

 Volume 20, Number 1, February 2015

 Software Measurement News

 Journal of the Software Metrics Community

Editors:

Alain Abran, Günter Büren, Reiner Dumke, Christof Ebert, Cornelius Wille

The SOFTWARE MEASUREMENT NEWS can be ordered directly from the Editorial Office
(address can be found below).

Editors:

Alain Abran
Professor and Director of the Research Lab. in Software Engineering Management
École de Technologie Supérieure - ETS
1100 Notre-Dame Quest,
Montréal, Quebec, H3C 1K3, Canada
Tel.: +1-514-396-8632, Fax: +1-514-396-8684
alain.abran@etsmtl.ca

Günter Büren
Vice Chair of the DASMA
Büren & Partner Software-Design GbR
Thurn-und-Taxis-Str. 12, D-90411 Nürnberg, Germany
Tel.: +49-911-5195511, Fax: +49-911-5195555
gb@bup-nbg.de
http://www.dasma.org

Reiner Dumke
Professor on Software Engineering
University of Magdeburg, FIN/IVS
Postfach 4120, D-39016 Magdeburg, Germany
Tel.: +49-391-67-52812
dumke@ivs.cs.uni-magdeburg.de
http://www.smlab.de

Christof Ebert
Dr.-Ing. in Computer Science
Vector Consulting GmbH
Ingersheimer Str. 20, D-70499 Stuttgart, Germany
Tel.: +49-711-80670-1525
christof.ebert@vector.com

Cornelius Wille
Professor on Software Engineering
University of Applied Sciences Bingen
Berlinstr. 109, D-55411 Bingen am Rhein, Germany
Tel.: +49-6721-409-257, Fax: +49-6721-409-158
wille@fh-bingen.de

Editorial Office: Otto-von-Guericke-University of Magdeburg, FIN/IVS, Postfach 4120,
39016 Magdeburg, Germany
Technical Editor: Dagmar Dörge
The journal is published in one volume per year consisting of two numbers. All rights
reserved (including those of translation into foreign languages). No part of this issues may be
reproduced in any form, by photoprint, microfilm or any other means, nor transmitted or
translated into a machine language, without written permission from the publisher.
 2015 by Otto-von-Guericke-University of Magdeburg. Printed in Germany

mailto:gb@bup-nbg.de�

 Announcements 3

 Announcements 4

 Announcements 5

 Announcements 6

 Announcements 7

 Announcements 8

Herausforderungen im Kontext von Big Data Lösungen
(Qualitative und quantitative Bewertung)

26.03.2015 (09:30 bis 17:00 Uhr) Hannover, Maritim-Hotel

Eine Kombination von Seminar, Workshop und Diskussionsrunde bietet Ihnen die
Möglichkeit, sich schnell, praxisorientiert und interaktiv in die aktuellen Herausforderungen
von Big Data-Lösungen einzuarbeiten. Während die ersten drei Beiträge Fachwissen in
seminaristischer Weise vermitteln, bieten die Impulsvorträge der 4. Session die Möglichkeit
der Anwendung bzw. Übertragung der erworbenen Kenntnisse auf konkrete
Industrieprobleme.

Nach dem Besuch der Veranstaltung werden die Teilnehmer in der Lage sein,
Einsatzszenarien für Big Data sowohl objektiv zu bewerten als auch kleinere Anforderungen
einer konzeptionellen Lösung zuzuführen.

Eröffnung der Veranstaltung (09:30 Uhr):

Prof. Dr. Andreas Schmietendorf (HWR Berlin/Uni Magdeburg)
Big Data – Spannungsfeld zwischen Technik und Einsatzszenarien

- Frameworks (Hortonworks, Cloudera und Co)

- Implementierungsstrategien

Session 1 (10:00 bis 10:45 Uhr):

Dr. Robert Neumann, Ultra Tendency UG
Hadoop: Übersicht zum Framework

- Erkundung von Hadoop über die Konsole und den Browser

- Ausgewählte Praxisbeispiele

Session 2 (11:15 bis 12:00 Uhr):

Mitch Köhler, Cabalon
Column Family Database HBase

- Eigenschaften und Einsatzgebiete

- HBase & Hadoop MapReduce

 Announcements 9

Session 3 (13:30 bis 14:15 Uhr):

Jan Hentschel, Ultra Tendency UG
Document Database MongoDB

- Eigenschaften und Einsatzgebiete

- MongoDB & Hadoop MapReduce

Session 4 (14:15 bis 15:00 Uhr):

Frederik Kramer, initOS GmbH & Co. KG
In-Memory Computing mit SAP Hana

- Architektur – Konsequenzen für Anwender

- Implementierungsalternativen

Session 5 (15:30 bis 16:30 Uhr):

Joachim Kolbe, SYRACOM AG

Big Data in der Finanzindustrie (Praxisbericht)

Wolfgang Schwab, SAS Institute GmbH

Möglichkeiten Big Data Analytics (Praxisbericht)

Michael Weiß, HUK Coburg

Big Data in der Versicherungsindustrie (Praxisbericht)

Session 6 (16:30 bis 17:00 Uhr):

Markus Bauer, UFD AG, Andreas Schmietendorf, HWR Berlin

Moderierte Abschlussdiskussion

 Announcements 10

Die korrespondierenden Vorträge der Referenten werden den Teilnehmern in Form eines
Handouts zur Verfügung gestellt. Ergebnisse entsprechender Diskussionsrunden werden
zeitnah im Internet publiziert. Änderungen am Programm sind unter Vorbehalt möglich. Für
Verpflegung vor Ort wird gesorgt. Jeder zahlende Teilnehmer erhält ein offizielles Zertifikat
der ceCMG.

