers are published in the following Shaker book (ISBN 3-8322-
5611-3):

Workshop Report 10

KEYNOTE:

Establishing a Common Measurement System at Siemens

Frances Paulisch
Siemens AG Corporate Technology SE

Abstract. Software is of large and growing importance for practically all Siemens Groups.
With ca. 30,000 software engineers worldwide it is clean that Software is an integral part of
many of our products. Having adequate processes and the importance of process
improvement activities has been an important topic at Siemens over the past decade and
many Siemens organizations are firm believers in using measurement System to help control
and improve the processes.
More recently, in the fall of 2004, we started the development of a Siemens-wide
measurement System and this System is meanwhile also in broad use at Siemens. Many
different sources of Information were taken into account, both Siemens-internal as well as
external, to establish an approach that best meets the needs of a broad set of stakeholders.
The harmonized and common system within Siemens enables more transparency and allows
increased best-practice sharing across organizations and Groups. This presentation will
provide lessons learned in establishing such a measurement System and will describe the
structure of the measurement system. Furthermore, first insights of what we can learn from
the data will be given.

Enhancing the CoBRA® Hybrid Software Cost Modeling Method
for Supporting Process Maturation

Adam Trendowicz, Jens Heidrich, Jürgen Münch

Fraunhofer Institute for Experimental Software Engineering (IESE)

{adam.trendowicz, jens.heidrich,
juergen.muench}@iese.fraunhofer.de

Abstract. Cost estimation is a very crucial field for software developing companies. In the
context of learning organizations, estimation applicability and accuracy are not the only
acceptance criteria. The contribution of an estimation technique to the understanding and
maturing of related organizational processes (such as identification of cost and productivity
factors, measurement, data validation, model validation, model maintenance) has recently
been gaining increasing importance. Yet, most of the proposed cost modeling approaches
provide software engineers with hardly any assistance in supporting related processes.
Insufficient support is provided for validating created cost models (including underlying data
collection processes) or, if valid models are obtained, for applying them to achieve an
organization’s objectives such as improved productivity or reduced schedule. This paper
presents an enhancement of the CoBRA® cost modeling method by systematically including
additional quantitative methods into iterative analysisfeedback cycles. Applied at Oki Electric
Industry Co., Ltd., Japan, the CoBRA® method contributed to the achievement of the
following objectives, including: (1) maturation of existing measurement processes, (2)
increased expertise of Oki software project decision makers regarding cost-related software
processes, and, finally, (3) reduction of initial estimation error from an initial 120% down to
14%.

Workshop Report 11

Using Genetic Algorithms to Generate Estimation Models

D. Rodríguez1, J.J. Cuadrado-Gallego1, J. Aguilar2

The University of Alcalá1 / University Pablo de Olavide2

drg@ieee.org, jjcg@uah.es, direscinf@upo.es

Abstract. Parametric software estimation models rely on the availability of historical project
databases from which estimation models are derived. In the case of large project databases,
problems can arise such as heteroscedasticity where the size of a project can influence the
accuracy of the estimation method. In such cases, a single mathematical model may not
properly be used to estimate projects of diverse nature. In this work, we discuss how genetic
algorithms can be applied to produce segmented models, i.e., the genetic algorithm searches
for cut-points in the range of a variable (e.g. Function Points), and different estimation
models can be used at each side of the cut-point. A concrete case study using the ISBSG
dataset is reported. Results show that with a very low number of models instead of a single
one, the accuracy can be increased significantly.

An Experimental Study on Conceptual Data Model Based Software
Code Size Estimation

Oguz Atak

1
, Cigdem Gencel

2

1
Havelsan Inc.,

oatak@sbd.havelsan.com.tr

2
Informatics Institute-METU

cgencel@ii.metu.edu.tr

Abstract. Effort and cost estimation is crucial in software management. Estimation of soft-
ware size plays a key role in the estimation process. SLOC has been a commonly used
software size metric. However, SLOC of a software project is available only after the coding
phase. We need to estimate SLOC early in the life cycle in order to make reliable effort and
cost estimation, which are crucial at the beginning of a project.
Being an early phase product of the life cycle and being widely used during the re-
quirements elicitation process of OO systems, the use of Conceptual Data Model for
estimating SLOC have been explored in a number of studies. In this study, we explore
whether the Conceptual Data Model can serve as an early indicator of software size by
conducting an empirical study on two sample projects, which have similar characteristics and
developed by the same software company.

Traceability zwischen Metriken und dem strategischen Ziel
Wartbarkeit

Workshop Report 12

Dr. Frank Simon, Christian Koll

SQS Software Quality System AG, Köln
(Frank.Simon | Christian.Koll)@sqs.de

Zusammenfassung: In diesem Beitrag wird aufgezeigt, wie mittels spezieller
Modellierungstechniken strategische IT-Ziele wie die Wartbarkeit und konkrete,
verfügbare Software-Metriken derart in Relation zueinander gebracht werden können, daß
eine nachvollziehbare Traceability zwischen diesen beiden Stoßrichtungen hergestellt
werden kann: Das Management erhält so auf Metriken basierende Aussagen (in Form von
Aggregationen) bzgl. der Erfüllung ihrer IT-Strategien. Gleichzeitig besitzt die operative
Ebene jederzeit die konkreten konstruktiven Stellschrauben, die bei Abweichungen vom
Soll bedient werden müssen und anschließend wieder entsprechend in der Aggregation
Berücksichtigung finden. Die berichteten Erfahrungen zeigen die Potentiale dieses
Vorgehens auf.

Software Quality Assessment – A Tool-Supported Model

Matthias Ruffer1, Marek Leszak2

1Friedrich-Alexander University Erlangen-Nürnberg

matthias_ruffler@fastmail.fm

2Lucent Technologies Network Systems GmbH, Nürnberg

mleszak@lucent.com

Abstract. This paper reports results of a practical diploma thesis, focusing on improvements
to the currently introduced software quality assessment methodology (SQAM) at a large
telecommunications supplier company. For this purpose the concept of assessing quality
related process steps by quality gate reviews is extended by a flexible weighting scheme:
Each software sub-team delivery can be evaluated quantitatively w.r.t. the process
compliance reached. A model to calculate a so-called process compliance index (PCI) is
introduced, based on the quality-related activities monitored. It is intended as an instrument
to predict the quality level reached in future project releases. This requires the redesign of an
existing toolset to support PCI calculation. The toolset is also being extended regarding
aspects like central data management and modular expandability. To the authors’ best
knowledge there is no publication and no software engineering standard, dealing in-depth
with this topic.

A Lightweight Tool Support for Integrated Software Measurement

Bernhard Daubner1, Andreas Henrich2, Bernhard Westfechtel1

Workshop Report 13

1Bayreuth University, Chair of Software Engineering

bernhard.daubner@uni-bayreuth.de
bernhard.westfechtel@uni-bayreuth.de

2Bamberg University, Chair of Media Informatics

andreas.henrich@wiai.uni-bamberg.de

Abstract. This article shows a lightweight approach to implement a tool supported software
measurement process. The basic idea here is to concentrate on five relevant software
measures and tie them on the elements of an implicitly given skeletal structure of the
project.We show several ways to provide such a skeletal structure for various types of
software projects.
Based on this skeletal structure the software measures to collect can be defined in advance
and independently of a concrete project. At project runtime the entities to measure are
automatically identified by means of the elements of the skeletal structure. The computation
of the software measures can then be automated using Open Source tools.

The call profile – measuring the object-oriented paradigm at work

Peter Rosner
London South Bank University, London

rosnerpe@lsbu.ac.uk

Abstract. In this paper we describe the call profile, a metric that gives an insight into different
aspects of the object oriented paradigm at work in a piece of objectoriented software. It
enables an estimation of the skill levels needed for those involved in its maintenance and
evolution. A tool to measure the call profile for Java systems is described and some initial
results are presented.

Ontology-based Web service for object-oriented metrics

Martin Kunz , Steffen Kernchen, Reiner R. Dumke, Andreas Schmietendorf
University of Magdeburg, Germany

{makunz, kernchen, dumke, schmiete}@ivs.cs.uni-magdeburg.de

Abstract. The increasing economic relevance of software measurement for organizations
cannot be negated. But issues like complexity and missing traceability of measurement
processes constitute the need for direction and guidance in this regard.
In history ontologies possessed the capability to retain this semantic knowledge in a
machine-accessible manner. Therefore, we use the ontology approach for a cataloguing web
system to create our own ontology for a subset of metrics (object oriented metrics).
In our approach the ontology is used to connect an information need with a certain metric.
We describe the interrelation of key elements like information need, measurement model,
software characteristics, and object oriented structure.

Complexity and Quality Evaluation of Basic Java Technologies

Ayaz Farooq1, Steffen Kernchen1, Martin Kunz1, Reiner R. Dumke1, Cornelius Wille2

Workshop Report 14

1University of Magdeburg, Faculty of Computer Science, Magdeburg, Germany

(farooq, kernchen, makunz, dumke)@ivs.cs.uni-magdeburg.de

2University of Applied Sciences, Bingen, Germany

wille@fh-bingen.de

Abstract. As a fact, the application of object-oriented approach is of high significance in the
area of software development since it can abet efficiency or cost effectiveness and reduce
error probability during software design and implementation. In order to quantify, especially
qualitative aspects such as potential error hot spots caused by elevated design complexity,
software measurement can strongly assist. Particularly, metrics proposed by Chidamber and
Kemerer as well as Abreu’s MOOD metrics set are presumably most prevalent in practice
and provide adequate explanatory power. Especially the object-oriented programming
language Java cannot be dismissed from one’s thoughts because a lot of Java libraries serve
as foundation for contemporary applications. Since Java technologies are widely used in
industrial system applications, development of the complexity of different Java technologies
could be an essential aspect in order to maintain the plenty set of existing Java applications
successful. Therefore, we have analyzed several standard Java technology libraries in order
to investigate such important characteristics. We have applied our approach using OOMJ
web service as a case study to evaluate and analyze Java software products and standard
libraries thereby highlighting their various complexity and quality aspects.

Object Relational Database Metrics: Classified and Evaluated

Justus S1, Iyakutti K2

1Dept of Computer Applications, K.L.N College of Information Technology,
Pottapalayam – 630611, Sivagangai Dt, TN, India.

juskutti@yahoo.com, justus_mku@yahoo.co.in

2Dept of Microprocessor and Computer, School of Physics,
Madurai Kamaraj University, Madurai – 625021, TN, India.

Abstract. In the modern Object Oriented Information Systems, databases also have become
a crucial object of concern. Object relational databases, often addressed as the next
generation of databases, are complex in their existence because they combine relational
database characteristics with object-oriented principles. Proposed object relational database
metrics have been validated and is stated that it contributes to the quality design of the
database and better functioning of the software.
This work presents a classified framework of object relation database metrics which deals in
detail the semantics of the classes, relations, behavior with the application and its reusability.
Classification of metrics institutes their better management of the database at their design
phase, implementation phase and its behavior in the real time system developmental
environment. The classification is validated for its dependability based on the evaluated
experimental values. This classification is best admitted that database designers find better
understanding of the Object relational database in entirety.

Unified Software Method: Towards a Method of Measurement of the

Necessary Changes to Software in Maintenance

Workshop Report 15

Stéphane Mercier, Alain Abran, Michel Lavoie, Roger Champagne
École de technologie supérieure, Montréal Québec, Canada

stephane.mercier.5@ens.etsmtl.ca, alain.abran@etsmtl.ca,
michel.lavoie@etsmtl.ca, roger.champagne@etsmtl.ca

Abstract. Within the context of the use of the “Unified Software Method” (USM), traceability
links are identified between each data element of a software project having a relation
between them. One is then in the presence of a complete traceability which implies
maintains it synchronization of information in a software project. In this article we propose a
method of measurement based on USM and which aims at quantifying the quantity of
information of a software project which is related to a maintenance action envisaged on an
existing element in this project. One will be able to note that this method of measurement
makes it possible to quantify at the same time the proportion of the information of the project
as well as the quantity of information implied in maintenance considered.

Assessment Results using the Software Maintenance Maturity
Model (S3m)

David-Alexandre Paquette, Alain April, Alain Abran

École de Technologie Supérieure

david-alexandre.paquette.1@ens.etsmtl.ca
alain.april@etsmtl.ca, alain.abran@etsmtl.ca

Abstract. This S3m maintenance maturity assessment model is divided into four process
domains containing 18 "Key Process Area", each in turn containing "Roadmaps". Roadmaps
are bodies of knowledge containing recommended practices that are linked to one another.
Using the S3m software maintenance maturity model, this paper describes the assessment
process and results of an individual maintainer process maintaining a key software
application within a larger software maintenance organization.

Product Metrics for Service-Oriented Infrastructures

Dmytro Rud, Andreas Schmietendorf, Reiner R. Dumke
Otto von Guericke University, Magdeburg, Germany

{rud, schmiete, dumke}@ivs.cs.uni-magdeburg.de

Abstract. Service-oriented architecture is nowadays widely adopted as modern approach for
development of enterprise-wide and cross-enterprise distributed applications. From the
software engineering point of view, these applications resemble some features of formerly
known component-based and object-oriented software systems and web applications, but
the differences are substantial enough to make it impossible to simply reuse existing metrics.
In this paper we will try to analyse these differences and to formulate product metrics that
consider all peculiarities of service-oriented software and assess its complexity, reliability and
performance aspects.

Evaluation of Java-Based Agent Technologies

Steffen Kernchen1, Ayaz Farooq1, Reiner R. Dumke1, Cornelius Wille2

mailto:stephane.mercier.5@ens.etsmtl.ca
mailto:alain.abran@etsmtl.ca
mailto:michel.lavoie@etsmtl.ca
mailto:roger.champagne@etsmtl.ca
mailto:alain.april@etsmtl.ca

Workshop Report 16

1University Magdeburg, Faculty of Computer Science, Germany

{kernchen, farooq, dumke}@ivs.cs.uni-magdeburg.de

2University of Applied Sciences, Bingen, Germany

wille@fh-bingen.de

Abstract. Currently, the object-oriented approach (OOSE) is well-known and well-used in
many industrial applications. Today, most of the problems with object-orientation are
understood and some of the illusions of the “OO hype” are going in more realistic OO
methods and OO techniques. In the same manner we can observe today the future
technology of agent-oriented software engineering (AOSE).
Agent-oriented technology has been revisited as a complementary approach to the object-
oriented paradigm, and has been applied in a wide range of realistic application domains,
including e-commerce, human-computer interfaces, telecommunications, and concurrent
engineering.
Our paper gives an analysis of the AOSE considering three types of AOSE technologies
including their platforms: Aglets, MadKit and the JADE system. We use a Java Measurement
Service which allows us to execute some complexity metrics like size metrics, Chidamber &
Kemerer metrics and Abreu’s MOOD.

Analyse struktureller Komplexitätsunterschiede in ABAP
und JAVA

Roland Neumann, Alexandra Ilina

Technische Universität Kaiserslautern, AG Softwareengineering: Dependability

roland.neumann@informatik.uni-kl.de, alex.ilina@gmx.net

Zusammenfassung: Um große Softwaresysteme geeignet analysieren und warten zu
können wird der Einsatz von Softwaremaßen immer wichtiger. Die Korrelation der Maße
untereinander behindert dabei eine geeignete Auswertung. Mithilfe voneinander
unabhängiger Maße läßt sich strukturelle Komplexität besser erfassen und einfacher
auswerten.
Im Rahmen dieser Studie werden aus mehreren JAVA- und ABAP-Projekten
sprachspezifische Komplexitätsarten identifiziert, ihre Gemeinsamkeiten und Unterschiede
beschrieben und Nutzungsmöglichkeiten aufgezeigt.Gemeinsam in beiden Sprachen sind
Größe und Attributverwendung, während sie sich in Kontrollfluß und Interaktion
unterscheiden. Die vorgestellte Technik ermöglicht eine einfache Analyse von
Klasseneigenschaften zur Identifikation diskreter Gruppen, was eine schnelle Inspektion und
Fehleranalyse ermöglicht.

Suggestions for Improving Measurement Plans:
A BMP application in Turkey

Luigi Buglione1, Cigdem Gencel2, Pinar Efe3

Workshop Report 17

1École de Technologie Supérieure (ETS) Montréal, Canada

Luigi.buglione@computer.org

2Informatics Institute, Middle East Technical University - Ankara, Turkey

cgencel@ii.metu.edu.tr

3Siemens PSE Turkey - ODTU Teknokent Silikon Bina ZK 21 Ankara, Turkey

pinar.efe@siemens.com

Abstract. Time and Cost are most often in industry the two main (often solely) dimensions of
analysis against which a project is monitored and controlled, excluding other possible
dimensions such as quality, risks, impact on society and stakeholders’ viewpoinst in a
broader sense. Another issue of interest is the proper amount of measures and indicators to
implement in an organization to optimizing the two sides of the cost of quality (cost of quality
and cost of non quality). How can multiple concurrent control mechanisms across several
dimensions of analysis be balanced? The approach of Balancing Multiple Perspectives
(BMP) has been designed to help project managers choose a set of project indicators from
several concurrent viewpoints. This paper presents the results from a second BMP
application in Turkey, using a list of 14 candidate measure. Lessons learned are presented
for improving measurement plans.

Successes and challenges experienced in implementing
a measurement program in small software organizations

Sylvie Trudel, Pascale Tardif

Centre de Recherche Informatique de Montréal (CRIM), Montréal, Canada
Sylvie.Trudel@crim.ca, Pascale.Tardif@crim.ca

Abstract. In recent years, the authors have implemented measurement programs in several
organizations of different sizes. Two of them were small software companies of
approximately 12 employees, which were mostly developers. Although these two
organizations were similar in size and technology, the differences in the issues they were
facing led to completely different approaches for their measurement program. This paper is
about the steps taken to implement these measurement programs, both including functional
size measurement with COSMIC, effort, schedule, and defects. It also describes what was
done to ensure the success of each program and, most importantly, the challenges that were
faced during their implementation and maintenance, as well as some of the solutions
proposed to answer these challenges.

Organizational Software Measurement Process

Josyleuda M.M. de Oliveira, Karson B. de Oliveira, Arnaldo Dias Belchior
UNIFOR, University of Fortaleza, Fortaleza, Brazil

Workshop Report 18

josymmo@hotmail.com, karlson.oliveira@gmail.com,
belchior@unifor.br

Abstract. Software development is a complex activity which demands a series of factors to
be controlled. In order for this to be controlled in an effective manner by project
management, it is necessary to use software process measurement to identify problems and
to consider improvements. This paper presents an organizational software measurement
process resulting from the mapping of five relevant software measurement processes:
CMMI-SW, ISO/IEC 15939, IEEE Std 1061, Six Sigma, and PSM (Practical Software
Measurement). A website was doing to support this process and it helps all the staff
understand and use the process. Moreover, the tools should support the successive phases
of the measurement process and help maintain the information, because all data will be in
the same place and their access is optimized. Thus, the use of the measurement process
becomes very easy.

Analysis of Requirement Specifications in Student Projects:
A Empirical Study

Michael Olschimke1, Cornelius Wille1, Reiner R. Dumke2

1Fachhochschule Bingen, Germany

[olschimke|wille]@fh-bingen.de

2Otto-von-Guericke-Universität Magdeburg, Germany

dumke@ivs.cs.uni-magdeburg.de

Abstract. Requirement specification is one of the first phases of software development.
Software requirements describe the needs and scope of a software product which has to fix a
real-world problem. This is also true for student projects at the University of Applied Sciences
Bingen. Students as well as software developers in the industry should be able to define their
planned software using a software requirements specification.
This empirical study measure and analyze the quality of student specifications in order to
improve the quality of these documents and further to improve education at the University of
Applied Sciences Bingen.
Based on automated textual analysis of the specification documents we have searched for
quality indicators like imperatives or option and weak phrases that normally result in a
specific quality of the specification. Then, we have compared the result of the analysis with
the individual grade for the student’s project in order to find out if there are coherences
between the quality of requirements specifications and the student’s overall grade for the
project. The main goal of our study is to get indices for improving the quality of our courses.

A case study of metric-based and scenario-driven black-box testing

for SAP projects

Maya Daneva1, Alain Abran2, Olga Ormandjieva3, Manar Abu Talib3

1University of Twente

mailto:josymmo@hotmail.com
mailto:karlson.oliveira@gmail.com
mailto:belchior@unifor.br

Workshop Report 19

m.daneva@utwente.nl

2Uiversité du Québec à Montreal

alain.abran@etsmtl.ca

3Concordia University

ormandj@cse.concordia.ca, m_abutal@cse.concordia.ca

Abstract. Enterprise Resource Planning (ERP) projects are perceived as mission-critical
initiatives in many organizations. They are parts of business transformation programs and
are instrumental in improving organizational performance. In ERP implementations, testing is
an activity that is crucial in order to ensure that the functionality embedded in the solution
matches the business users’ requirements. However, little is known about how to make the
testing process more predictable or how to increase its chances of success.
This paper makes a first attempt towards improving the quality of the testing process in ERP
projects by using a metric-based test case selection approach. The paper reports on how this
approach was adapted to an ERP package-specific project context, how it was applied in five
settings in a mid-sized project and what was learnt about using it.

Measuring the Quality Of Inferred Interfaces

Florian Forster
Department of Computer Science, University of Hagen

florian.forster@fernuni-hagen.de

Abstract. Introducing interfaces to a program serves to decouple the code and to increase
its flexibility. Type inference algorithms can be used to extract the interface required from an
existing type as expressed by a declaration element typed with this type. However, if many
variables in a program are typed with the same type, many new interfaces are likely to be
deduced these algorithms. Unfortunately, the developer has to trust his intuition deciding
whether the new interfaces proposed by the type inference algorithm are worth the trouble,
i.e. if the increased decoupling outweighs the additional maintenance effort which comes
along with every new interface and vice versa. Therefore, we provide a measurement to
compare sets of inferred interfaces with each other, thus helping developers to select the
best set of interfaces for his needs. Furthermore, we briefly evaluate our metric and provide a
short sketch for the integration of the metric to the Eclipse IDE.

DASMA DIPLOMARBEITEN-PREIS:

Conception and Prototypical Implementation of a Web

Service as an empirical-based Consulting
about Java Technologies

Workshop Report 20

Ayaz Farooq

University of Magdeburg, Faculty of Computer Science, Magdeburg, Germany

farooq@ivs.cs.uni-magdeburg.de

Zusammenfassung: Die Relevanz von Computer-Systemen im täglichen Leben ist
unumstritten. An die dabei zur Anwendung kommende Software steigen die Anforderungen
hinsichtlich ihrer Qualität immens. Das Software Engineering will gerade hierbei durch die
Anwendung ingenieurtechnischer Maßnahmen, wie zum Beispiel dem Messen und Bewerten
einen besonderen Beitrag leisten. Hinsichtlich der Technologie ist heute die
Objektorientierung dabei die vorherrschende. Insbesondere nehmen die in Java entwickelten
Systeme anteilig deutlich zu.
In den vergangenen Jahren hat aber auch die Rolle der Software-Messung in seiner Form
der erfolgreichen Anwendung von Metriken ständig zugenommen. Das kommt auch in der
Ausprägung der Prozessbewertungsstufen nach dem Capability Maturity Modell (CMMI) der
Stufe 4 als quantitatives Management zum Ausdruck.

DASMA DIPLOMARBEITEN-PREIS:

Zusammenfassung – Design und Implementierung eines
anpassbaren Metric Plug-ins für Eclipse

(engl. „Design and Implementation of a customizable metrics plug-in in Eclipse ")

Ansgar Lamersdorf

Zusammenfassung: Die Messung von (Software-) Metriken ist ein essentielles Mittel zur
frühzeitigen Vorhersage und Steuerung der Qualität eines Software Produktes. Wichtige
nichtfunktionale Eigenschaften wie Zuverlässigkeit (Reliability) und Wartbarkeit
(Changeability), die eigentlich nur nach Fertigstellung der Software am konkreten Produkt
gemessen werden können, können durch die Erfassung geeigneter Metriken (z.B. über
Komplexität oder Größe) schon in früheren Phasen abgeschätzt und vorhergesagt werden.
Ziel dieser Bachelorarbeit war die Entwicklung eines Plug-ins für die
Softwareentwicklungsumgebung Eclipse, welches die Messung und Visualisierung von
Metriken über die statische Struktur eines Software Produktes unterstützt.

Using COSMIC-FFP for sizing, estimating and
Planning in an ERP environment

Frank Vogelezang

Sogeti Nederland B.V.

frank.vogelezang@sogeti.nl

Workshop Report 21

Abstract. Triggered by new European legislation the Dutch Office for Regulations decided to
renew major parts of their IT landscape with Oracle’s E-Business Suite. They expect that this
packaged solution offers the possibility of quick implementation of new business processes.
For the implementation of new regulations and the redesign of existing ones, a software
factory was set up with three production lines implementing processchains. Because of the
nature of the documentation COSMIC-FFP was used to size the process-chains to be
implemented. The measured functional size was used to support the cost estimation and the
planning process.
This experience shows that COSMIC-FFP can be used to size, estimate and plan an ERP
implementation with a high degree of parameterisation. Since this kind of implementation
differs in a number of ways from an average implementation of packaged software future
research is necessary.

Mapping Concepts of Functional Size Measurement
Methods

Pinar Efe1, Onur Demirors2, Cigdem Gencel2

1Siemens PSE Turkey - ODTU Teknokent Silikon Bina ZK 21 Ankara, Turkey;

pinar.efe@siemens.com

2Informatics Institute, Middle East Technical University - Ankara, Turkey

demirors@ii.metu.edu.tr, cgencel@ii.metu.edu.tr

Abstract. Today, there are many variants of Functional Size Measurement (FSM) methods
in use. These methods measure the software using their own concepts and measurement
processes and utilize different metrics. Therefore, a piece of software has several functional
sizes when measured by different methods. On the other hand, FSM methods share some
common concepts and uses related attributes in their measurement processes.
In this paper, common concepts and common measurement possibilities are investigated for
three ISO certified FSM methods, which are IFPUG FPA, Mark II FPA and COSMIC FFP. In
the light of the findings on the common measurement concepts and rules, a unification model
for these methods is proposed in order to measure the software systems using the same
source of data. A case study is implemented to an industrial project in order to evaluate this
model.

KEYNOTE:

Combat Resistance to Software Measurement by Targeting

Management Expectations

Carol Dekkers

Workshop Report 22

Quality Plus Technologies

Abstract. The software Industry has been slow to embrace measurement practices even
when software managers recognize the benefits is can deliver. This presentation addresses
the issue of resistance and issues related to successful software measurement by
addressing management expectations. It includes a discussion of the human and technical
factors that are critical to software measurement success.

Measuring the Qualities of Software Design

Naji Habra, Benoît Vanderose
University of Namur – FUNDP, Namur, Belgium

nha@info.fundp.ac.be, bva@info.fundp.ac.be

Abstract. Many software quality models & classical software measurement methods are
based on the view according to which the software is one product (sometimes identified more
or less to the "code"). A closer view to the software as a product to be measured shows that
it is a composed entity made up of several interconnected artifacts (requirement, design,
code…). This work starts with this large view of software to propose a first classification of
the different software attributes according to the underlying artifacts and their potential
relationships. A particular focus is put on the software attributes related to the design artifact.

Error Propagation in Software Measurement and Estimation

Luca Santillo
Independent Consultant, Italian Software Metrics Association Board of Directors

luca.santillo@gmail.com

Abstract. Generically speaking, software measurement and estimation require the
application of an algorithm to one or more input variables (measures), in order to provide one
or more output variables (estimates, or metrics) for effort, cost, time, quality or other aspects
of the software being developed. Regardless of the estimation model (algorithm) being used,
practitioners must face the uncertainty aspects of such process: errors in initial measures do
affect the derived metrics (or estimated values for indirect variables). Measurement theory
does provide an accurate way to evaluate such “error propagation” for algorithmic derivation
of variable values from direct measures. Although some software estimation models already
propose confidence ranges on their results, the formal application of error propagation can
yield some surprising results, depending on the mathematical functional form underlying the
model being examined. This work introduces error propagation in the software measurement
field and shows some application and examples based on some of the most common
software measurement methods and estimation models, as Function Point analysis (for size),
Constructive Cost Model (for effort and/pr duration), and others. Proposed cases and
examples stimulates critical analysis of methods and models being examined from a possibly
new perspective, with regards to the accuracy they can offer in practice.

Workshop Report 23

Generic Metric Extraction Framework

El Hachemi Alikacem1, Houari A. Sahraoui2

1Centre de Recherche Informatique de Montréal, Québec, Canada

alikacem.el-hachemi@crim.ca

2Département d’informatique et de recherche opérationnelle
Université de Montréal, Québec, Canada

sahraouh@iro.umontreal.ca

Abstract. Nowadays, a large number of extraction tools are available. However, using them,
it is often difficult to gather and incorporate new metrics. On the other hand, the metric
specifications often lack precision and therefore lead to multiple implementation patterns. In
this paper, we propose a new approach of metric gathering. This approach, which is at the
same time generic and practical, is based on a metric description mechanism. It uses a
language that makes it possible to manipulate data from the source code representation
model. In a first phase, we have defined a generic model for object oriented code
representation. A second phase defines a description language that offers the syntactic
constructions necessary for data manipulation of the generic mode.

Market Entry Decisions: Numbers or Politics?
Hans Sassenburg

SE-CURE AG (www.se-cure.ch), CH-3775 Lenk, Switzerland
hsassenburg@se-cure.ch

Abstract. In unpredictable software manufacturer organizations, it is difficult to determine
when a software product will be released, the features the product will have, the associated
development costs or the resulting product quality. The NPVI-method is presented, enabling
a software manufacturer to compare and evaluate different release or market entry
strategies. However, information has its price in time and cost, forcing decision-makers to
make a trade-off between search costs and opportunity costs. In addition, decision-makers
simplify the real world, as they cannot escape the diverse psychological forces that influence
individual behaviour. Combined with the potential presence of sources of conflict, this often
leads to the situation where different stakeholders experience difference aspiration levels. As
such, satisficing behaviour where decision-makers try to find consensus and choose a
satisfactory release alternative is a good characterisation of the software release decision-
making process as found in practice. Successful adoption of the NPVI-method requires that
software manufacturers reach the zone of cost effectiveness for the perfection of information;
a zone where numbers make business sense, and can be convincingly used to support
informed decision-making.

ESOMIC – Automated effort estimation based on UML specification

or source code for object oriented programming languages

http://www.se-cure.ch/

Workshop Report 24

Daniel Germanus, Lukas Mrokon
Darmstadt University of Technology

daniel.germanus@gmail.com, lukas.mrokon@googlemail.com

Abstract. This paper focuses on the UML and source code representation of modern
objectoriented programming languages in an independent metamodel. Mapping identical
concepts in different languages isomorphically enables to write a single metric for a bunch of
programming languages. An important aspect was to support UML, so metrics can be run on
both source code and formal specifications. Transforming specifications into a query friendly
model allows the implementation of methods for effort estimation. Finally, the goal was to
automatize any of these methods and to evaluate their significance. Aforementioned
functionality is part of the open and extensible software system ESOMIC, the effort
estimation and software metrics intelligence center. ESOMIC can be extended to support
more object-oriented programming languages, software metrics, and high level methods.

Estimating the effects of project risks in software development
projects

Klaus Jantzen1, Gillian Adens2, Robert Armstrong2

1K+K Jantzen Software Services GmbH, D-71116 Gärtringen

klausj@jantzen-software.de

2Tassc Limited, Livingston, Scotland
{gillian|robert}@tassc-solutions.com

Abstract. Every software project is exposed to adverse external influences, the so called
project risks, that affect the cost and the duration of the project and, possibly, the quality of
the products. With a risk analysis it can be determined for a specific project what the risks
are. These risks then should be included in a systematic and formal manner in the project
estimate in order to obtain a realistic and reliable project estimate and a realistic project plan.
We will discuss the way that the project risks are accounted for in currently used estimation
methods and we will show a method that is used by a modern estimation tool and which
takes the two major properties of the project risks– namely probability of occurrence and
impact on the project – into account when calculating a project estimate. Finally we will
discuss how risk analysis and risk assessment fit into modern development processes and
into CMMI.