Für die Teilnahme an der Veranstaltung ist eine kostenpflichtige Anmeldung zur Enterprise
Computing Conference (ECC 2015) erforderlich. Für Mitglieder der ceCMG-, DASMA-, GI-
und ASQF gilt eine reduzierte Teilnahmegebühr. Über die Teilnahmegebühr erhalten Sie eine
Rechnung der ceCMG e.V. (Central Europe Computer Measurement Group).

Veranstaltungsort: Maritim Hotel Hannover (am Flughafen)

Weiteren Informationen und Anmeldung unter: http://www.cecmg.de

Kontakt: Susanne Mund – sekretariat@cecmg.de

http://www.cecmg.de/�
mailto:sekretariat@cecmg.de�

Conference Report 11

Bewertungsaspekte service- und cloudbasierter
Architekturen (BSOA/BCloud2014) - detaillierter

Workshopbericht
Andreas Schmietendorf+, Frank Simon#
+Hochschule für Wirtschaft und Recht Berlin
Email: andreas.schmietendorf@hwr-berlin.de

#BLUECARAT AG
Email: frank.simon@bluecarat.de

1. Hintergründe zur Initiative BSOA/BCloud

Die ursprünglich im Zusammenhang mit serviceorientierten Architekturen gegründete
Initiative beschäftigt sich mit der Bewertung vielfältig auftretender Integrationsanforderungen
einer zunehmend digitalisierten und damit vernetzten Welt. Treiber dieser Entwicklung sind
Themen wie Industrie 4.0 (Internet of Things), mobil eingesetzte Softwaresysteme, das
Cloud-Paradigma oder auch analytisch eingesetzte Datenbanksysteme im Umfeld von Big
Data. Unter Verwendung von Modellen, Methoden und konkreten Techniken gilt es
anforderungsgerechte APIs herauszuarbeiten, welche als internetbasierte Serviceangebote
bereitgestellt werden. Waren es in der Vergangenheit ausschließlich Softwareentwickler, die
den API-Begriff in den Mittelpunkt einer kompositorischen Softwareentwicklung gestellt
haben, werden APIs im wachsenden Maße mit der strategischen Unternehmensausrichtung in
Verbindung gebracht, wie auch das folgende Zitat von [Spencer 2015] unterstreicht.

„Application Programming Interfaces (API's) have gone from a something that
only developers and architects once discussed to emerge as a capability that is
central to many successful companies business strategies and a key focus of many
of their senior leadership teams.”

Hintergrund dieser Tendenz ist die geforderte Fähigkeit eines Unternehmens, an
unternehmensübergreifend und ggf. auch global ablaufenden Geschäftsprozessen agil
teilhaben zu können. Dabei gilt es die Wirtschaftlichkeit und Qualität von Serviceangeboten
über den gesamten Lebenszyklus sicherzustellen. Aus technologischer Sicht handelt es sich
bei derartigen Services zumeist um RESTful Web Services, die mit vielfältigen
Repräsentationsformen der im Internet verteilten Ressourcen umgehen können. Zumeist
werden allerdings JSON- und XML-basierte Repräsentationen der mit Hilfe des APIs
bereitgestellten Daten verwendet. Aus Sicht der Autoren kann die Identifikation,
Spezifikation, Implementierung, aber auch das Management derartiger APIs, von den bei
serviceorientierten Architekturen gewonnenen Erfahrungen profitieren. Während im
europäischen Umfeld eher die Probleme des serviceorientierten Architekturansatzes diskutiert
werden, finden sich in Nordamerika bereits kommerziell betriebene Verzeichnisse wie
mashape, Xignite oder ProgrammableWeb, welche die Vorteile entsprechender
Serviceangebote eindrucksvoll verdeutlichen.

Conference Report 12

2. Beiträge des Workshops

Im Folgenden findet sich eine kurze inhaltliche Zusammenfassung der auf dem Workshop
gehaltenen Vorträge. Die korrespondierenden Artikel können im Tagungsband
[Schmietendorf/Simon 2014] nachgelesen werden.

Harry M. Sneed, Stephan H. Sneed: SoA Integration als Alternative zur Code-Migration
(eingeladener Beitrag)

Die serviceorientierte Kapselung von Altsystemen, die in COBOL, PL/1, C, C++, C#
oder auch in Java geschrieben wurden, steht im Mittelpunkt dieses Beitrags. Dabei
wird auf notwendige Aufgabenstellungen und eine mögliche Werkzeugunterstützung
eingegangen.

Frederik Kramer, Klaus Turowski: Auswahl und Parametrisierung einer
Entscheidungsmethode zur Auswahl von Cloud Services in KMU

Bei klein- und mittelständischen Unternehmen bleibt die Verwendung von Cloud
Services aktuell noch hinter den Erwartungen zurück. Häufig liegen die Ursachen in
einer ungenügenden Transparenz der Vor- und Nachteile. Für diese
Entscheidungsfindung schlägt der Beitrag einen Ansatz vor.

Uta Pollmann, Frank Simon: Interoperabilität über Unternehmensgrenzen hinweg: Von SOA
zum API-Management

Die globale Interoperabilität ist für Themen wie IoT, M2M oder auch bei mobilen
Apps essentiell. Dies geht mit einer SOA-fizierung der entsprechenden Schnittstellen
einher. Im Einzelnen gehen die Autoren auf Fragen der Technologie, derSicherheit
und des benötigten API-Managements ein.

Juraj Somorovsky, Markus Mayer, Mark O`Neill: SOAP to REST: Security Enhancement?

Der Einsatz SOAP-basierter Web Services geht mit spezifischen Sicherheitsrisiken
einher, welche im Beitrag erläutert werden. Weiterhin wird auf die Überführung von
SOAP nach REST und den Möglichkeiten zur Gewährleistung der Sicherheit
eingegangen.