Status report on functional size measurement
for cross-organizational ERP solutions:
problems and alternative approaches

Maya Daneva

University of Twente

m.daneva@utwente.nl

Abstract. Measurement is a fundamental part of any managed activity and functional size of
software is the core to successful management of any software work of any magnitude. It is

Workshop Report 25

crucial for estimating project team efforts and normalizing quality attributes such as defect
rates, defect density, speed of delivery, and project duration. This paper discusses aspects
of the measurement challenge in the context of cross-organizational implementation of large
business information systems, namely Enterprise Resource Planning (ERP) systems. We
make an account of observations in ERP functional size measurement practice and
literature, identify aspects of the gap between practice and research, and report on a recent
research initiative at the University of Twente that we plan to carry out with strong industrial
participation.

Survey of Automation Tools Supporting
COSMIC-FFP – ISO 19761

Anabel Stambollian1, Alain Abran2

1, 2École de Technologie Supérieure-ÉTS, 1100 Notre-Dame Ouest,
Montréal (Québec) Canada H3C 1K3

1anabel.stambollian.1@ens.etsmtl.ca, 2alain.abran@etsmtl.ca

Abstract. Many software tools have been developed to support the implementation of the
ISO-19761 COSMIC-FFP standard on functional size measurement. This paper presents a
reference framework made up of the set of functions that is of interest to practitioners who
implement ISO functional size measurement standards. It also includes a 2006 survey of
COSMIC-related tools available both on the market and in the research community. Finally, a
gap analysis is presented in which the functions that still need to be addressed by tool
vendors are identified.

Durchführung eines Messprogramms: ein Erfahrungsbericht

Andreas Kowitz1, Christian Ofer2

1BMW AG

Andreas.Kowitz@BMW.de

23D Systems Engineering GmbH

C.Ofer@3DSE.de

Abstract. Die stetig ansteigenden Elektrik/Elektronik (E/E) Umfänge sind entscheidend für
den Innovationsanteil im Automobil. Die Beherrschung der daraus resultierenden Komplexität

mailto:Andreas.Kowitz@BMW.de

Workshop Report 26

ist eine wesentliche Voraussetzung für die Wettbewerbsfähigkeit eines Automobilherstellers
oder -zulieferers. Um die zunehmende Komplexität der E/E-Anteile zu beherrschen, hat die
BMW Group 2001 ein an CMMI orientiertes Change Programm gestartet. Zentrale Ziele
waren dabei u.a. die Stabilisierung des E/E-Entwicklungsprozesses sowie die Vermeidung
von Risiken. Wesentlicher Bestandteil des Programms war dabei auch die Einführung eines
Metriksystems.

Design of an Integrated Measurement Database for
Telecom Systems Development

Martin Kunz1, Marek Leszak2, René Braungarten1, Reiner R. Dumke1

1Software Engineering Group, University of Magdeburg, Germany

{makunz, braungar, dumke}@ivs.cs.uni-magdeburg.de

 2Lucent Technologies Network Systems GmbH, Nuernberg, Germany

mleszak@lucent.com

Abstract. The importance of software metrics gathered by measuring artefacts emerging
during the software development process for economic and scientific purposes is beyond
controversy these days. To help estimate project characteristics, measure project progress
and performance or quantify product attributes, and thus to benefit from it in the long run, a
suitable defined set of metrics data need to be defined, collected and analysed. In a complex
enterprise with large-scale development projects, a structured and persistent central storage
solution is almost compulsory. In addition, important statistical techniques for data analysis
and visualization techniques are also one major requirement. As an additional target the

application of such measurement database facilitates to reach CMMISM (Capability Maturity

Model® Integration) level 3 for all development units, implying the fulfilment of “Measurement
and Analysis” Process Area requirements, which contains the Specific Practices such as
“Specify Data Collection and Storage Procedures” and “Store Data and Results”, etc. This
paper presents results from empirical investigations of the Metrics situation within different
departments of Lucent TXS Nuremberg, where we focused on the three major disciplines -
System Engineering, Software Development, and System Test. Based on the research of
diverse metric data and repositories, the high-level design of a measurement repository
based on the Goal-Question-Indicator-Measurement (GQ[I]M) methodology and the

CMMISM framework is presented.
Structuring Software Process Metrics –

A holistic semantic network based overview

Reiner R. Dumke1, René Braungarten1, Martina Blazey2, Heike Hegewald3,
Daniel Reitz4, Karsten Richter5

1University Magdeburg, Faculty of Computer Science, Germany

dumke@ivs.cs.uni-magdeburg.de

2VW Wolfsburg, Germany, 3CSC Wonsheim, Germany

4EZ T-Systems Berlin, Germany, 5Bosch Stuttgart, Germany

Workshop Report 27

Abstract. The following paper characterizes the area of software processes considering their
different approaches for evaluation and measurement. It shows some of the existing kinds of
evaluation (rules of thumb, laws, principles, formulas etc.) and metrics concepts in the
software management literature background.
The goal is to identify process quality rules that cover the whole software process models
and structures in order to achieve a quantitative software management and to identify open
problems. We discuss a methodology achieving a holistic overview about quality-based
relations between different components of the software development considering products,
processes and resources.

How do we apply statistical process control in the area of
software development? – Experiences from industry

Melanie Ruhe

SIEMENS AG, CT SE3, Munich, Germany

melanie.ruhe@siemens.com

Abstract. Applying statistical process control (SPC) is well-known and established in
production processes but rather controversial in the area of software (SW) development. The
paper provides the description of our framework process for introducing SPC in a
development organization of the SIEMENS AG along with some explaining examples. On the
other hand the paper states problems and questions that come along with SPC in the area of
SW development.
The challenges and experiences are presented and discussed on a detailed level. From our
experiences it can be said that the information gained from the practice examples have been
essential for decision making in time as well as beneficial process performance predictions.
SPC is a helpful tool regarding levers for optimizing processes in mature organizations with
repeatable processes & projects. It allows consistent prediction and fine granular monitoring
of project performance and thus supports reducing development costs.

Use Case Points in der industriellen Praxis

Stephan Frohnhoff, Volker Jung, Gregor Engels
sd&m AG, Berliner Str. 76, D-63065 Offenbach

frohnhoff@sdm.de

Abstract. Fast and precise effort estimation of software development projects is crucial in IT
industry. Within a case study the Use Case Point method has been applied to 10 commercial
software development projects and compared with the incurred project efforts after project
close. The method is ready for use in commercial projects. We propose appropriate
improvements of the Use Case Point method leading to sig-nificantly higher estimation
accuracy.

Workshop Report 28

When use COSMIC FFP? When use IFPUG FPA?
A Six Sigma View

Dr. Thomas Fehlmann

Euro Project Office AG, Zurich, Switzerland

thomas.fehlmann@e-p-o.com

Abstract. Six Sigma has become a major drive in industry and is rapidly gaining interest in
software development and maintenance as well. The Six Sigma management strategy
focuses on measurements for reducing defects early in the value chain processes and thus
functional sizing measurements are a must for all Six Sigma Green and Black Belts that dare
to deal with IT processes, be it in development or operations. However, which measurement
method suits better to Six Sigma, the well established IFPUG 4.2 Function Points Analysis,
or the more modern ISO standard ISO/IEC 19761, known as COSMIC FFP V2.2?
Interestingly, both measurement methods seem rather complimentary than competing when
used in a Six Sigma setting, a setting rather targeted for defect avoidance than for project
estimation with commercial or engineering background. The two methods serve different
purposes.

KEYNOTE:

The investment in Software Process Improvement (SPI) is this the

benefit!

Ton Dekkers
Shell Information Technology International B.V.

Abstract. The investinent in SPI should result in the area of better performance, higher cus-
torner satisfaction, less defects, more reliable agreements and last but not least less cost.
Determination of performance must be implemented in a way that it can be measured before
and after the institutionalised SPI. In a real benchmark is also looked at external parties to
have insight in the own performance and the potential of the possible improvements.

Workshop Report 29

With the repository (release 9) of the International Software Benchmarking Standards Group
(ISBSG), a public open dataset wich over 3000 Software development projects is available to
compare the own peiformance. The ISBSG dataset shows the potential results of a more
Professional process.
In the presentation, the process and conditions for benehmarking, the possibilities of using
the ISBSG data and ltow it can be used as a reference to the results of the implemented SPI.
The ISBSG questionnaire provides every organisation a base set of metrics to perform a
benchmark. To define additional and more specific rnetrics, the Goal-Question-Metric
Method is very effective.
The business case of the investment in a software development tool is used as an example.
Based op based an (available) benchmark data the potential improvement of the SPI is
quantified and the expectations are made more realistic. Especially the validation of the
result of the SPI effort promised by the supplier proved to be very relevant.

Workshop Report 30

BSOA06 – Workshopbericht

1. Motivation zur BSOA-Initiative

Nach Aussage führender IT-Analysten, wie z.B. der Gartner-Group, wird die Etablierung
serviceorientierter Architekturen (kurz SOA) die Vorgehensweise bei der Entwicklung neuer
Anwendungssysteme in den kommenden Jahren grundlegend beeinflussen. Nicht selten ist
in diesem Kontext sogar vom Ende der Dominanz monolithischer Softwarearchitekturen die
Rede. Diese Überlegungen beruhen auf der Tatsache, dass bei einer servicebasierten
Architektur neue Anforderungen primär auf der Basis bereits existierender fachlicher
Serviceangebote realisiert werden können. Die autonom im Netz residierenden
Serviceangebote bieten fachlich begründete Funktionen und Daten über eine wohldefinierte
Schnittstelle an, kapseln die dahinter liegende Implementierung im Sinne einer „Black Box“
und unterstützen durch eine lose Kopplung die Verwendung innerhalb vielfältiger
Anwendungsszenarien. Die eigentliche Intelligenz zur Umsetzung neuer Anforderungen liegt
damit in der Komposition von Serviceangeboten und in der endnutzerbezogenen
Präsentation. Auf dieser Grundlage sollen redundante Systementwicklungen vermieden und
entsprechende Kosten eingespart werden können.

Vor dem Hintergrund eines solchen primär fachlich orientierten Paradigmenwechsels werden
neue Bewertungsmodelle benötigt, die prozess-, produkt- und ressourcenbezogene Aspekte
im Kontext einer SOA berücksichtigen müssen. Die BSOA-Initiative greift diese
Themenstellung auf und beschäftigt sich unter anderem mit den folgenden Aspekten:

• Bewertung der Mehrwertpotenziale einer SOA,

• Erarbeitung von Richtlinien zur Serviceentwicklung für eine SOA,

• Qualitätsbewertung angebotener Services und aufsetzender Kompositionen,

• Mess- und Bewertungsansätze zum Reifegrad einer SOA,

• Services Level Agreements (SLAs) und Verhandlungsaspekte.

Zur bundesweiten Etablierung dieser Initiative wurde am 24.11.2006 ein erster Workshop
zum Thema „Bewertungsaspekte serviceorientierter Architekturen“ an der Fachhochschule
für Wirtschaft Berlin (Berlin School of Economics) durchgeführt. Etwa 40 Teilnehmer aus
allen Teilen Deutschlands und aus Österreich waren zu dem eintägigen Workshop nach
Berlin gereist. Das Verhältnis der Teilnehmer aus dem industriellen und akademischen
Umfeld hielt sich die Waage. Der Workshop wurde in Kooperation zwischen der FHW Berlin
(Fachbereich II – Systementwicklung) und der Otto-von-Guericke-Universität Magdeburg
(Softwaremesslabor) unter der Schirmherrschaft der CECMG (Central Europe Computer
Measurement Group) veranstaltet und durch die GI (Gesellschaft für Informatik) und die
DASMA (Deutschsprachige Interessensgruppe für Softwaremetrik und Aufwandsschätzung)
unterstützt.

2. Inhalte des Workshops

Das inhaltliche Interesse galt der Bewertung von IT-gestützten Integrationslösungen
(subsumiert unter dem Stichwort SOA), durch die unternehmensinterne, aber auch
unternehmensübergreifend genutzte Softwareanwendungen (bzw. zunehmend
Serviceangebote) prozessorientiert miteinander verbunden werden können. Aus den

Workshop Report 31

eingereichten Beiträgen wurden im Rahmen eines bundesweit zusammengesetzten
Programmkomitees die folgenden, kurz beschriebenen Beiträge ausgewählt. Bei der
Auswahl der Themen wurde insbesondere auf einen ausgeglichenen Mix industrieller und
wissenschaftlicher Beiträge Wert gelegt. So kamen 3 Vorträge unmittelbar aus der Industrie
und 4 Vorträge aus dem universitären Umfeld.

- Martin Kunz (Otto-von-Guericke-Universität Magdeburg): Serviceorientierte Ausrichtung

von Test- und Messwerkzeugen

Der Autor geht der Frage nach, wie Funktionalitäten neu zu entwickelnder, aber auch
existierender Mess- und Testwerkzeuge als netzwerkbasierte Serviceangebote
bereitgestellt werden können. Mit Hilfe einer empirischen Analyse wird sowohl die Sicht
des Kunden, als auch die Sicht der Toolhersteller einer ersten Bewertung unterzogen.

- Heinz-Günter Siebert (Siebert EDV-Beratung & Universität Duisburg-Essen):

Unterstützung von Geschäftsprozessen durch Serviceorientierte Architekturen

In diesem Beitrag werden serviceorientierte Architekturen (SOA) aus Sicht der
Unternehmensführung eingeordnet und bewertet. Die Ausrichtung der eingesetzten
Informationssysteme auf die Unternehmensziele steht dabei im Mittelpunkt.
Grundprinzipien einer serviceorientierten Architektur werden anhand des SOA-Tempels
dargestellt und die mit ihm verbundenen Begriffe durch ein SOA-Ebenen-Glossar zum
besseren Verständnis erklärt.

- Dennis Heinemann (Hochschule Harz & T-Systems Enterprise Services GmbH):

Semantische Aspekte in Service-orientierten Architekturen

Den innerhalb von serviceorientierten Architekturen verwendeten XML-Nachrichten
(typisch SOAP) fehlt zumeist die Zuordnung ihrer eindeutigen Semantik. Mit Hilfe von
Informationsobjektmodellen (oder auch Businessobjektmodellen) können semantische
Informationen mit Informationsobjekten verknüpft werden. Am Beispiel der
Telekommunikationsbrache werden die beiden Modelle SID und BOM kurz vorgestellt und
einer ersten Bewertung unterzogen.

- Matthias Schorer (FIDUCIA IT AG): Serviceorientierte Architekturen (SOA) — viele
Fragen offen

Die FIDUCIA IT AG als größter IT-Dienstleister für die Volks- und Raiffeisenbanken in
Deutschland beschäftigt sich seit langen mit den Möglichkeiten eines servicebasierten
Ansatzes. Das Java basierte Banking Framework – JBF, auf dem alle Entwicklungen im
Hause FIDUCIA basieren, verfolgt bereits seit der ersten Version im Jahre 1998 einen
Service-orientierten Ansatz. Im Zuge des SOA-Hype werden verschiedene marktgängige
SOALösungen untersucht und bewertet.

- Nico Brehm (Universität Oldenburg): Sicherheitsprotokoll zur Bewertung von Diensten in

SOA-basierten Anwendungssytemen

Die automatische Suche und Entscheidung über die Nutzung von konkurrierenden
Diensten ist zumeist mit Sicherheitsproblemen verbunden, da Dienstnutzern oftmals keine
Informationen über die Vertrauenswürdigkeit von fremden Dienstanbietern zur Verfügung
stehen. Der vorliegende Ansatz beschreibt ein Sicherheitsprotokoll durch dessen
Anwendung Bewertungen über Dienste dezentral von den Anbietern selbst verwaltet
werden können. Das Sicherheitsprotokoll zielt auf die Verhinderung von Manipulationen
durch die Dienstanbieter ab.

Workshop Report 32

- Dirk Malzahn (OrgaTech Unternehmensberatung Lünen): Normbasierte Bewertung von
SOA-Strukturen

Die Bewertung einer SOA muss denselben Regeln unterliegen wie die SOA selbst. Der
Idealfall wäre daher erreicht, wenn sich die Bewertung einer SOA selbst als Service
abbilden ließe. Dieses setzt voraus, dass die Bewertung einer SOA auf Basis anerkannter
Standards und Normen erfolgen kann, die über den Fall der Einzelbewertung hinaus,
SOAs vergleichbar machen. Zwar gibt es nicht einen einzelnen Standard, der die
Bewertung einer SOA in Summe abdeckt, durch eine geschickte Kombination von
Standards lassen sich aber alle Aspekte einer SOA durch eine Bewertung abdecken.

- Dmytro Rud (Otto-von-Guericke-Universität Magdeburg): Analyse des Performance-

Verhaltens von WS-BPEL-Prozessen

Im Beitrag wird über prototypische Implementierung eines mathematischen Modells zur
Analyse des Performance-Verhaltens von mit Hilfe von WS-BPEL (Business Process
Execution Language) orchestrierten Geschäftsprozessen berichtet. Die Implementierung
des Modells erfolgte auf der Grundlage einer instrumentierten BPEL-Engine, einer
Messdatenbank und eines Analyseprogramms.

3. Diskussion und Ausblick

Innerhalb einer moderierten Diskussionsrunde wurden von allen Teilnehmern des
Workshops aktuelle Herausforderungen bei der Bewertung serviceorientierter Architekturen
identifiziert und erste Vorgehensweisen zur Bearbeitung dieser Themenstellungen im
Rahmen der BSOA-Initiative herausgearbeitet. Angeregt wurde diese durch einen
einführenden Diskussionsbeitrag zum Thema „Richtlinien und Vorgaben für die
Implementierung einer SOA“. Im Folgenden seien einige der identifizierten
Herausforderungen im Kontext der Etablierung eines firmenspezifischen und
herstellerunabhängigen SOA-Design-Guideline aufgezeigt.

• Herausarbeiten eines geschäftsgetriebenen Ansatzes (Firmenziele berücksichtigen),

• Bereitstellung von Musterlösungen (vgl. Design Pattern bzw. Fallstudien),

• Aufzeigen der signifikanten Unterschiede zur klassischen Applikationsentwicklung,

• Hinweise zu Fragen der Granularität, Skalierung uns Wiederverwendung,

• Unterscheidung zwischen Neu- und Altsystem,

• Vertragliche Gestaltung von Serviceschnittstellen,

• Vorgaben (Empfehlungen?) zu den verwendeten Basistechnologien,

• Bereitstellung zunächst einfacher Regeln (vgl. Rules of Thumb – z.B. Kosten/Nutzen),

• Bereitstellung konkreter Metriken (z.B. Anzahl/Anteil servicebasierter Anwendungen).

Neben diesen Punkten zeigte sich sehr deutlich die unterschiedliche Interpretation der
mannigfaltigen Begriffswelt im Kontext einer SOA. Daher gilt es neben der inhaltlichen
Ausprägung eines SOA-Design-Guideline die verwendete Begriffswelt klar und
widerspruchsfrei im Sinne einer gemeinsam verwendeten Ontologie zu definieren. Darüber
hinaus sollten sich die unterschiedlichen Interessen an einer SOA auch in verschiedenen

Workshop Report 33

Rahmenwerken (z.B. Business-, Developer-, Deployment- oder auch Management-
Guidelines) wiederfinden. In diesem Zusammenhang zeigten sich auch die ggf. notwendigen
organisatorischen Veränderungen (z.B. neue Rollen oder auch neue Berufsorientierungen),
hervorgerufen durch die Implementierung einer SOA. Ebenso wird durch eine SOA das
Bedürfnis für einen Informationsaustausch zwischen den Beteiligten (Informations-
management – Entwicklung/Integration – Betrieb) deutlich höher, als dieses bei klassischen
Entwicklungsprojekten der Fall war.

Bis weit nach Ende des offiziellen Workshops hielten die Diskussionen zu den behandelten
Themenstellungen an; insbesondere an einem Freitag ein sicheres Indiz für das große
Interesse der Teilnehmer an den durch den Workshop aufgegriffenen Aspekten. Im Jahr
2007 wird es weitere Aktivitäten der BSOA-Initiative geben. SOA-Themenstellungen werden
im Rahmen der CECMG-Jahrestagung in Nürnberg (Mai 2007) aufgegriffen. Im Herbst wird
es den BSOA07-Workshop geben.

4. Publikation

Zur Unterstützung der BSOA-Initiative wurde an der Otto-von-Guericke-Universität
Magdeburg ein korrespondierendes Portal (vgl. http://ivs.cs.uni-magdeburg.de/~gi-bsoa)
eingerichtet. Neben aktuellen Informationen können dort die detaillierte Agenda des
Workshops sowie die entsprechenden Präsentationen aller Referenten eingesehen werden.
Darüber hinaus findet sich dort auch eine zusammenfassende und ungekürzte Darstellung
zu den Inhalten der durchgeführten Diskussionsrunde.

Neben der internetbasierten Publikation der Präsentationen zum Workshop erfolgte auch die
Herausgabe eines Tagungsbandes (ISBN 3-929757-95-8) mit den entsprechenden
Langfassungen der Beiträge. Exemplare dieses Tagungsbandes wurden in der Bibliothek
des Fachbereichs II der FHW Berlin und an der Otto-von-Guericke-Universität Magdeburg
hinterlegt. In begrenzter Zahl können diese auch beim Autor dieses Workshopberichts
abgerufen werden.

5. Dank

Besonders hervorzuheben sind die perfekten organisatorischen Rahmenbedingungen, die
zum Gelingen des Workshops maßgeblich beitrugen und durch Frau Walz, Frau Wenzel und
Herrn Kaufmann verantwortet wurden. Ihnen sei an dieser Stelle noch einmal ein herzlicher
Dank ausgesprochen. Ebenso geht ein Dank an Herrn Lück für die Gestaltung der
Öffentlichkeitsarbeit sowie an Frau Affeldt für die Teilnehmerregistrierung.

Prof. Dr.-Ing. Andreas Schmietendorf

FHW Berlin & CECMG (Ansprechpartner der BSOA-Initiative)

E-Mail: andreas.schmietendorf@cecmg.de

http://ivs.cs.uni-magdeburg.de/%7Egi-bsoa
mailto:andreas.schmietendorf@cecmg.de

 Position Papers 35

A Critical Analysis of Testing Maturity Model

Ayaz Farooq, Heike Hegewald, Reiner R. Dumke

University of Magdeburg, Institute for Distributed Systems

{farooq, dumke}@ivs.cs.uni-magdeburg.de

Abstract. Software process establishment, evaluation and improvement are key
research areas in the software engineering field today. Testing activities within a
software process play a vital role in quality and profitability of the developed product. In
this regard, Testing Maturity Model (TMM) is a well known and probably the most
comprehensive maturity model for test process assessment and improvement to date.
TMM was completed in 1997 and since then it has not been updated. Within the
context of latest test issues, advancements in testing techniques & practices and in
software process evaluation & improvement, TMM fails to reflect the state-of-the-art of
software testing in 2007. This paper critically reviews TMM, mentions its strengths,
highlights some of its weaknesses and suggests improvements and future research
directions.

Keywords: Test process improvement, software process improvement, Testing
Maturity Model, TMM, software process

1 Introduction

In this extremely quality conscious modern software industry, processes, people and
technology are believed to play key role in providing quality software products.
Software processes is a key research area in the field of software engineering. One
implicit assumption in software process research is that improving the software
process will improve the software product quality, and better control of the software
process will increase project success [10]. Primary issues associated with software
processes are process establishment, improvement and evaluation. Some well
known general process improvement and evaluation approaches are summarized by
Dumke et al. [6][14].

Embedded within the software development process are several other processes
such as requirements analysis process, product specification process, design
process and testing process [5]. Testing is an important phase in the software
development process and is believed to consume major project resources. In this
connection, Swinkels [13] investigates available test process improvement (TPI)
models. Prominent among them and first of its kind is the Testing Maturity Model
(TMM)1 [4][2][3][5] which was developed to assist software development
organizations in evaluating and improving their testing processes.

Since inception of TMM in 1997, new new testing issues have grown, contemporary
best testing practices have been developed, and new software process assessment,

1 TMM (Testing Maturity Model), CMM (Capability Maturity Model), and CMMI (Capability Maturity
Model Integration) are all trademarks of their respective owners

mailto:farooq,%20dumke%7D@ivs.cs.uni-magdeburg.de

 Position Papers 36

evaluation and improvement techniques been introduced. The next sections critically
review TMM in view of all these latest advancements and suggest possible future
model improvements and research directions.

2 Overview of TMM

The principal inputs to the development of Testing Maturity Model (TMM), as
described by its author Ilene Burnstein [5], were CMM V 1.1, Gerlperin and Hetzel’s
Evolutionary Testing Model [9], survey of industrial testing practices by Durant [7] and
Beizer’s Progressive Phases of a Tester’s Mental Model [1]. TMM consists of a set of
five maturity levels, a set of maturity goals and subgoals and associated Activities,
Tasks and Responsibilities (ATRs), and an assessment model. This is probably the
only available maturity model for the test processes. The model is quite useful from
many aspects. Bearing similarity (in principles) with other general process
improvement models such as CMM/CMMI and SPICE, this model can easily be
integrated into existing process improvement programs of organizations. The
assessment process is simple enough to conduct, especially for smaller
organizations, and can provide a faster feedback to engineers and management.
Burnstein [5] mentions industrial application of this model in several organizations.
Olsen and Vinje [12] also found TMM very useful for practical test-planning and post-
evaluation of testing process.

3 Critical Review of TMM

Despite the many benefits of the TMM described in section 2 above, there is always
a room for improvement in any practice or methodology. In this regard, we critically
review this model from four perspectives, i.e. model objective, model construction,
assessment process, and model representation.

3.1 Model Objectives

Testing Maturity Model (TMM) was aimed at test process improvement and
assessment and at providing best practices and guidelines to test managers, test
specialists, and software quality assurance staff to address various testing issues. It
was developed about 9 years ago with CMM V 1.1 (1993 release) as a reference
model. Since then many new testing issues and techniques have evolved. Research
in process evaluation and improvement has brought forth new approaches. With
many version changes, CMM itself has now evolved into CMMI for Development
V1.2. TMM also needs to be reviewed keeping in view these contemporary
developments.

CMM/CMMI was developed based on extensive feedback from research community,
government and industry. TMM like CMM/CMMI or other maturity models, is a set of
best practices in the field of software testing. TMM’s best practices were based
mainly on only one industrial survey of testing practices [7] performed 14 years
before. Best practices evolve over time. Additionally, TMM did not incorporate
change requests from external sources such as industry or test professionals/users

 Position Papers 37

etc. A revision of TMM is imperative to reflect current best testing practices and
customer’s/professionals’ feedback.

Moreover, TMM adopts theoretical style and primarily provides only high level
guidelines in the form of ATRs while lacks more elaborate information which could
have been provided in the form of examples, typical work products as they are
available in case of CMMI, and example deliverables for each step in the testing
process. For example, in maturity level 4 which is about management and
measurement, ATRs exist for establishing a test measurement program but more
specific and practical advice on how to collect, store, analyze and maintain the test
measurement data is missing.

3.2 Model Construction

Figure 1 describes three structural components of TMM and two descriptive parts.
The figure shows some structural overlapping of different TMM concepts. Part 1 and
part 2 of the TMM model derive different elements from the three model components.
These parts are not disjoint and overlap since maturity goals are redundantly
contained in both part 1 and part 2.

Additionally, internal structure of the maturity levels associates activities, tasks, and
responsibilities (ATRs) with maturity subgoals and one expects that he will get a
separate set of ATRs to accomplish each of those maturity subgoals. But on the
contrary, part 2 of the model organizes ATRs with respect to maturity goals. Either
the internal structure should reflect this fact or these ATRs should be defined for
each subgoal separately.

It will be worthwhile mentioning that in an earlier review of TMM, Swinkels [13] also
observed that TMM did not address issues relating to test environment, reporting,
defect management and testware mangement. However, in our opinion, TMM’s
maturity level 5 is about optimization/defect prevention and addresses the defect
management issues.

Figure 1: Structure of Testing Maturity Model

 Position Papers 38

TMM ignores people issues as well. Personnel are a key component of processes
and their capabilities and involvement are vital to success of the testing process. In a
recent empirical study [8], employee participation was identified as the factor with the
strongest influence on software process improvement success. Another aspect of
people issues is that most of the difficulties in the implementation of improved
practices are associated with changing management perceptions, overcoming
people’s natural resistance to change and implementing workable processes and
management controls [13].

3.3 Assessment Process

Different kinds of process assessment approaches exist such as a self, team-based,
continuous or independent assessment. Testing Maturity Model provides internal
(self) assessment only. This assessment model is not aimed for certification of the
testing process by some external body. Assessment and capability determination of a
software process are two different activities with different aims. Assessment
investigates a process system against a model, standard, or benchmark while a
capability determination derives a capability level based on fulfilment of required
practices defined in a software engineering process system. TMM’s assessment
model is lightweight and serves both purposes. However, this kind of internal
assessment cannot be used for benchmarking purposes or to compare testing
maturity levels among organizations. In today’s competitive software industry where
CMMI is getting widespread acceptance, provision of a standard (and external)
testing maturity determination methodology could testify an organizations testing
capabilities.

Moreover, TMM’s assessment questionnaire does not advocate using the testing tool
questions for maturity level ranking purposes. Usage of appropriate technology/tools
is one important aspect for the success of a testing process. In our opinion these
testing tool questions could be assembled in more detail and might be a suitable part
of assessment and ranking procedures.

3.4 Model Representation

When TMM was developed, CMM supported only a staged representation for
process improvement. A staged representation uses predefined sets of process
areas to define an improvement path for an organization. Further developments in
CMMI introduced a continuous representation as well. The continuous representation
enables an organization to select a process area (or group of process areas) and
improve processes related to it. While staged and continuous representations have
respective pros and cons, the availability of both representations provides maximum
flexibility to organizations to address their particular needs at various steps in their
improvement programs. In this regard, TMM is inflexible since it supports a staged
representation only.

3.5 Related Work

Based on Testing Maturity Model, Jacobs et.al [11] presented (in 2002) basis of a
roadmap towards a tentative framework called Metrics based Verification and

 Position Papers 39

Validation Maturity Model. They planned to unite the strengths of known verification &
validation improvement models and to reflect proven work practices. It is yet
unknown if their proposed model has been completed, is in development, or just
abandoned. Another attempt towards improvement of TMM is the establishment of a
non-profit organization called TMMi Foundation2. This foundation aims to develop a
common, robust model of test process assessment/improvement in IT organizations.
However, no publicly available document or information yet exists as to the
development status of their anticipated model.

4 Future Work

To address the issues raised in this paper about TMM, we are considering a redesign
of Testing Maturity Model in line with the newly available version of Capability
Maturity Model Integration V 1.2. First, a standard, external, and independent
assessment & capability evaluation method will be developed based on
CMMI/SPICE. Activities, tasks, and responsibilities (ATRs) can be grouped inside
better organized process areas to facilitate the organizations to focus and choose
particular improvement areas as per their individual needs. Another proposed
extension to this model is provision of both staged and continuous representations.
Successful testing depends upon tools/technology, personnel and processes. As
mentioned earlier in section 3.2, TMM does not involve all aspects of the software
test process maturity such as people, reporting, test tools, and product perspectives.
Inclusion of new process areas and a redefinition of maturity levels will also be part of
our proposed enhancements to this model.

To cope with the complexity of the testing process and make it more controllable and
cost effective and similar to the concept of software development life cycle models
such as waterfall, spiral or V-model etc, we are also working on foundations of an
adaptive software test process life cycle model incorporating influences of
tools/technology, personnel and processes. The proposed life cycle model will derive
influences from the IEEE Standard for Developing Software Life Cycle Processes
(IEEE Std 1074-1997) and the ISO/IEC 12207 Standard for Information
TechnologySoftware life cycle processes.