Marco Mevius, Peter Wiedmann, Florian Kurz: Nutzerorientierte Multimedia-
Geschäftsprozessmodelle als Basis der Serviceorchestrierung

Dem Beitrag gemäß wird die Prozessmodellierung bei einer SOA zur
Anforderungsanalyse, Servicedefinition und Serviceorchestrierung benötigt.
Vorgeschlagen wird dafür die Verwendung der BPMNEasy-Notation, deren Einsatz
anhand eines Beispielszenarios verdeutlicht wird.

Conference Report 13

Michael Heydeck, Thomas Wiedemann: SOAlution – eine Praxislösung für das
gruppenorientierte SOA-Praktikum

Zur besseren Vermittlung der theoretischen und praktischen Kenntnisse, die im
Zusammenhang mit dem Aufbau einer SOA benötigt werden, schlagen die Autoren
eine werkzeuggestützte Lösung vor. Im Mittelpunkt des Systems stehen insbesondere
die Funktionalitäten des Service Bus (vgl. ESB).

Jan Hentschel, Robert Neumann, Jörn Polifka, Joachim Wilken: Hadoop für „Big
Processing“: Verteiltes Tile-Rendering zur Visualisierung der Fukushima-Radioaktivität in
Japan unter Zuhilfenahme elastischer Cloud-Resourcen

Der Beitrag zeigt, wie unter Zuhilfenahme elastischer Cloud-Resourcen, wie
Microsoft HDInsight, die für das Rendering notwendigen Hadoop Cluster-Resourcen
„on-demand“ zur Verfügung gestellt und nur für die Laufzeit der Berechnung in
Anspruch genommen werden können.

André Nitze: Interoperability of Cross-Platform Mobile Services in Heterogeneous
Environments

Im Mittelpunkt des Beitrags stehen die Anforderungen für die Entwicklung mobil
genutzter Geschäftsanwendungen. Dafür geht der Autor u.a. auf Fragen der Kosten,
der Integration, der Qualität und der Sicherheit ein. Darüber hinaus wird ein
webbasierter Entwicklungsansatz aufgezeigt.

Victor Czenter: Performancetesten in und aus der Cloud

Im Mittelpunkt des Beitrags stehen Last- und Performancetests, die mit Hilfe von
Cloud-Ressourcen ausgeführt, getrieben, konfiguriert und verwaltet werden.
Unterschieden werden dafür die Einsatzszenarien System-under-Test, Test-Utility,
Test-Umgebung und Test-Logistics.

Neben den aufgezeigten Vorträgen enthält der Tagungsband noch zwei Posterbeiträge. Diese
beschäftigen sich mit dem Application Performance Management unter den Bedingungen von
DevOps und serviceorientierten Schnittstellen bei NoSQL-Datenbanksystemen (speziell
CouchDB).

Conference Report 14

3. Ergebnisse der Diskussionsrunde

3.1 Bereitgestellte Diskussionsthemen

Wie bei den vorangegangenen Workshops gab es abermals eine moderierte Diskussionsrunde
zu aktuellen Trends, Herausforderungen und Hypes im Zusammenhang mit service- und
cloudbasierten Architekturen. Zur Anregung der Diskussion wurden initial die folgenden
Themen angeboten:

- API Management,

- Big Data und NoSQL Integration,

- Interoperabilität mobiler Services.

Die Moderation wurde durch Herrn Dr. Frank Simon (Head of Business Development -
BLUECARAT AG) verantwortet.

3.2 Ausgewählte Ergebnisse

Die im Folgenden ausgewählten Diskussionsbeiträge wurden bewusst keiner Interpretation
unterzogen, so dass sich darin auch gegensätzliche Meinungen wieder finden. Zur besseren
Verständlichkeit erfolgte eine erste Strukturierung der verschieden aufgezeigten
Themenbereiche.

Im Sinne einer Selbstreflektion wurde der Sinn einer Interessensgemeinschaft im
Zusammenhang mit serviceorientierten Architekturen kritisch hinterfragt. Immerhin
existieren aktuell mehr als 200 Bücher zu serviceorientierten Architekturen. Darüber hinaus
wurde eine zentrale SOA bereits als „tot“, die Idee der Serviceorientierung aber richtig
charakterisiert. Provokant wurde die These einer zu starken Problemorientierung und eines zu
geringen Lösungsbewusstseins in den Raum gestellt. Würde ggf. wird ein überarbeiteter SOA
2.0 Begriff benötigt? In diesem Zusammenhang stellen sich z.B. Fragen nach dem
Zusammenwirken einer internen SOA mit extern benötigten (Cloud-) APIs, die
Existenzberechtigung bzw. Sinnfälligkeit zentraler SOA-Komponenten oder auch die
notwendige Prozessreife im Kontext erfolgreich eingesetzter SOA-Ansätze. Zunehmend geht
es auch um die Berücksichtigung eines sich verändernden API-Begriffs, so dass zwischen
einer quellcodespezifischen und einer geschäftsprozess- bzw. geschäftsobjektorientierten
Sichtweise zu unterscheiden ist. Es gilt die Beziehungen zwischen intern genutzten
Servicearchitekturen und extern verwendeten bzw. angebotenen APIs aus einer geschäftlich
motivierten Sicht herauszuarbeiten. Dem entsprechend laufen automatisierte
Geschäftsprozesse über Unternehmensgrenzen hinweg - die richtigen APIs ermöglichen diese
Integrationsanforderungen. Darüber hinaus sollte sich die IT als Dienstleister verstehen, d.h.
Fachabteilungen wollen nicht durch restriktive SOA-Vorgaben „gegängelt“ werden.