5 Conclusions

Software test process models, evaluation, assessment and control has attracted
attention of many researchers. With its simplicity and ease of assessment and
integration, Testing maturity model (TMM) is very useful for test process assessment
and improvement. However, in view of current research in process formalization,
assessment and improvement, TMM can be improved to adjust some of its
drawbacks found in its original version. Furthermore, to cope up with the many issues
related to the whole software testing process new concepts such as a software
testing process life cycle could bring remarkable changes in this evolving area.
References

2 http://www.tmmifoundation.org/

 Position Papers 40

 [1] B. Beizer: Software Testing Techniques. Van Nostrand Reinhold, New York, USA,

1990.

 [2] I. Burnstein, T. Suwannasart, and C.R. Carlson: Developing a testing maturity model:
Part 1. Crosstalk, August 1996.

 [3] I. Burnstein, T. Suwannasart, and C.R. Carlson: Developing a testing maturity model:
Part 2. Crosstalk, September 1996.

 [4] I. Burnstein, T. Suwannasart, and R. Carlson: Developing a testing maturity model for
software test process evaluation and improvement. In Proceedings of the IEEE
International Test Conference on Test and Design Validity, pages 581–589,
Washington, DC, USA, 1996. IEEE Computer Society.

 [5] I. Burnstein: Practical Software Testing: A Process-oriented Approach. Springer-Verlag
Inc., Secaucus, NJ, USA, 2003.

 [6] R.R. Dumke, R. Braungarten, M. Blazey, H. Hegewald, D. Reitz, and K. Richter:
Software process measurement and control – a measurement-based point of view of
software processes. Technical report, Dept. of Computer Science, University of
Magdeburg, December 2006.

 [7] J. Durant: Software testing practices survey report. Technical report, Software
Practices Research Center, January 1993.

 [8] T. Dyba: An empirical investigation of the key factors for success in software process
improvement. IEEE Trans. Softw. Eng., 31[5]:410–424, 2005.

 [9] D. Gelperin and B. Hetzel: The growth of software testing. Communications of the
Association of Computing Machinery, 31[6]:687–695, 1988.

[10] M. Huo, H. Zhang, and R. Jeffery: A systematic approach to process enactment
analysis as input to software process improvement or tailoring. In APSEC’06:
Proceedings of the XIII Asia Pacific Software Engineering Conference, volume 0,
pages 401–410, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[11] J.C. Jacobs and J.J.M. Trienekens: Towards a metrics based verification and validation
maturity model. In STEP ’02: Proceedings of the 10th International Workshop on
Software Technology and Engineering Practice, page 123, Washington, DC, USA,
2002. IEEE Computer Society.

[12] K. Olsen and P.S. Vinje: Using the testing maturity model in practical test-planning and
postevaluation. In EuroSTAR:98: Proceedings of the 6th European Software Testing,
Analysis and Review Conference, pages 345–359, Munich, Germany, 1998.

[13] R. Swinkels: A comparison of TMM and other test process improvement models.
Technical report, Frits Philips Institute, Technische Universiteit Eindhoven,
Netherlands, November 2000.

[14] Y. Wang and G. King: Software engineering processes: principles and applications.
CRC Press, Inc., Boca Raton, FL, USA, 2000.

 Position Papers 41

Test metrics

Harry M. Sneed

ANECON, Wien / Budapest

As with software development, for the software test metrics serve to evaluate the
product, to calculate the project, to measure the progress and to assess the process.
So we can distinguish between four types of test metrics – the four “P’s”

• Product metrics

• Project metrics

• Progress metrics and

• Process metrics.

Product metrics:

Let us begin with the product metrics. In testing we are concerned with the testability
of the product. A product is testable when it requires a minimum of test cases and
test data to demonstrate its correctness and when its results are maximally visible.
The goals then are

• To minimize the number of test cases required

• To maximize visibility

Minimizing the number of test cases means different things at different semantic
levels. In testing there are at least three such levels

• The unit test level

• The integration test level and

• The system test level.

At the unit test level having less test cases is equivalent to having less paths thru the
code to test. The number of logical paths is determined by the number of methods
and logical conditions as well as the structure of the classes. Thus, the less methods
and conditional branches there are relative to the size of the code in statements, the
greater will be the testability. On the other hand, the less levels there are in the class
hierarchy relative to the number of classes, the greater will be the testability.

In addition to that, we have data coming in and out of the classes. Much of the input
data is just used to set or compute results. However, some of it serves to control the
logic in the classes. The more control data we have, the harder it is to test the
classes since the control data can not be randomly generated. It has to be explicitly
set. Thus, the more control parameters there are the less is the testability.

 Position Papers 42

Taking on these different views of the units under test, we will come up with at least
three metrics for unit testability

Statements
BranchesMethods +

−1

Classes
sClassLevel

−1

ersAllParamet
ametersControlPar

−1

To demonstrate the measurement of unit testability, assume we have a component of
1500 statements with 7 classes at 3 levels. Each classes has 10 methods each with
5 logical branches. Then, each method has three parameters of which one is a
control parameter. That would lead to the following unit testability measures

72.0
1500

350701 =
+

−
statements

branchesmethods

57.0
7
31 =−
classes
levels

67.0
210

701 =−
Parameters

ametersControlPar

Assuming that all of the metrics are assigned an equal weighting, the average
testability of this particular component would be

() 65.0367.057.072.0 =++

It’s testability could be improved by reducing the number of logical branches, by
having less class levels and by decreasing the control parameters.

At the integration test level having less test cases is equivalent to having less
interactions between the components and having fewer data interfaces. Interactions
between components occur when a method within one component calls a method
within another component. These calls are referred to as foreign calls, i.e. long
distance calls, as opposed to the local calls of methods within the same component.

Components can also be coupled by sharing the same data. If two separate
components access the same database table or use the same file, i.e. one produces
the file and the other consumes that file, then they have a data coupling. The relation
of the shared database tables and files to the total number of database tables and
files is an indicator of testability.

Finally, we have the number of system and user interfaces as opposed to the total
number of components. The more interfaces there are the more we have to test.

 Position Papers 43

Having less interfaces reduces the testing burden thus the relation between external
interfaces and components is another indicator of integration testability.

From these three views of component integration we derive three metrics for
integration testability.

AllCalls
lsForeignCal

−1

blesDatabaseTaAllFiles
blesDatabaseTasSharedFile

&
&1−

Components
terfacesExternalIn

−1

To demonstrate the measurement of integration testability, assume we have 16
components. Within these 16 components there are some 540 method calls of which
96 are foreign calls. These 16 components also process 40 database tables and 10
files. Of the 40 database tables 12 are accessed by two or more components and of
the 10 files, 6 are used to pass data between components. The other 4 files are
external interfaces. To them come 8 user interfaces giving a total of 12 external
interfaces. This results in the following measures of testability

85.0
640

961 =−
Calls

lsForeignCal

40.0
30

181 =−
DataStores

StoresSharedData

25.0
16

121 =−
Components

terfacesExternalIn

Assiming that all of the metrics are assigned an equal weighting, the average
integration testability of this particular set of components would be

() 50.0325.040.085.0 =++

It is low because of the high number of shared data stores and external interfaces
relative to the number of components.

At the system testing level having less test cases is a function of the number of
database attributes one has to generate, the number of objects in the user interfaces
one has to test and the number of system interfaces one has to deal with.

First, the number of database tables can be viewed in relation to the number of
attributes contained within those tables. The more attributes the tables have, the
harder it is to populate them. It is easier to deal with many small tables than fewer

 Position Papers 44

larger ones. Since any database table will have at least 2 to 4 attributes as a
minimum we must adjust it by at least a factor of 4, thus giving the metric

4×
Attributes

Tables

Secondly, systems have user interfaces and user interfaces contain objects or
ridgets. Their number drives the effort required to test those user interfaces. The
more objects the tester has to manipulate, the higher the test effort. As is the case
with the database tables, it is easier to test many user interfaces with few objects
than a few interfaces with many objects. Thus, the user interface testability is the
relationship of user interfaces to objects contained therein, whereby it is assumed
that each user interface has at least two objects, giving the metric

2×
Objects

acesUserInterf

Thirdly, there are the system interfaces to deal with. These can be import / export
files, remote procedure calls or messages sent and received. Each such interface
contains a set of parameters. The number of parameters determines the width of the
interface. The more there are, the wider the interface, thus increasing the number of
potential data combinations and the required number of test cases. A system with
many narrow interfaces requires less effort to test than one with fewer wider
interfaces. Thus, we derive the ratio of parameters to interfaces as another measure
of system testability. Since an interface will have as a rule at least 3 parameters we
must adjust the interface ratio by multiplying it by 3.

3×
metersSystemPara
rfacesSystemInte

To demonstrate the measurement of system testability, let us assume a system has
400 data attributes in 32 tables, that it has 92 widgets or objects in 36 user interfaces
and that it has a total of 240 parameters in 24 system interfaces. To measure the
testability of this system we use the metrics

32.0408.04
400

32
=×=×

Attributes
Tables

78.0239.02
92

36
=×=×

Objects
acesUserInterf

30.0310.03
240

24
=×=×

Parameters
Interfaces

The average of these three metrics gives us a system testability ratio of 0.46. To
obtain a maximum rating of 1, the database tables could have no more than 4
attributes, the user interfaces no more than 2 objects and the system interfaces no
more than 3 parameters on average [2].

 Position Papers 45

Project Metrics:

Project metrics are used to estimate the effort and the time required for a test project.
As with other cost estimations, the key parameters are the size of the task and the
productivity of the workers. Size and productivity in testing are are expressed in
terms of the number of test cases required to test a system. This number can be
derived from an analysis of the requirements, by counting each action, state and rule
as well as each acceptance criteria to be tested. The productivity in test cases per
time unit can only be gained through past experience or by copying someone else’s
experience which is always risky to do.

For estimating test effort and time a modified version of the COCOMO – II method is
recommended. The system type and the scaling exponent are the same as in
COCOCO – II. [3]. The units of productivity are instead of statements or function–
points test cases. The quality adjustment factor is replaced by the testability factor.
That results in the equation

yTestabilit
tivityTestproduc

TestCaseSystemTypeTestEffort
SE

×
⎭
⎬
⎫

⎩
⎨
⎧

×=

To demonstrate the use of that equation, we will assume that we have counted 400
test cases and that our previous productivity was 4 test cases per person day or 1 for
every 2 hours worked on testing, including test design, test case specification, test
data preparation, test execution and test evaluation, but not including test planning.
This would give us an unadjusted effort of 100 person days.

Now this has to be adjusted by the testing scaling exponent which ranges from 0.91
to 1.23 depending on five influence factors.

• degree of reuse of previous tests

• testing environment

• target architecture

• test team cohesion

• test process maturity

Each of these factors is evaluated on the scale of 0.91 to 1.23 with 0.91 being the
highest fulfillment and 1.23 being the lowest. Then the average is taken. In the case
where

• degree of reuse = low = 1.10

• testing environment = medium = 1.00

• target architecture = highly known = 0.96

• team cohesion = low = 1.10

• process maturity = medium = 1.00

we arrive at a scaling exponent of 1.03.

 Position Papers 46

Our raw effort of 100 person days is adjusted by this scaling factor to 115 person
days.

Now we must adjust this effort further by multiplying it by the testability factor. To
obtain this factor we take the measured system testability of 0.46 which we obtained
from the analysis of the data bases, user interfaces and system interfaces. To
convert it into a multiplication factor we divide it into the median testability grade of
0.5. A testability ratio higher than the median will reduce the testing effort. A
testability ratio lower than the median will increase the testing effort. Here the test
effort will be increased by 8% due to the below average testability.

0.5% /0.46 = 1.08 . 115 = 124 person days

The last step is to multiply the adjusted effort by the system type. In COCOMO – II
there are 4 system types each with another multiplication factor

Stand alone Application = 0.5
Integrated Application = 1
Distributed Application = 2
Embedded Application = 4

Assuming that we are developing a distributed web application we would multiply the
124 person days by 2 giving a final effort of 248 person days or 12 person months for
testing.

To estimate the calender time required we proceed to use the COCOMO – II time
equation

()100%1 SCEDEffortCTime F

PMs
−×⎟

⎠
⎞

⎜
⎝
⎛ ×=

C is a constant depending on the project type. In the case of a new development it is
3.67

F is the time scaling exponent, not to be confused with the effort scaling exponent. It
is computed as follows

()()LBSEDF −×+= 2.0

SE is the effort scaling exponent from the effort equation, in our case 1.03. LB is the
lower bound of the scaling exponent which is 0.93.

D is a time base coefficient, depending on the project type. For a new development, it
is 0.28.

That leaves us with a time scaling factor of

 Position Papers 47

()()() 3.093.003.02.028.0 =−×+

The normal time to complete this particular testing project would be

() 81267.3 3.0 =× months using 1 Tester

The SCED% is referred to by Boehm as the schedule compression factor. It is the
percentage to which to project time can be reduced by adding more persons to the
project. In development it is seldom more than 50% per person, however in testing it
can go up to 75% per person. Adding more testers to a testing project will not
necessarily make it last longer, provided they are familiar with the project and know
what to do.

So for our project assume we can add an additional two testers thus compressing the
project time by .75 x .75 = 56% and giving a compression factor of

() 44.0100561 =−

With two testers we would then need only 8 x 0.44 = 3.5 calendar months. Using the
modified COCOMO – II method we have calculated an effort of 12 person months
and a duration of 3.5 calendar months for this testing project.

Progress Metrics:

Test progress can be measured in terms of test coverage and errors found. Test
coverage is measured in many ways. One is the conventional code coverage, which
could be measured at the

method
statement or
branch level

It is expressed as the number of code units traversed by the test relative to the total
number of code units, e.g.

hesTotalBranc
stedBranchesTe

Since the advent of frameworks, reuse and code generation this form of coverage
has become to mean less. In fact, it has become meaningless unless it is possible to
establish a profile of which code units belong to the application under test.

For this reason functional and architectural coverage have become more important.
Architectural coverage captures the methods affected by the application, the
interactions between those methods and the object types created. It then remains to
instrument the code in such a way that these methods, interactions and state
transitions are marked. Then the architectural coverage would be

 Position Papers 48

StatesCallsodslevantMethAll
edStatesTestCallsMethods

&,Re
&,

Functional coverage is the easiest to measure provided all of the functions are
documented. A static analysis of the functional requirements will tell us how many
test cases are required to test all of the functions. The functional test coverage is
then

quiredTestCases
xecutedTestCasesE

Re

Measuring the error detection rate presupposes that the testing team has the error
statistics on previous projects or versions, since that is necessary in order to
compute the expected error density and to project the number of errors.

There are here two key measurements

• the system size and

• the error count.

The system size can be measured in statements, function points, object points or any
other size metric provided it can be extracted from the source code of a system. The
error count is the number of errors found by the testers in that particular system. To
project the error count on to a future system we need the error density. This is
computed by dividing the error count by the system size.

Having completed a system and put it into production the code is analyzed and found
to contain 18.000 statements. When testing that system 120 errors were discovered.
That gives an error density of

007.0
000,18

120
=

or 7 errors per 1000 statements.

The new system to be developed is estimated to have 1200 Function–Points. From
previous measurements we have a ratio of Function–Points to statements in this
particular language of 1 to 33. From that ratio we can predict that the new system will
have some 39.600 statements. Multiplying that by the previous error density of 0.007
tells us that we should find at least 277 errors in the new system as it is more than 2
times larger than the previous one.

Of course the more systems we have to compare with, the more reliable will be our
error projection. The error density rate projected on to the new system could be the
median error density of all the comparable systems. In any case, once we have a
predicted error count, we can use this as a reference point for the number of errors
we should be able to find.

 Position Papers 49

Tracing the test coverage rate and the error discovery rate are the prime means of
measuring the progress of a test project. Both metrics can be compared with the
rates to be achieved as well as the expended test effort in person days to locate
where the project is.