Allgemeine Anmerkungen:

Conference Report 15

Im zunehmenden Maße kommt es zu einem exponentiellen Wachstum benötigter
Schnittstellen, d.h. „jeder spricht potentiell mit jedem“. Ein zentralistisch geführter SOA-
Ansatz hat bei sich ständig verändernden IT-Infrastrukturen keine Chance. Selbst etablierte
SOA-Lösungen können mit der geforderten Agilität einer zunehmend digitalisierten Welt
nicht Schritt halten. Dem entsprechend werden leichtgewichtige Integrationsansätze benötigt,
welche die folgenden Problembereiche lösen können:

Aktuelle Herausforderungen:

- Bereitstellung eines Managements für heterogen eingesetzte APIs,

- Umgang mit proprietären APIs der verschiedenen Anbieter,

- Steuerung und Überwachung von Datenflüssen,

- Gewährleistung einer semantischen Interoperabilität,

- Berücksichtigung sicherheitstechnischer Anforderungen.

Interoperabilität wird vielfach als handwerkliches Problem betrachtet, so dass Probleme im
Kontext von bilateralen Schnittstellenvereinbarungen gelöst werden. Aus technischer Sicht
finden sich hier vielfältige Ansätze zur Etablierung von Integrationsarchitekturen wie z.B.
CORBA, WS/EAI, WS/SOA, WS/REST oder auch JSON (WS – Web Service). Gerade in
dieser Vielfalt von technologie- und produktzentrierten Lösungsansätzen liegt ggf. auch das
Problem im Sinne einer nachhaltigen, wartbaren und erweiterbaren Verwendung. Darüber
hinaus stellt sich die Frage, was eine SOA unter diesen Rahmenbedingungen überhaupt ist.

In reiferen Industriezweigen, wie dem Automobilbau, finden sich serviceorientierte
Lösungsansätze, welche die Integration dutzender Steuergeräte innerhalb eines Automobils
unter Verwendung des CAN-Busses erlauben. Auch in den eher konservativen Branchen, wie
bei Banken und Versicherungen bzw. bei Telekommunikationsanbietern, wird die SOA-Idee
weiterhin verfolgt. Aus diesen Ansätzen gilt es entsprechende Erfolgskriterien zu
übernehmen.

Conference Report 16

Durch die Teilnehmer des Workshops wurde die Diskussion in der folgenden Weise
zusammengefasst:

Zusammenfassung

- Die Systementwicklung ist „ex ante“ orientiert, d.h. sie wird durch ein „tagesaktuelles“
Denken ohne Berücksichtigung zukünftiger Herausforderungen bestimmt.

- Vorgehensweisen sind vom kurzfristigen Projektdenken geprägt, benötigte
Lösungsansätze gilt es agil bereitzustellen.

- Zumeist entstehen Insellösungen, die ein lokales Optimum bezüglich der Interoperabilität
bieten.

- Die Hoffnung liegt auf ggf. lernfähigen Schnittstellen, welche sich den Bedürfnissen
entsprechend anpassen können.

Das Problem der Integration bleibt bei aktuellen Lösungen im Kontext von Industrie 4.0, Big
Data oder auch mobilen Applikationen ein ständiger Begleiter. Zentralistische
Lösungsansätze, die eine langwierige Standardisierung von Schnittstellen verfolgen, haben
hier kaum eine Change. Das liegt auch an der Möglichkeit, sich über propritätere
Schnittstellen vom Mitbewerber differenzieren zu können.

4 Weitere Informationen

Auch für das Jahr 2015 ist die Durchführung eines BSOA/BCloud-Workshops vorgesehen.
Informationen zum Call for Paper für den kommenden Workshoptermin, finden sich unter
folgender URL im Internet:

 http://ivs.cs.uni-magdeburg.de/~gi-bsoa

Alle Artikel des Workshops wurden innerhalb des 13. Bands der Schriftenreihe „Berliner
Schriften zu modernen Integrationsarchitekturen“ beim Shaker-Verlag publiziert. (ISBN 978-
3-8440-2940-6) [Schmietendorf/Simon 2014]

http://ivs.cs.uni-magdeburg.de/~gi-bsoa�

Conference Report 17

 Abbildung 2: Tagungsband zum BSOA-Workshop des Jahres 2014

5 Quellenverzeichnis

[Schmietendorf/Simon 2014] Schmietendorf, A.; Simon, F. (Hrsg.): BSOA/BCloud 2014 - 9.
Workshop Bewertungsaspekte service- und cloudbasierter Architekturen (Frankfurt/M.
- 04. November 2014), in Berliner Schriften zu modernen Integrationsarchitekuren,
Shaker-Verlag, Aachen, November 2014

[Spencer 2015] Spencer, S.: The Service Oriented Business and how API's power the Service
Oriented Startup, APIdays Sydney/Australia, February 2015, URL:
http://syd.apidays.io/APIdays_program.pdf

Conference Report 18

1 Dank

Seit Gründung der BSOA-Initiative im Jahr 2006 erfährt diese vielfältige Unterstützung aus
dem industriellen und akademischen Umfeld. Ein besonderer Dank geht an die Bluecarat AG
als Gastgeber und Hauptsponsor der diesjährigen Veranstaltung. In diesem Zusammenhang
sei auch Frau Marina Banduryanskaya, ebenfalls von der Bluecarat AG, für ihre umfängliche
organisatorische Unterstützung gedankt. Ebenso sei der Ultra Tendency UG (Magdeburg) und
der adhoc AG (Basel/Schweiz) für das Sponsoring gedankt. Organisatorische Unterstützung
bei den vielfältig eingesetzten Websystemen zur Bewerbung der Veranstaltung erfuhr der
Workshop von Herrn Dr. Dmytro Rud von der Roche Diagnostics AG/Schweiz, von Herrn
Kevin Grützner und Herrn Stephan Hesseling von der HWR Berlin.

2 Organisation

Veranstaltet wurde der Workshop in Kooperation zwischen der Hochschule für Wirtschaft
und Recht Berlin, dem Forschungszentrum Informatik Karlsruhe und der Otto-von-Guericke-
Universität Magdeburg (Softwaremesslabor) unter der Schirmherrschaft der ceCMG (Central
Europe Computer Measurement Group). Darüber hinaus erfährt die BSOA/BCloud-Initiative
Unterstützung durch die GI (Gesellschaft für Informatik - Fachgruppe Softwaremessung- und
Bewertung), die DASMA (Deutschsprachige Interessengruppe für Softwaremetrik und
Aufwandsschätzung) und durch die ASQF (Arbeitskreis Software-Qualität und Fortbildung).

Position Paper 19

Quality-Based Issues in SOA Migration

Ayman Massoud

Otto-von-Guericke University Magdeburg, Germany

 Abstract
Many organizations rely on complex enterprise legacy information systems to automate their business practices
and collect, process, and analyze business data. These systems are large, heterogeneous, distributed, constantly
evolving, dynamic, long-lived, and mission critical that presented as a backbone of the enterprise operations. To
optimize business value, these large, complex systems must be modernized to new software paradigm like SOA
“Service-Oriented Architecture”. This migration process enables the organization to benefits from the new SOA
capabilities, making the legacy functionalities more robust, efficient and cost effective to align easily with the
new business opportunities.

Several migration frameworks are presented to facilitate and manage the migration activities, most of these
frameworks considered deeply technical analysis of understanding the legacy system and the transition steps to
the target system. However, considering the efficiency and quality requirements and measurements throughout
the migration tasks and activities are still needs more research contributions, in order to avoid the repeating of
the legacy limitations in the new environment, and to produce more reliable, integrity, and efficient SOA
solution.

This paper is divided into five parts; the first one is an introduction to explain the key research motivation and
objective. Second part illustrates the related work of the SOA migration approaches, architectures, frameworks,
and methods to understand the quality and evaluation measurement challenges and issues in SOA migration.
The third part executes comparison and gap analysis exercise between the presented migration frameworks from
the quality and measurements perspectives. The forth part explains our quality proposal model that we presented
to support the migration quality issue. And finally in the fifth part, the paper presented in brief a new SOA
migration framework SMF that adopted the proposed quality requirements model and the E4 measurement
approach in order to execute a new quality-based SOA migration process.

1 INTRODUCTION

Modernize the mission-critical legacy systems is supported the organization to transfer its outdated systems into
new software paradigm that making these applications more robust, agile enough to align easily with the new
business opportunities, more efficient and cost effective. Despite of the fact that the SOA migration process is
succeeded to make the legacy systems running and benefits from the modern target architecture, some of the
legacy limitations and issues are still exists, and some of the migration outcomes are not efficient as expected.
Accordingly and as per our literature survey; there are several approaches to migrate legacy applications to SOA
have been reported in academic and in industry. Out of our publications survey, we have summarized some related
papers that reporting legacy to SOA migration during the period from 1997 to 2015.

Service-oriented approach is the most significant software modernization reported in the current software
engineering domain, presented as a solution to overcome the legacy systems limitations and issues. The objective
of this paper is to present new qualified-based SOA migration approach that discusses how to design, implement,
and evaluate an efficient SOA migration framework with acceptable level of migration quality that produces
reliable, efficient, and consistent results.

20 Position Paper

2 SOA MIGRATION FRAMEWORKS – LIETRATUR SURVEY
 Based on the publications on the software re-engineering domain (high number of citations, and the availability of
documentations); the following methods are used to identify the SOA migration phase’s framework:

Butterfly Method (Wu, et al., 1997)

Renaissance Method (Warren & Ransom, 2002)

Architecture-Driven Modernization - ADM (Khusidman & Ulrich, 2007)

IBM’s SOMA Method (Arsanjani et al. 2008, Fuhr et al. 2011)

Service Migration and Reuse Technique - SMART (Lewis 2005, SEI 2008)

SOA Migration Framework SOA-MF (Razavian and Lago, 2010)

SOA Migration - SOAMIG [Zillmann et al., 2011]

Consolidation framework of structural legacy to SOA Migration [Khadka, et al., 2013]

Advanced Software based-service provisioning and migration of legacy Software [ARTIST Project,
2015]

In the following subsections, we will explain in more details the selected literature of the SOA migration methods,
approaches, and frameworks:

2.1 Butterfly Method
Butterfly is an approach to mission-critical legacy system migration: the Butterfly Methodology, its data migration
engine and supporting tool-kit framework. Data migration is the primary focus of the Butterfly methodology;
however, it is placed in the overall context of a complete legacy system migration. Butterfly method is consists of
5 migration stages; namely: justification, legacy system understanding, target system understanding, migration,
and testing. The methodology is depicted in the following figure 1:

 Figure 1: Butterfly method (Wu, et al., 1997)

Justification phase explains the risk and the benefits associated with the legacy system modernization, based on
which the decision of modernization or re-development has to be taken. To support such decisions, various
activities are carried out, for instance, cost benefit analysis to determine the economic benefits, software quality
metrics to determine the technical feasibility.

Legacy system understanding uses the reverse engineering method to identify the legacy components, recreate
documentation, understand the static and dynamic behavior of the legacy system, and create the representations of
the system at a high level of abstraction.

Position Paper 21

Target system development classifies the requirements/specifications of the target system and choosing the most
appropriate architecture and standards to support the goals that specified in the legacy system understanding
phase.
Migration phase is concerned with the physical movement of the whole legacy system to the target system.

Finally, Testing is carried out throughout the modernization process to ensure that the target system delivers the
functionalities specified at the starting of the modernization.