Actual Test Effort

Estimated Test Effort

 Predicted Error Discovery Rate

Actual Error
Discovery Rate

Actual Test
Coverage Rate

Target Test Coverage Rate

Process Metrics:

In the end every process must be evaluated. To this end we need process metrics to
assess the efficiency and effectiveness of the process. Effectiveness is measured in
terms of how close the process comes to achieving the goals set for it. Efficiency is
measured in terms of the cost incurred in achieving those goals.

The two primary goals of testing are to uncover errors and to instill confidence in the
system to be released. [4]. The first goal can be measured by comparing the number
of errors uncovered by the testers before the system is released to the number of
errors reported by the users after the system is released. The error discovery metric
is

rsportedErroAll
rsportedErroTester

Re
Re

According to the pertinent literature on testing this should be at least 0.85. If in our
case 260 errors were found by the testers and another 40 reported by the users, the
test efficient would be 0.86 which is sufficient.

The second goal, that achieving confidence, is a function of the errors found in the
final test compared to the number of test cases run and the test coverage achieved.
The user wants to know that the remaining error probability is very low and that the
test coverage is very high. When both factors come together, his confidence in the
system is assured. Thus, confidence can be expressed in the following metric

 Position Papers 50

geTestCovera
unTestCasesR

tdInLastTesErrorsFounenceTestConfid ×
⎭
⎬
⎫

⎩
⎨
⎧ −= 1

Assuming that we have run all 400 test cases in the last test and only discovered 3
errors and that the functional test coverage was 95% then the test confidence would
be

94.095.0
400
31 =×

⎭
⎬
⎫

⎩
⎨
⎧ −

The final test metric is the efficiency metric. Efficiency in testing can be expressed in
terms of the test cases run and the errors found per person day, smoothed by the
achieved test coverage rate.

geTestCovera
TestCasesErrors

daysTesterEfficiency ×
⎭
⎬
⎫

⎩
⎨
⎧

+
−=

_1

Assuming we have executed all 400 test cases and found 260 errors with 180 person
days of effort and that the final test coverage rate was 0.95 then the test efficiency
would be

69.095.0
400260

1801 =×
⎭
⎬
⎫

⎩
⎨
⎧

+
−

If we would have required 300 person days to run the same number of test cases
while only finding 220 errors and achieving a test coverage of only 75%, then the test
efficiency would be significantly less.

39.075.0
400220

3001 =×
⎭
⎬
⎫

⎩
⎨
⎧

+
−

This ends this short discourse on the subject of test metrics. The reader has learned
the four main classes of test metrics for measuring

• product testability

• project time and costs

• progress of the test and

• process effectiveness and efficiency.

• In addition, it has been demonstrated how these metrics can be applied. One
final remark is that errors are not equivalent. Critical errors weigh more than
major errors and major errors weigh more thane minor errors. Therefore,
rather than simply counting errors, the reader should consider counting
weighted errors. The IEEE Standard 1044 proposes 5 classes of errors

 Position Papers 51

• critical

• severe

• major

• minor and

• disturbing.[5]

The critical errors could be weighted by 8, the severe by 4, the major by 2, the minor
by 1, and the disturbing by 0.5. This would help to make the error discovery rate
more meaningful in terms of the service rendered. After all, that it what this business
is all about – the return on investment – or as Tom DeMarco put it – the bang for your
bucks. [6]

Literatur

[1] Sneed, H.: „Reengineering for Testability”, GI Software-Technik Trends, Band 26, Heft

2, May 2006, p. 8

[2] Sneed, H. / Jungmayr, S.: „Product and Process Metrics for the Software Test”

InformatikSpektrum, Band 29, Nr. 1, Feb. 2006, p. 23

[3] Boehm, B. a.o.: Software Cost Estimation with COCOMO – II, Brentice – Hall, Upper

Saddle River, N.J., 1999

[4] Spillner, A. / Linz, I. / Schaefer, H.: Basic Knowledge of Software Testing,

dpunkt.verlag, Heidelberg, 2006

[5] IEEE 1044: ANSI / IEEE Standard Classification of Software Anomalies, IEEE

Computer Society Press, New York, 1993

[6] DeMarco, Tom: Controlling Software Projects – Management, Measurement &

Estimation, Yourdon Press, New York, 1982

 Position Papers 52

A Formal Representation of Testing Maturity Model
(TMM)

Ayaz Farooq, Reiner R. Dumke

University of Magdeburg, Institute for Distributed Systems

{farooq, dumke}@ivs.cs.uni-magdeburg.de

Abstract. Software process establishment, evaluation and improvement are key
research areas in the software engineering field today. Testing activities within a
software process play a vital role in quality and profitability of the developed product.
Improving the testing process can significantly increase the cost effectiveness of the
development process. In this regard, Testing Maturity Model (TMM) is a well known
and probably the most comprehensive maturity model for test process assessment and
improvement. However, the conventional natural language description of the TMM and
other similar process models induces ambiguity, redundancy and inaccuracy in process
assessment. To complement the existing descriptive representation of the TMM, this
paper introduces a formal presentation of this process model using process algebra
and CSP-like notations. This approach can provide us better insight into this process
model, and its assessment and capability determination methodology. The developed
formal description has also revealed some deficiencies in this model construction and
we suggest some changes to improve it.

Keywords: Software process, software test process, test process improvement,
Testing Maturity Model, TMM, formal process modeling, process modeling language,
process algebra

1 Introduction

In this extremely quality conscious modern software industry, processes, people and
technology are believed to play key role in providing quality software products.
Software processes is a key research area in the field of software engineering.
Overview and general aspects about software process research have been
discussed in [1][2][3][4][5]. Primary issues associated with software processes are
process establishment, improvement and evaluation. One implicit assumption in
software process research is that improving the software process will improve the
software product quality, and better control of the software process will increase
project success [6]. Software process improvement is probably the most widely
discussed issue in the area of software process research. General aspects,
techniques, experience reports, and future research directions in software process
improvement have been presented in [7][8][9][10][11][12][13][14][15].

Examples of software process improvement models and standards include CMM
CMMI, BOOTSTRAP, ISO 9001, ISO 15504 SPICE, ISO IEC 12207 Standard for
Information Technology-Software life cycle processes. Dumke [15] and Wang and
King [5] present summary and categorization of several software process
improvement and capability models. Most of these models are represented in a
descriptive style. Available software process improvement (SPI) models lack rigorous
and formal description of model structure, process framework, adequacy rating scale,

mailto:farooq,%20dumke%7D@ivs.cs.uni-magdeburg.de

 Position Papers 53

capability rating scale, and capability determination algorithm [5]. A formal approach,
when available, can increase our understandability, reduce ambiguity, and can help
us identify model redundancies.

Embedded within the software development process are several other processes
such as requirements analysis process, product specification process, design
process and testing process [16]. Testing is an important phase in the software
development process and is believed to consume major project resources. In this
connection, Swinkels [17] investigates available test process improvement (TPI)
models. Prominent among them and first of its kind is the Testing Maturity Model
(TMM)1 [18] [19] [20] [16] which was developed to assist software development
organizations in evaluating and improving their testing processes. Testing Maturity
Model (TMM), like other maturity models and general SPI models, follows descriptive
style of representation. In this paper we present a formal description of TMM and
investigate how this new approach helps us improve our comprehension of this
important model.

2 Modeling Notation

A process modeling language (PML) represents a software process model by using
textual, graphical or hybrid notations. A PML allows increased understanding and
communication among technical and managerial stakeholders of a software project.
Several process modeling languages have been developed until now to cater for
different domains and requirements. Many surveys and reports such as
[21][22][23][24][25] have classified, assessed and reviewed existing PMLs. For the
sake of simplicity and brevity we will use CSP2-like process modeling
notation/algebra developed by Wang and King [5] to derive a formal representation of
the Testing Maturity Model. These authors have already used this algebra to formally
describe CMM, ISO 9001, BOOTSTRAP, ISO/IEC 15504 (SPICE) and Software
Engineering Process Reference Model (SEPRM). Here we mention only a few
essential elements of this notation from [5] which are necessary to understand the
following sections.

• Process

– A process is defined as a set of activities associated with a set of events
E = {e1, e2...en}, where an event ei is an internal or external signal, message,
variable, scheduling, conditional change, or timing that is specified in
association with specific activities in a process.

• Meta-Processes

– System dispatch is a meta-process that acts at the top level of a process
system for dispatching and/or executing a specific process according to system
timing or a predefined event table.

1 TMM (Testing Maturity Model), CMM (Capability Maturity Model), and CMMI (Capability Maturity
Model Integration) are all trademarks of their respective owners
2 Communicating Sequential Processes

 Position Papers 54

– Assignment is a meta-process that assigns a variable x with a constant value c,

i.e:

– Read or write gets or outs a message from or into a memory location or system

port

– Stop is a meta-process that terminates a system’s operation and is denoted by

STOP:

• Process Relations

– Serial is a process relation in which a number of processes are executed one by
one. Assuming two processes are, P and Q, are serial, their relation can be
expressed as follows:

– Pipeline is a process relation in which a number of processes are

interconnected to each other, and a process takes the output of the other
process(es) as its input:

– The synchronous parallel is a process relation in which a set of processes are

executed simultaneously according to a common timing system.

3 TMM Process Model

Testing Maturity Model was developed by Ilene Burnstein [18][19][20][16] in
1996/1997 to assist and guide organizations focusing on test process assessment
and improvement. The development of TMM was mainly influenced by the then
available version of Capability Maturity Model (CMM). Most of the model elements of
TMM bear similarity with those of CMM. TMM consists of a set of five maturity levels,
a set of maturity goals and subgoals and associated activities, tasks and
responsibilities (ATRs), and an assessment model. This is probably the only available
maturity model for the test processes. The model is quite useful from many aspects.
Owing to its similarity (in principles) with other general process improvement
models such as CMM/CMMI and SPICE, this model can easily be integrated into
existing process improvement programs of organizations. The assessment process is
simple enough to conduct, especially for smaller organizations, and can provide a
faster feedback to engineers and management. Burnstein [16] mentions industrial
application of this model in several organizations. Olsen and Vinje [26] also found
TMM very useful for practical test-planning and post-evaluation of the testing
process.

 Position Papers 55

A. Structure of TMM

TMM is structured into certain model elements each of which is only briefly described
here.

1) Maturity Levels: TMM defines five maturity levels as an evolutionary path to the

test process improvement. Figure 1 shows maturity levels of TMM while figure 2
outlines internal structure of the TMM maturity levels. Except for level 1, each level
contains a set of maturity goals, supporting maturity subgoals and set of activities,
tasks and responsibilities. TMM follows a staged representation of process
improvement. A staged representation uses predefined sets of process areas to
define an improvement path for an organization.

Figure 1: Maturity Levels of TMM

2) Maturity Goals: For each maturity level, maturity goals represent testing

improvement goals that have to be achieved (in addition to the goals of the
preceding level) to satisfy that level. There are 13 maturity goals within TMM.

3) Maturity Subgoals: Corresponding to each maturity goal, maturity subgoals exist

that outline more concrete steps to be taken to satisfy that goal. There are 43
subgoals altogether in all TMM levels.

4) Activities, Tasks and Responsibilities: For each maturity level, a set of even more

concrete guidelines are available in the form of activities, tasks and responsibilities
(ATRs). They address implementation and organizational adaptation issues at a
specific level. ATRs exist for the three critical views related to the testing process,
i.e, managers, developers/testers, and users/clients.

B. Framework of the Process Model

Following a brief introduction of TMM model elements above, we now describe
framework of the TMM process model with little more detail. Table 1 lists each
maturity level, corresponding goals and the main purpose for the existence of that
goal.

 Position Papers 56

Figure 2: Internal Structure of TMM Maturity Levels

C. Formal Description of TMM

Using the modeling notation/process algebra mentioned in section II earlier, below
we formally describe the TMM process model, and interconnection among the goals,
subgoals, and ATRs defined within this process model. Such kind of description is
very helpful in providing precise definition of TMM structure and interdependence
among its modeling elements.

1) Process Model: Equation 1 presents a high level view of the TMM process model

in a formal manner. Based on our selected notation, we will represent a maturity
level with the symbol MLi where i is the number of the level.

 Position Papers 57

2) Maturity Levels: Now we formally define the TMM levels. Maturity levels are
defined in terms of maturity goals. Maturity goals at a given level are achieved
through parallel activities aimed at satisfying these goals. We will represent a
maturity goal with the symbol MGi,j where i is maturity level to which this maturity
goal corresponds and j stands for the maturity goal number. First maturity level
(ML1) contains no goals and is shown with an empty symbol. Equation 2 through 6
formally define the maturity levels of TMM.

3) Goals: TMM goals are similar to process areas within CMM/CMMI. Each maturity

goal contains two or more subgoals. To avoid lengthy description of numerous
equations for each maturity goal, here we give only a generic formal definition of a
TMM maturity goal. Although maturity subgoals are not numbered in TMM, we will
still refer to a maturity subgoal with the symbol MSGi,j,kj , where i represents level
number, j the maturity goal, and kj stands for the total number of maturity subgoals
for the jth maturity goal.

Equation 7 shows that a jth maturity goal at the ith level is satisfied through parallel
achievement of kj maturity subgoals.

 Position Papers 58

 Table 1: TMM Process Framework

 Position Papers 59

4) Subgoals: Although the figure 2 presented earlier shows that maturity subgoals
are achieved through set of activities, tasks and responsibilities (ATRs), yet the
model description does not give any information as to which maturity subgoals are
achieved through which ATRs. On the contrary, ATRs within TMM have been
grouped by the maturity goal only. Therefore, any formal equation for maturity
subgoals in terms of ATRs cannot be derived. However, here we give formal
representation of connection between maturity goals and ATRs in equation 8. In
this equation, ATR − M stands for ATRs for managers, ATR − D for ATRs for
developers/testers, while ATR − U stands for ATRs for users/clients. ATR −Mi,j,lj
represents lj

th ATR for managers for the jth maturity goal at the ith maturity level.
lj, mj , and nj are different numbers corresponding to total number of ATRs defined
(for managers, developers/testers, and users/clients respectively) for the jth goal.
It is noteworthy, however, that TMM description does not number ATRs.

Mathematically speaking, the equation 8 gives a multiple definition of maturity
goals when compared with equation 7 above. This contradiction in model
construction and representation can be removed either by defining ATRs for each
maturity subgoal or by changing the maturity level structure diagram (figure 2).

4 TMM Assessment Model

Unlike common process assessment models, the TMM assessment model (TMM-
AM) is designed for self-assessment and does not require an external certification
body to conduct this process. The TMM assessment model was influenced from
CMM and SPICE assessment models. Below we briefly describe its essential
components.

A. TMM Assessment Model Components

The three major components of the assessment model are:

1) Assessment Team Selection and Training: TMM model provides many guidelines

on forming assessment teams and their required abilities, expertise, knowledge,
size and other related requirements along with team training advice.

2) Assessment Procedure: The assessment procedure comprises certain sequential

steps from preparation till implementing improvement. We describe it formally as;

 Position Papers 60

3) Assessment Questionnaire: The TMM assessment questionnaire is the chief,

although not the sole, input component for determination of TMM maturity level. In
this regard, TMM lacks accurate information on determining the subgoal ranks and
leaves it to the discretion of the assessors to calculate these ranks based on
questionnaire response alongside additional assessment information gathered
through interviews and presentations. On one hand it provides flexibility to the
assessors, while on the other hand makes it difficult to precisely describe the
ranking procedure in a mathematical and formal manner. Nonetheless, TMM
questionnaire contains several maturity goal and subgoal related questions whose
response determines fulfillment of those goals and subgoals. Possible answers to
these questions have been outlined in table 2.

Table 2: TMM Questionnair Response Set

B. Ranking Procedure/Capability Determination

TMM ranking procedure, conducted after an assessment procedure, determines
project or organization’s testing maturity level.

1) Rating Scale for Goals/Subgoals: Table 3 lists the rating scales for the maturity

goals and subgoals.

Table 3: Rating Scale for Maturity Goal/Subgoal

 Position Papers 61

2) Degree of Satisfaction for Subgoals: An additional finer level ranking is available
for TMM maturity subgoals mainly aimed at helping to identify strong and weak
areas in the testing process. This ranking scale is called degree of satisfaction.
Degree of satisfaction is determined based on responses to the assessment
questionnaire. Table 4 lists degree of satisfaction levels along with guidelines on
calculating this ranking.

Table 4: Determining Degree of Ssatisfaction for Maturity Subgoals

3) Ranking Procedure: TMM ranking procedure first determines maturity subgoal

ranks, then maturity goal ranks and finally maturity levels. Table 5 outlines
calculation of maturity subgoal ranks which depend upon responses to the
assessment questionnaire. This table says that 50% of the responses to the
questionnaire have to be ’yes’ to satisfy the relevant maturity subgoal. Therefore,
we define a pass threshold, PThreshques(i,j,k) for maturity subgoals, which is the
actual number of questions for each maturity subgoal whose response has to be
affirmative. Equation 10 defines this pass threshold.

where Nques(i,j,k) stands for the total number of questions for the kth maturity
subgoal under the jth maturity goal at the ith maturity level.

TMM guidelines to calculate rank of maturity subgoal have been summarized in table
5. To represent if a maturity subgoal is satisfied or not, equation 11 defines a boolean
variable SATMSG(i,j,k) which returns to true when the number of ’yes’ responses to
the questionnaire is greater or equal to the pass threshold defined above.

Table 5: Calculation of Maturity Subgoal Ranking

 Position Papers 62

where Pques(i,j,k) stands for the number of subgoal related questions whose response
was affirmative while i, j, k stand for maturity level, goal and subgoal, respectively.

To calculate maturity goal rankings, TMM provides guidelines which have been
summarized in table 6. Similar to the maturity subgoal, equation 12 defines a boolean
variable, SATMG(i,j), to represent if a maturity goal is satisfied or not.

Table 6: Calculation of Maturity Goal Ranking

where nj stands for the total number of subgoals corresponding to the jth goal at the
ith maturity level. This equation shows that a maturity goal is satisfied when all the
maturity subgoals for this goal are satisfied too.

Now we define an equation to represent if a maturity level is satisfied. Since TMM is
a staged model, to achieve a given maturity level, all lower maturity levels have also
to be achieved first. Equation 13 shows that to satisfy a given maturity level all the
maturity goals for that level have to be satisfied (SATMG(i,j) = true) and all previous
maturity levels have to be satisfied (SATML(k) = true) as well.

where ni stands for the total number of maturity goals at the ith maturity level while
rest of the variables have already been explained above.

Maturity levels may be associated with a particular project or whole organization.
Equation 14 determines the project maturity level which is the highest number of
maturity level satisfied. TMM descriptions say that if only one representative project
was selected for assessment, then the project maturity level also refers to the
organization maturity level. In case of more than one assessed project, either all
projects will be at the same maturity level or they may also be assessed at different
levels. A difference of two levels among project maturities within the same
organization is generally considered unusual. However, if about 80% of the projects
have been assessed at a given maturity level, that level can be considered to
represent organization maturity level as well. In other cases, determination of
organization maturity level should consider factors such as number and importance
of the projects.

 Position Papers 63

5 Conclusions and Future Work

With its simplicity and ease of assessment and integration, Testing Maturity Model
(TMM) is very useful for test process assessment and improvement. We have
applied formal approach to the description of Testing Maturity Model. A selected
process algebra and mathematical notations have been adopted for presenting the
TMM process model, process assessment model, and maturity level ranking
procedures in the form of mathematical equations and expressions. This formal
representation have revealed some contradictions in model construction and
impreciseness in the assessment model.With some improvements TMM process
maturity determination can be automated with little human intervention. Over and
above, formal approach ,when applied to general process models or test processes,
is a helpful tool to develop a better understanding and implementation of these
models.

References

[1] B. Curtis, M.I. Kellner, and J. Over: Process modeling. Commun. ACM, 35(9):75–90,

1992.

[2] W. Scacchi: Process models in software engineering. J. J. Marciniak (Ed.),
Encyclopedia of Software Engineering,, 2002.

[3] A. Fuggetta: Software process: a roadmap. In ICSE ’00: Proceedings of the
Conference on The Future of Software Engineering, pages 25–34, New York, NY,
USA, 2000. ACM Press.

[4] S.T. Acua and X. Ferr: Software process modelling. In ISAS-SCI ’01: Proceedings of
the World Multiconference on Systemics, Cybernetics and Informatics, pages 237–242.
IIIS, 2001.

[5] Y. Wang and G. King: Software engineering processes: principles and applications.
CRC Press, Inc., Boca Raton, FL, USA, 2000.

[6] M. Huo, H. Zhang, and R. Jeffery: A systematic approach to process enactment
analysis as input to software process improvement or tailoring. In APSEC’06:
Proceedings of the XIII Asia Pacific Software Engineering Conference, volume 0,
pages 401–410, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[7] W.S. Humphrey: Managing the software process. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1989.

[8] M. Haug, E.W. Olsen, and L. Bergman: Software process improvement: metrics,
measurement, and process modelling. Springer-Verlag, Berlin, Germany, 2001.

[9] B. Curtis: Software process improvement: best practices and lessons learned. In ICSE
’00: Proceedings of the 22nd international conference on Software engineering, page
828, New York, NY, USA, 2000. ACM Press.

[10] V.R. Basili, F.E. McGarry, R. Pajerski, and M.V. Zelkowitz: Lessons learned from 25
years of process improvement: the rise and fall of the nasa software engineering
laboratory. In ICSE ’02: Proceedings of the 24th International Conference on Software
Engineering, pages 69–79, New York, NY, USA, 2002. ACM Press.

 Position Papers 64

[11] F. O’Hara: European experiences with software process improvement. In ICSE ’00:
Proceedings of the 22nd international conference on Software engineering, pages
635–640, New York, NY, USA, 2000. ACM Press.

[12] B.C. Hardgrave and Deborah J. Armstrong: Software process improvement: it’s a
journey, not a destination. Commun. ACM, 48(11):93–96, 2005.

[13] M.A. Serrano: State of the art and future of research in software process improvement.
In COMPSAC ’04: Proceedings of the 28th Annual International Computer Software
and Applications Conference, page 239, Washington, DC, USA, 2004. IEEE Computer
Society.

[14] D.N. Card: Research directions in software process improvement. In COMPSAC ’04:
Proceedings of the 28th Annual International Computer Software and Applications
Conference, page 238, Washington, DC, USA, 2004. IEEE Computer Society.

[15] R.R. Dumke, R. Braungarten, M. Blazey, H. Hegewald, D. Reitz, and K. Richter:
Software process measurement and control - a measurementbased point of view of
software processes. Technical report, Dept. of Computer Science, University of
Magdeburg, December 2006.

[16] I. Burnstein: Practical Software Testing: A Process-oriented Approach. Springer-Verlag
Inc., Secaucus, NJ, USA, 2003.

[17] R. Swinkels: A comparison of TMM and other test process improvement models.
Technical report, Frits Philips Institute, Technische Universiteit Eindhoven,
Netherlands, November 2000.

[18] I. Burnstein, T. Suwannasart, and R. Carlson: Developing a testing maturity model for
software test process evaluation and improvement. In Proceedings of the IEEE
International Test Conference on Test and Design Validity, pages 581–589,
Washington, DC, USA, 1996. IEEE Computer Society.

[19] I. Burnstein, T. Suwannasart, and C.R. Carlson: Developing a testing maturity model:
Part 1. Crosstalk, August 1996.

[20] I. Burnstein, T. Suwannasart, and C.R. Carlson: Developing a testing maturity model:
Part 2. Crosstalk, September 1996.

[21] P. Armenise, S. Bandinelli, C. Ghezzi, and A. Morzenti: A survey and assessment of
software process representation formalisms. Int. Journal on Software Engineering and
Knowledge Engineering, 3(3):401–426, 1993.

[22] J.-C. Derniame, B.A. Kaba, and D.G. Wastell: Software Process: Principles,
Methodology, Technology. Springer-Verlag, London, UK, 1999.

[23] K.Z. Zamli: Process modeling languages: A literature review. Malaysian Journal of
Computer Science, 14(2):26–37, 2001.

[24] K.Z. Zamli and P.A. Lee: Taxonomy of process modelling languages. In AICCSA ’01:
Proceedings of the ACS/IEEE International Conference on Computer Systems and
Applications, page 435, Washington, DC, USA, 2001. IEEE Computer Society.

[25] K.Z. Zamli: A survey and analysis of process modeling languages. Malaysian Journal
of Computer Science, 17(2):68–89, 2004.

[26] K. Olsen and P.S. Vinje: Using the testing maturity model in practical test-planning and
post-evaluation. In EuroSTAR:98: Proceedings of the 6th European Software Testing,
Analysis and Review Conference, pages 345–359, Munich, Germany, 1998.

New Books on Software Metrics

65

Lanza, M.; Marinescu, R.:
Object-Oriented Metrics in Practice

Springer-Verlag Berlin Heidelberg, 2006 (205 Seiten)
ISBN-10 3-540-24429-8
ISBN-13 978-3-540-24429-5

Metrics are paramount in every engineering discipline. However, due to its lack of
rigor and its intrinsic complexity, software engineering is not considered a classical
engineering activity. Moreover, defining, understanding and applying software metrics
often looks like an overly complex activity, recommended only to ‘trained
professionals’. In general, if a software system is delivering the expected
functionality, only few people – if any – care about measuring the quality of its
internal structure. Consequently, software metrics are still regarded rather
circumspectly by most software developers.
Lanza and Marinescu demystify the design metrics used to assess the size, quality
and complexity of object-oriented software systems. Based on a novel approach,
backed by generally accepted semantics for metrics and by statistical information
from many industrial projects, they deduce a suite of metrics-based patterns for
assessing the design of object-oriented software systems. They show in detail how to
identify design disharmonies in code, and how to devise and apply remedies.
The combination of theoretically sound results and practically tested procedures and
solution paths makes this book an ideal companion for professional software
architects, developers and quality engineers. The pattern-oriented description of
disharmonies offers easy access to detecting shortcomings and applying solutions to
real problems.

Laird, L.M.; Brennan, M.C.:
Software Measurement and Estimation: A Practical Approach

IEEE Computer Society, Wiley Interscience, 2006 (257 Seiten)
ISBN 3-471-67622-5

The text begins with the foundations of measurement, identifies the appropriate
metrics, and then focuses on techniques and tools for estimating the effort needed to
reach a given level of quality and performance for a software project. All the factors
that impact estimations are thoroughly examined, giving you the tools needed to
regularly adjust and improve your estimations to complete a project on time, within
budget, and at an expected level of quality.
This text includes several features that have proven to be successful in making the
material accessible and easy to master:

• Simple, straightforward style and logical presentation and organization enables
you to build a solid foundation of theory and techniques to tackle complex
estimations

 New Books on Software Metrics

66

• Examples, provided throughout the text, illustrate how to use theory to solve
real-world problems

• Projects, included in each chapter, enable you to apply your newfound
knowledge and skills

• Techniques for effective communication of quantitative data help you convey
your findings and recommendations to peers and management

Software Measurement and Estimations: A Practical Approach allows practicing
software engineers and managers to better estimate, manage, and effectively
communicate the plans and progress of their software projects. With its classroom-
tested features, this is an excellent textbook for advanced undergraduate-level and
graduate students in computer science and software engineering.

Kandt, R.K.:

Software Engineering Quality Practices
Auerbach Publications, 2006 (256 Seiten)
ISBN 3-8493-4633-9

Software Engineering Quality Practices describes how software engineers and the
managers who supervise them can develop quality software in an effective, efficient,
and professional manner. This volume conveys practical advice quickly and clearly
while avoiding the dogma that surrounds the software profession. It concentrates on
what the real requirements of a system are, what constitutes an appropriate solution,
and how you can ensure that the realized solution fulfils the desired qualities of
relevant stakeholders. The book also discusses how successful organizations attract
and keep people who are capable of building high-quality systems.
The author succinctly describes the nature and fundamental principles of design and
incorporates them into an architectural framework, enabling you to apply the
framework to the development of quality software for most applications. The text also
analyzes engineering requirements, identifies poor requirements, and demonstrates
how bad requirements can be transformed via several important quality practes.

Abran, A.; Bundschuh, M.; Büren, G.; Dumke, R.R.:

Applied Software Measurement
Shaker Verlag, Aachen, November 2006 (542 Seiten)
ISBN 3-8322-5611-3

In this proceedings published at the Deutsche Universitätsverlag and the Shaker-
Verlag, Aachen, constitute a collection of theoretical studies in the field of software
measurement and case reports on the application of software metrics in companies
and universities in Argentina, Australia, Austria, Bahrain, Belgium, Brazil, Bulgaria,
Canada, Finland, France, Germany, Ghana, Italy, Netherlands, Slovenia, Spain,
Switzerland, UK, USA and Vietnam.
About the contents see the workshop report in this Metrics News.

New Books on Software Metrics

67

Büren, G.; Bundschuh, M.; Dumke, R.:
MetriKon 2005 – Praxis der Software-Messung

Shaker Verlag, Aachen, November 2005 (299 Seiten)
ISBN 3-8322-4615-0

The book includes the proceedings of the DASMA Metric Conference MetriKon 2005
held in Kaiserslautern in November, 2005, which constitute a collection of theoretical
studies in the field of software measurement and case reports on the application of
software metrics in companies and universities.
The contents are described by the listing of the paper abstracts in this Metrics News.

Abran, A.; Dumke, R.:
Innovations in Software Measurement

Shaker Verlag, Aachen, September 2005 (456 Seiten)
ISBN 3-8322-4405-0

The book includes the proceedings of the 15th International Workshop on Software
Measurement (IWSM2005) held in Montreal in September, 2005, which constitute a
collection of theoretical studies in the field of software measurement and case reports
on the application of software metrics in companies and universities in Argentina,
Australia, Austria, Bahrain, Belgium, Brazil, Bulgaria, Canada, Finland, France,
Germany, Ghana, Italy, Netherlands, Poland, Slovenia, Spain, Switzerland, UK, USA
and Vietnam.
The contents are described by the listing of the paper abstracts in this Metrics News.

Ebert, C.:
Systematisches Requirements Management

Anforderungen ermitteln, spezifizieren, analysieren und verfolgen
dpunkt.verlag, August 2005 (320 Seiten)
ISBN 3-89864-336-0

Projekte scheitern häufig wegen unzureichendem Requirements Management. Meist
waren schon zu Beginn die Anforderungen nicht ausreichend geklärt und damit
konnte auf deren Änderungen auch nicht richtig reagiert werden. Das Buch bietet
einen Überblick über Theorie und Praxis des Requirements Management. Es
beschreibt, wie Anforderungen entwickelt, gesammelt, dokumentiert und im Projekt
verfolgt werden. Die grundsätzlichen Methoden, Verfahren, Werkzeuge und
Notationen des Requirements Management werden übersichtlich behandelt. Sie
werden durch konkrete Beispiele aus der Projektarbeit illustriert.
Als Beispiel einer modernen Methode der Anforderungsbeschreibung werden Use-
Case-Szenarien in der UML-Notation verwendet. Praktische Fallstudien unterstützen
die konkrete Umsetzung.

 New Books on Software Metrics

68

Leser: Produktmanager, Projektleiter, Softwareentwickler
Weitere Informationen finden Sie unter

http://www.dpunkt.de/buch/3-89864-336-0.html

Sneed, H.M.:
Software-Projektkalkulation – Wissen was Projekte wirklich kosten

Hanser-Verlag, 2005 (228 Seiten)
ISBN 3-446-40005-2

Wer einmal die Kosten oder die Zeit für ein Software-Projekt falsch kalkuliert hat,
weiß, dass kein Unternehmen sich das öfter leisten kann. Projektkalkulation ist eine
Überlebensfrage der Software-Industrie. Für Auftragnehmer wie für Auftraggeber ist
die richtige Kalkulation unabdingbar für den Projekterfolg.
Die meisten Techniken für Aufwandsschätzung, die in der Praxis verbreitet sind,
eignen sich nur bei IT-Projekten für eine Neuentwicklung. Geht es in Ihrem Projekt
jedoch um Wartung, Migration, Integration oder Sanierung, so müssen Sie darauf
abgestimmte Methoden einsetzen. Dieses Buch zeigt, welche Techniken der
Aufwandsschätzung für welche Art von Projekten zu nutzen sind.