Butterfly Method Characteristics: The objective of the Butterfly methodology is to migrate a mission-critical
legacy system to a target system. The fundamental premise of the Butterfly methodology is to question the need
for parallel operation of the legacy and target systems during migration. The Butterfly methodology eliminates,
during the migration, the need for system users to simultaneously access both the legacy and target systems, and
therefore, eliminates the need of interoperation between heterogeneous information systems.

Butterfly methodology is focusing on the data migration, therefore it is proposes a legacy data migration engine,
suitable for mission-critical system migration. Butterfly method is not considered how to evaluate or measure the
migration quality and process efficiency, it is just mentioned that the important aspect of migration testing is to
ensure that there are no unexpected inconsistencies between the critical functionality of the legacy system and its
replacement.

2.2 Renaissance Method

The renaissance method for legacy system modernization consists of 4 phases, namely; plan evolution, implement,
deliver, and deploy & use. Each phase is further categorized into key activities. The renaissance method is
displayed in figure 2:

 Figure 2: Renaissance method (Warren & Ransom, 2002)

Plan evolution phase involves three sub elements which addresses the system’s long-term future; Calibrate
method activity that involves gathering information and feedback from organizational units to assess the need of
evolution. The assess system activity involves the assessment of the legacy system from economical, technical and
business organizational perspective. Upon assessing the legacy system, proper evolution strategy is developed as a
last activity is this phase.

Implement phase in this phase the modernization project determines which evolution strategy to implement for
evolution, prepare environment that determines the requirements of the target system and selecting the
appropriate standards and technologies for the target system. The design, transform and test system activity
involves the implementation of the evolution and testing the implementation technique.

Deliver phase including; migrate the legacy data into the new system, install the transformed system after
evolution and train operators on the new migrated system.

22 Position Paper

Finally, deploy & use phase is concerned with the deployment of the transformed system. This phase includes
cutover plant for gradually stopping the operation of the legacy system and using the new migrated system,
determine the effectiveness of the evolution and create new documentation in the course of evolution.

Renaissance Method Characteristics: Renaissance supports system evolution by first recovering a stable basis
using reengineering, and subsequently continuously improving the system by a stream of incremental changes.
Renaissance method can be tailored to the needs of particular projects and organizations, and it is not prescriptive
of particular tools and techniques. The objective of Renaissance is providing a controlled approach to system
change essentially means reducing the costs and risks associated with change. The Renaissance method comprises
a classification of evolution strategies, a process framework, an information repository, and a set of
responsibilities to be met in a typical evolution project. Each of these elements can be tailored to fit particular
project and organizational factors. The Renaissance method is determined four requirements that shape its
characteristics:

R1 Method should support incremental evolution.

R2 Where appropriate, method should emphasized reengineering, rather than replacement.

R3 Method should prevent the legacy phenomena from reoccurring.

R4 It should be possible to customize the method to particular organizations and projects.

And used these requirements to evaluate and measure its strength and weakness as follows:

• Strengths: Well-defined process, Application assessment method, Evolution strategy selection process,
Customizability, Protection of investment in current systems, and Business-driven nature.

• Weakness: Adoption overhead, and Overhead for small projects.

2.3 Architecture-Driven Modernization Method (ADM)
The architecture-driven modernization method is based on the reengineering horseshoe model (Bergey, et al.,
1999). The ADM horseshoe model (Figure 3) consists of three major architectural perspectives namely: business
architecture, application and data architecture and technical architecture. Left side of the Figure 3 represents the
existing legacy system and similarly the target system in the right with its three levels of architectural perspectives.
The curve from legacy to target system represents the transformation path of modernization.

The ADM involves transforming the existing legacy system incrementally to the target system in any architectural
perspective. For instance, the evolution can be in technical architectural level that involves the transformation of
legacy code to object-oriented code. As per the ADM any transformation curve representing the modernization
has three elements: knowledge discovery of the legacy system, target architecture definition and transformative
steps.

 Figure 3: ADM horseshoe model (Khusidman and Ulrich, 2007)

Position Paper 23

The knowledge discovery of the legacy element involves the reengineering of the legacy system to understand it.
The target architecture definition element determines the target solution/architecture and its details into which the
legacy code can be mapped or transformed. Finally, the transformative steps of ADM including migrate the legacy
system to the target system. The transformation can be at any abstraction level ranging from the physical code
level (e.g. language migration) to a more abstract level (e.g. business rule transformation).

ADM Method Characteristics: ADM method considered that the modernization is summarized in three
perspectives based on the architectural domains those projects impact; these perspectives (transformation phases)
are business architecture, application and data architectures, and technical architecture. The ADM path represents
the way knowledge from the existing solution is discovered, enhanced and reused in the target solution. ADM
method adopted three elements to every transformational path, regardless of the level of architectural impact:

1. Knowledge discovery of the existing solution. This can occur at many levels of abstraction across varying
degrees of scope as appropriate to the projects involved.

2. Target architecture definition. In order to create a transformation approach, analysts must create a target
solution that serves as a framework into which existing solutions can be mapped or transformed.

3. Transformative steps that move the as-is state to the to-be state. The approach can range from the physical
(e.g. a language migration) to the more abstract (e.g. business rule mapping to a rules-based
environment).

The ADM method is referred to (without more details of applied techniques) the software assurance and metrics
as standards to be used in the modernization processes.