Preprints/Technical Reports:

Dumke, R.; Schmietendorf, A.; Zuse, H.: Formal Description of Software

Measurement and Evaluation. University of Magdeburg, 2005

Braungarten, R.; Kunz, M.; Dumke, R.: An Approach to Classify Software

Measurement Storage Facilities. University of Magdeburg, 2005

Dumke, R.; Braungarten, R.; Blazey, M.; Hegewald, H.; Reitz, D.; Richter, K.:
Software Process Measurement and Control – A Measurement-Based Point of View
of Software Processes, University of Magdeburg, 2006

see as pdf files:
http://ivs.cs.uni-magdeburg.de/sw-eng/agruppe/forschung/
Preprints.shtml

http://ivs.cs.uni-magdeburg.de/sw-eng/agruppe/forschung/

 Conferences Addressing Metrics Issues 69

WOSP 2007:

5th International Workshop on Software & Performance
February 5-8, 2007, Buenos Aires, Argentina
see: http://www.wosp-conference.org/

IASTED SE 2007:

IASTED International Conference on Software Engineering 2007
February 13-15, 2007, Innsbruck, Austria
see: http://www.iasted.org/conferences/home-552.html

SEPG 2007:

19th Software Engineering Process Group Conference
March 26-29, 2007, Austin, Texas, USA
see: http://www.sei.cmu.edu/sepg/2007/

CSMR 2007:

11th European Conference on Software Maintenance and Reengineering
March 21-23, 2007, Amsterdam, Netherlands
see: http://www.cs.vu.nl/csmr2007/

EASE 2007:

10th International Conference on Empirical Assessment in Software
Engineering
April 2-3, 2007, Staffordshire, UK
see: http://ease.cs.keele.ac.uk/

FSS 2007:

2th Annual Functional Sizing Summit
April 22-26, 2007, Vancouver, Canada
see: http://www.ifpug.org/conferences/annual.htm

PSQT 2007:

International Conference on Practical Software Quality & Testing
May 7-11, 2007, Las Vegas, USA
see: http://www.psqtconference.com/2007west/

SMEF 2007:

Software Measurement European Forum
May 9-11, 2006, Rome, Italy
see: http://www.iir-italy.it/smef2007/

http://www.wosp-conference.org/
http://www.iasted.org/conferences/home-552.html
http://www.sei.cmu.edu/sepg/2007/
http://www.cs.vu.nl/csmr2007/
http://ease.cs.keele.ac.uk/
http://www.ifpug.org/conferences/annual.htm
http://www.psqtconference.com/2007west/
http://www.iir-italy.it/smef2007/

 Conferences Addressing Metrics Issues 70

SPICE 2007:

7th International SPICE Conference on Process Assessment and
Improvement
May 9-11, 2007, Seoul, Korea
see: http://www.spice2007.com/

ICSE 2007:

International Conference on Software Engineering
May 20-26, 2007, Minneapolis, USA
see: http://web4.cs.ucl.ac.uk/icse07/index.php?id=75

ESEPG 2007:

12th European Software Engineering Process Group Conference
June 11-14, 2007, Amsterdam, Netherlands
see: http://www.espi.org/sepg/

SIGMetrics 2007:

ACM SIGMetrics - Performance 2007
June 12-16, 2007, San Diego, USA
see: http://www.cs.cmu.edu/~sigm07/

ICPC 2007:
15th International Conference on Program Comprehension
June 26-29, 2007, Banff, Canada
see: http://www.program-comprehension.org/

PROFES 2007:

8th International Conference on Product Focused Software Process
Improvement
July 2-4, 2007, Riga, Latvia
see: http://www.profes2007.org/

UKPEW 2007:

21th Annual United Kingdom Workshop on Performance Engineering
July 9-10, 2007, Lancashire, UK
see: http://www.edgehill.ac.uk/Faculties/HMSAS/Business/UKPEW/

ICWE 2007:

5th International Conference on Web Engineering
July 16-20, 2007, Como, Italy
see: http://www.icwe2007.org/

http://www.spice2007.com/
http://web4.cs.ucl.ac.uk/icse07/index.php?id=75
http://www.espi.org/sepg/
http://www.cs.cmu.edu/%7Esigm07/
http://www.program-comprehension.org/
http://www.profes2007.org/
http://www.edgehill.ac.uk/Faculties/HMSAS/Business/UKPEW/
http://www.icwe2007.org/

 Conferences Addressing Metrics Issues 71

SPPI 2007:

Software Process and Product Improvement – Euromicro Conference
August 27-31, 2007, Lübeck, Germany
see: http://em2007.uni-kl.de/cfp_sppi.shtml/

QFD 2007:

19th Symposium on Quality Function Deployment
September 5-14, 2007, Williamsburg, USA
see: http://www.qfdi.org/

PSQT 2007 North:

International Conference on Practical Software Quality & Testing
September 10-14, 2007, Minneapolis, USA
see: http://www.PSQTConference.com

QEST 2007:

3rd International Conference on Quantitative Evaluation of SysTems
September 16-19, 2007, Edinburgh, Scotland
see: http://www.qest.org/qest2007/

ASQT 2007:

Arbeitskonferenz Softwarequalität und Test 2007
September 20-21, 2007, Klagenfurt, Austria
see: http://www.asqt.org/

ESEM 2007:

International Symposium on Empirical Software Engineering &
Measurement
September 20-21, 2007, Madrid, Spain
see: http://www.esem-conferences.org/esem/

CONQUEST2007:

10. International Conference on Software Quality
September 26-28, 2007, Potsdam, Germany
see: http://www.conquest-conference.org/

UKSMA 2007:

18th Annual UKSMA Conference – Managing your Software (through
Measurement)
October , 2007, London, UK
see: http://www.uksma.co.uk/

http://em2007.uni-kl.de/cfp_sppi.shtml/
http://www.qfdi.org/
http://www.psqtconference.com/
http://www.qest.org/qest2007/
http://www.asqt.org/
http://www.esem-conferences.org/esem/
http://www.conquest-conference.org/
http://www.uksma.co.uk/

 Conferences Addressing Metrics Issues 72

QSIC 2007:

International Conference on Software Quality
October 26-28, Beijing, China
see: http://www.goingtomeet.com/conventions/details/1121/

IWSM/MENSURA 2007:

17th International Workshop on Software Measurement/2th International
Conference on Software Product and Process Measurement
November 5-7, 2007, Mallorca, Spain
see: http://ivs.cs.uni-magdeburg.de/iwsm2007/

MetriKon 2007:

DASMA Workshop
November 12-14, 2007, Kaiserslautern, Germany
see: http://www.metrikon.de

BSOA2007:

2. Workshop Bewertungsaspekte service-orientierte Architekturen
12. November 2007 in Kaiserslautern,
see: http://ivs.cs.uni-magdeburg.de/~gi-bsoa/

see also: OOIS, ECOOP and ESEC European Conferences

http://www.goingtomeet.com/conventions/details/1121/
http://ivs.cs.uni-magdeburg.de/
http://www.metrikon.de/
http://ivs.cs.uni-magdeburg.de/%7Egi-bsoa/

 Metrics in the World-Wide Web 73

Other Information Sources and Related Topics

• http://rbse.jsc.nasa.gov/virt-lib/soft-eng.html
 Software Engineering Virtual Library in Houston

• http://www.mccabe.com/
 McCabe & Associates. Commercial site offering products and services

for software developers (i. e. Y2K, Testing or Quality Assurance)

• http://www.sei.cmu.edu/
 Software Engineering Institute of the U. S. Department of Defence at

Carnegie Mellon University. Main objective of the Institute is to identify
and promote successful software development practices.

 Exhaustive list of publications available for download.

• http://dxsting.cern.ch/sting/sting.html
 Software Technology Interest Group at CERN: their WEB-service is

currently limited (due to "various reconfigurations") to a list of links to
other information sources.

• http://www.spr.com/index.htm
 Software Productivity Research, Capers Jones. A commercial site

offering products and services mainly for software estimation and
planning.

• http://www.qucis.queensu.ca/Software-Engineering/
 This site hosts the World-Wide Web archives for the USENET

usegroup comp.software-eng. Some links to other information sources
are also provided.

• http://www.esi.es/
 The European Software Institute, Spain

• http://www.lrgl.uqam.ca/
 Software Engineering Management Research Laboratory at the

University of Quebec, Montreal. Site offers research reports for
download. One key focus area is the analysis and extension of the
Function Point method.

• http://www.SoftwareMetrics.com/
 Homepage of Longstreet Consulting. Offers products and services and

some general information on Function Point Analysis.

• http://www.utexas.edu/coe/sqi/

 Metrics in the World-Wide Web 74

 Software Quality Institute of the University of Texas at Austin. Offers
comprehensive general information sources on software quality
issues.

• http://wwwtrese.cs.utwente.nl/~vdberg/thesis.htm
 Klaas van den Berg: Software Measurement and Functional

Programming (PhD thesis)

• http://divcom.otago.ac.nz:800/com/infosci/smrl/home.htm
 The Software Metrics Research Laboratory at the University of Otago

(New Zealand).

• http://ivs.cs.uni-magdeburg.de/sw-eng/us/
 Homepage of the Software Measurement Laboratory at the University

of Magdeburg.

• http://www.cs.tu-berlin.de/~zuse/
 Homepage of Dr. Horst Zuse

• http://dec.bournemouth.ac.uk/ESERG/bibliography.html
 Annotaded bibliography on Object-Oriented Metrics

• http://www.iso.ch/9000e/forum.html
 The ISO 9000 Forum aims to facilitate communication between

newcomers to Quality Management and those who have already made
the journey have experience to draw on and advice to share.

• http://www.qa-inc.com/
 Quality America, Inc's Home Page offers tools and services for quality

improvement. Some articles for download are available.

• http://www.quality.org/qc/
 Exhaustive set of online quality resources, not limited to software

quality issues

• http://freedom.larc.nasa.gov/spqr/spqr.html
 Software Productivity, Quality, and Reliability N-Team

• http://www.qsm.com/
 Homepage of the Quantitative Software Management (QSM) in the

Netherlands

• http://www.iese.fhg.de/
 Homepage of the Fraunhofer Institute for Experimental Software

Engineering (IESE) in Kaiserslautern, Germany
• http://www.highq.be/quality/besma.htm
 Homepage of the Belgian Software Metrics Association (BeSMA) in

Keebergen, Belgium

http://www.qsm.com/
http://www.iese.fhg.de/

 Metrics in the World-Wide Web 75

• http://www.cetus-links.org/oo_metrics.html
 Homepage of Manfred Schneider on Objects and Components

• http://dec.bournemouth.ac.uk/ESERG/bibliography.html
 An annotated bibliography of object-oriented metrics of the Empirical

Software Engineering Research Group (ESERG) of the Bournemouth
University, UK

News Groups

• news:comp.software-eng

• news:comp.software.testing

• news:comp.software.measurement

Software Measurement Associations

• http://www.dasma.org
 DASMA Deutsche Anwendergruppe für SW Metrik und Aufwands-

schätzung e.V.

• http://www.aemes.fi.upm.es
 AEMES Association Espanola de Metricas del Software

• http://www.cosmicon.com
 COSMIC Common Software Measurement International Consortium

• http://www.esi.es
 ESI European Software Engineering Institute in Bilbao, Spain

• http://www.mai-net.org/

Network (MAIN) Metrics Associations International

• http://www.sttf.fi
 FiSMA Finnish Software Metrics Association

• http://www.iese.fhg.de
 IESE Fraunhofer Einrichtung für Experimentelles Software

Engineering
• http://www.isbsg.org.au
 ISBSG International Software Benchmarking Standards Group,

Australia

• http://www.nesma.nl
 NESMA Netherlands Software Metrics Association

http://dec.bournemouth.ac.uk/ESERG/bibliography.html
news:comp.software-eng
news:comp.software.testing
http://www.dasma.de/
http://www.aemes.fi.upm.es/
http://www.cosmicon.com/
http://www.esi.es/
http://www.mai-net.org/
http://www.sttf.fi/
http://www.iese.fhg.de/
http://www.nesma.nl/

 Metrics in the World-Wide Web 76

• http://www.sei.cmu.edu/
 SEI Software Engineering Institute Pittsburgh

• http://www.spr.com/
 SPR Software Productivity Research by Capers Jones

• http://fdd.gsfc.nasa.gov/seltext.html
 SEL Software Engineering Laboratory - NASA-Homepage

• http://www.vrz.net/stev
 STEV Vereinigung für Software-Qualitätsmanagement Österreichs

• http://www.sqs.de
 SQS Gesellschaft für Software-Qualitätssicherung, Germany

• http://www.ti.kviv.be
 TI/KVIV Belgish Genootschap voor Software Metrics

• http://www.uksma.co.uk
 UKSMA United Kingdom Software Metrics Association

Software Metrics Tools (Overviews and Vendors)

Tool Listings

• http://www.cs.umd.edu/users/cml/resources/cmetrics/
 C/C++ Metrics Tools by Christopher Lott

• http://mdmetric.com/
 Maryland Metrics Tools

• http://cutter.com/itgroup/reports/function.html
 Function Point Tools by Carol Dekkers

• http://user.cs.tu-berlin.de/~fetcke/measurement/products.html
 Tool overview by Thomas Fetcke

• http://zing.ncsl.nist.gov/WebTools/tech.html
 An Overview about Web Metrics Tools

Tool Vendors

• http://www.mccabe.com
 McCabe & Associates

http://www.sei.cmu.edu/
http://www.spr.com/
http://fdd.gsfc.nasa.gov/seltext.html
http://www.vrz.net/stev
http://www.sqs.de/
http://www.ti.kviv.be/
http://www.uksma.co.uk/
http://mdmetric.com/
http://www.mc/

 Metrics in the World-Wide Web 77

• http://www.scitools.com
 Scientific Toolworks Inc.

• http://zing.ncsl.nist.gov/webmet/
 Web Metrics

• http://www.globalintegrity.com/csheets/metself.html
 Global Integrity

• http://www.spr.com/
 Software Productivity Research (SPR)

• http://jmetric.it.swin.edu.au/products/jmetric/
 JMetric

• http://www.imagix.com/products/metrics.html
 Imagix Power Software

• http://www.verilogusa.com/home.htm
 VERILOG (LOGISCOPE)

• http://www.qsm.com/
 QSM

http://www.qsm.com/

METRICS NEWS

VOLUME 12 2007 NUMBER 1

CONTENTS

Announcements .. 3

Workshop Report ... 9

Position Papers .. 35

Farooq, A., Dumke, R.R.:
A Critical Analysis of Testing Maturity Model .. 35

Sneed, H.M.:
Test metrics ... 41

Farooq, A., Dumke, R.R.:
A Formal Representation of Testing Maturity Model (TMM).............................. 52

New Books on Software Metrics .. 65

Conferences Addressing Metrics Issues 69

Metrics in the World-Wide Web .. 73

ISSN 1431-8008

	Deckblatt.pdf
	Editors.doc
	Alain Abran
	Manfred Bundschuh
	Reiner Dumke
	Christof Ebert
	Horst Zuse

	Announcements.doc
	C A L L F O R P A P E R S
	GENERAL THEME & SCOPE: SOFTWARE MEASUREMENT
	A- Uses of measurements results in decision making:
	B- Evaluation and assessment models:
	 Support systems assessment
	C- Objects and attributes to be measured
	D- Measurement methods: design issues

	Workshop-Report.doc
	Position-Papers-Teil1.doc
	Position-Papers-Teil2.doc
	New-Books.doc
	Conferences-Adressing.doc
	World-Wide-Web.doc
	Other Information Sources and Related Topics

	Inhaltsverzeichnis.doc
	VOLUME 12 2007 NUMBER 1
	CONTENTS