2.4 Service-Oriented Modeling and Architecture (SOMA)

Service-Oriented Modeling and Architecture SOMA developed by IBM [Arsanjani et al 2008], SOMA is an
iterative and incremental method to design and implement service-oriented systems. SOMA describes how to
plan, design, implement, and deploy SOA systems. SOMA is designed extensible to be able to include additional,
specialized techniques supporting specific project needs. In the following figure 4 [Fuhr, 2011] the seven SOMA
phases are illustrated as follows:

 Figure 4: The seven SOMA phases (Arsanjani et al 2008)

Regarding the development and implementation of SOA, several methods are available: SOMA (Arsanjani et. al.,
2008), TOGAF (The Open Group Architecture Framework, 2007), MDA (Model Driven Architecture Truyen,
2006). While TOGAF and SOMA could be applied for broader context as enterprise, Model Driven Architecture
is used mainly within a project scope. Another particularity of MDA is that it is focused on models with different
degrees of abstractions (Computation Independent Model, Platform Independent Model, and Platform Specific
Model) instead of phases. TOGAF and SOMA are formulated as multiple-phase methods that are executed
incrementally. However, there is a difference between them: SOMA phases identify the main processes of SOA

24 Position Paper

development, while TOGAF phases relate to various domains where the focus should be oriented during SOA
development such as Business Architecture, Technology Architecture, and Migration Planning.

Business Modeling, the state of a company is analyzed at the beginning of a project. As SOAs are tightly aligned
to business concerns, it is necessary to clearly understand the customer’s business. In this phase, all possible
information about the following concerns is gathered:

– Business mission and vision

– Business actors, use cases and processes

– Business challenges

– Business goals and key performance indicators (KPIs)

One main result of this phase is the business model which is a formalized view on these aspects.

Solution Management adapts the SOMA method to the project needs. This includes choosing additional
techniques to solve project-specific problems. From a SOMA perspective, the SOA project is located in Solution
Management since it adapts SOMA to software migration issues, using model driven technologies.

During Service Identification, SOMA uses three complementary techniques to identify service candidates, i.e.
functionality that may be implemented as service later in the new SOA architecture. Domain Decomposition is a
top-down method decomposing the business domain into functional areas and analyzing the business processes to
identify service candidates. Goal-Service Modeling identifies service candidates by exploring the business goals
and sub goals. Legacy Asset Analysis finally explores the functionality of legacy systems bottom-up. It is
analyzed, which business processes are supported by what functionality of a legacy system. For that purpose,
documentation, APIs or interfaces are explored to identify which functionality is provided. The source code is
only analyzed on a coarse-grained level, meaning it is analyzed which functionality exists and not how it is actually
implemented. For each business function that supports the business process, a service candidate is created. All
three techniques are performed incrementally and iteratively. For each identified candidate, an initial service
specification is created and a trace to the source of identification is established.

Service Specification deals with describing the service design in detail. The initial service specification is refined,
messages and message flows are designed and services are composed. This phase results in a comprehensive
description of the service design. SOMA uses an UML profile for Service-Oriented Architectures to describe the
service design. Later, the specification will be transformed into WSDL code for implementing the service as a
Web Service (as it is proposed by SOMA and it is much common used).

Service Realization decides which services will be implemented in the current iteration and constitutes how to
implement them. First, identify service candidates that should be exposed using a set of criteria to evaluate
usefulness and value of each service. After having chosen a set of services, the implementation strategy has to be
defined. Encapsulation of services allows the choice of different ways to implement each service. Common
strategies to form new service components are:

1. Implementation from scratch,

2. Wrapping of larger legacy components or

3. Transforming the required legacy components.

After having decided on an implementation technique, legacy systems require fine-grained analysis. Functionality
that is able to implement services has to be identified in the legacy code. In addition, it is important to clearly
understand how this functionality is embedded in the legacy system, since it has to be separated to build a self-
contained service. Finally, the implementation design specifies how to implement the service.

During the Service Implementation phase, services are actually implemented. According to the decisions derived
in the Service Realization phase, services are developed, wrappers are written, or legacy code is transformed.
Finally, all services are orchestrated and message flows are designed. The last phase is Service Deployment. It

Position Paper 25

deals with exposing the services to the customer’s environment. Final user-acceptance tests are performed and the
SOA is monitored to verify that it performs as expected.

SOMA Method Characteristics: SOMA defines key techniques and describes the roles on a SOA project and a
work breakdown structure (WBS). The WBS includes tasks, the input and output work products for tasks, and
the prescriptive guidance needed for detailed analysis, design, implementation, and deployment of services,
components, and flows needed to build a robust and reusable SOA environment. SOMA methods includes seven
migration phases; Business Modeling, Solution Management, Service Identification, Service Specification, Service
Realization, Service Implementation, and Service Deployment. SOMA phases are not linear. They are applied in a
risk-driven, iterative, and incremental approach using a nuance peculiar to the SOA life cycle.

SOMA method is focus on packaging, provisioning, executing user-acceptance testing, and deployment of
services in the production environment. In addition, SOMA provides support of monitoring and management of
business processes and performance monitoring in the production environment. SOMA also provides linkages to
runtime monitoring and management aspects, as in system, infrastructure, and network management.

2.5 Service Migration and Reuse Technique (SMART)

Service Migration and Reuse Technique (SMART) [Lewis et al., 2008] is an approach for making decisions on
the migration of legacy components to services. SMART helps organizations to make initial decisions about the
feasibility of reusing legacy components as services within an SOA environment. SMART was initially developed
in 2005 [Lewis et al., 2005 and 2006].

SMART consists of four elements:

1. The SMART Process is a systematic means to gather information about the legacy components, the
candidate services, and the target SOA environment.

2. The Service Migration Interview Guide (SMIG), guides the discussions during the initial SMART process
activities. It contains more than 60 categories of questions that gather information about the migration
context, the legacy components, the candidate services, and the target SOA environment. The goal of
using the SMIG is to assure broad and consistent coverage of the factors that influence the cost, effort,
and risk in migration to services. Each question in the SMIG is associated with potential migration issues
or aspects that are known to require extra cost or effort.

3. Using the SMIG as a framework, the SMART Tool automates data collection and relates answers to
questions to potential risks to mitigation strategies. Then, answers and associated information yield a
draft migration strategy and migration issues list. The tool also consolidates data from multiple
engagements for trend analysis.

4. Artifact Templates for output products are created as part of the process. These templates, which are
initially populated by the SMART Tool, include the following: 11

- Stakeholder List: Contains the information about all stakeholders who will provide input into the
process—sponsors, managers, system developers, system maintainers, system architects,
representatives of service consumers, and IT staff.

- Characteristics List: Contains the list of characteristics that needs to be gathered about each
component targeted for migration. It initially contains basic information such as name, function,
size, language, operating platform, age and gets updated as migration issues are identified.

- Migration Issues List: Contains the list of migration issues that are identified during the information-
gathering activities.

- Business Process-Service Mapping: Contains the mapping between main business processes and
candidate services.

26 Position Paper

- Service Table: Contains information about candidate services such as description, associated legacy
components, inputs, and outputs.

- Component Table: Contains information about legacy components targeted for migration as
identified in the Characteristics List.

- Notional Service-Oriented System Architecture: Presents a high-level view of the system
architecture showing service consumers, infrastructure components, services, and legacy
components, as well as their interaction.

- Service-Component Alternatives: Presents the different options for satisfying candidate service
requirements. Options are wrap, extract, create new, rewrite in a different language, add
external service, acquire commercial product, or fashion any combination of the above.

- Migration Strategy: Contains the migration strategy for the targeted legacy components, as well as
guidance for future migration efforts.

The following sub-sections outline the SMART elements process as shown in figure 5.

 Figure 5: The SMART Process (Lewis et al., 2008)

The SMART Process has six activities and one decision making, establish context, feasibility decision, define
candidate services, describe existing capabilities, describe the target SOA environment, analyze the Gap, and
finally develop strategy.

Establish Context: The Establish Context activity has the following tasks:

- Understanding the business and the technical context of the migration project, including organization business
and technical objectives, target SOA expectations, project stakeholders and time schedule, project budget and
constraints, and any other relative topics that support to understand the migration context.

- Understanding the legacy and the SOA systems, its functionalities, technologies, limitations, benefits, etc…

- Identify a set of candidate services for migration. Using top-down and bottom-up approaches based on the
migration drivers.

During the Establish Context activity, the following artifacts are initially developed:
 Stakeholder list, migration issues list, characteristics list, and business process-service mapping

Position Paper 27

Migration Feasibility: The process of the feasibility study is essential to determine if the legacy systems are
potential enough to be represented as services or not. The case is varying between the following scenarios:

Feasible
- Migration goals are clear and valuable for all stakeholders.

- Both legacy and target systems are well understanding.

- Candidate services and its consumers are identified.

- Initial mapping of services to legacy component has been done.

Not Feasible
- Services consumers are not identified.

- Build services from legacy code are not potential for common use.

- There appears to be incompatibility between the legacy and the target SOA environment.

- No stateless functionality in the legacy system.

Feasible but need additional information
- Clarify the business goals that expected from the migration project.

- Services consumers should to be well identified.

- Availability of key stakeholders to suppo rt the migration project.

- Identification of target SOA environment

Candidate Services Identification: In this activity the identification of the potential candidate services is the
main goal, the selection is based on the most services that has clear input and output, perform concrete function,
can be reused across several applications, support the QoS requirements.

Describe Current Capabilities: The goal of this activity is to discover and understand the legacy capabilities and
limitations toward service-oriented solution. This activity may include:

- Descriptive data about legacy components, its name, function, size, language, operating platform, age.

- Architecture views, design paradigms, system quality, change history, user satisfaction, and existing problems.

Additional information needed about components will be determined by the migration issues that emerge during
the process.

Describe Target SOA System: This activity gathers information about the target system (SOA environment) for
the selected services including

- Major components of the SOA solution

- Impact of specific technologies and standards used in the migration

- Guidelines for service implementation

- State of SOA system

- Interaction patterns between services and the overall solution

- QoS expectations and execution environment for services

Gap Analysis: This activity is focusing in calculates the cost, time, risk, and effort estimated to complete the
migration process, given the candidate service requirements and target SOA characteristics. The discussion of the
changes that are necessary for each component is used as the input to calculate this preliminary estimation.

28 Position Paper

In some cases, additional analysis methods may be needed, such as evaluation of code quality using code analysis
tools or architecture reconstruction. For example, if the dependencies between components of the system are not
well known and the technical personnel is not capable of providing details of the changes or the magnitude of the
changes, an architectural reconstruction could provide a set of views to understand these dependencies [Kazman
2002, O’Brien 2002].

Develop Strategy: Develop strategy activity is aim to draw the road map of migration processes that taking in
considerations all the output coming from the previous activities. This activity may include:

- Feasibility, risk, and options for proceeding with the migration effort

- Starting with pilot project to see how the migration proceed using samples of candidate services and legacy
components

- Guidelines and options that suppo rt all the migration implementations tasks

- Issues to be addressed and recommendations for mitigations common problems.

SMART Method Characteristics: Service Migration and Reuse Technique (SMART) is a migration method
that considered concrete analysis of the feasibility, risk, and cost involved. SMART process helps organizations to
make initial decisions about the feasibility of reusing legacy components as services within an SOA environment.
SMART gathers information about legacy components, the target SOA environment, and candidate services to
produce (1) a preliminary analysis of the viability of migrating legacy components to services, (2) an analysis of
the migration strategies available, and (3) preliminary estimates of the costs and risks involved in the migration.

2.6 SOA Migration Framework (SOA-MF)

According to [Razavian and Lago, 2010], the SOA Migration process is considered as some kind of reengineering
process as in [Kazman, et al., 1998], including reverse engineering, transformation, and forward engineering
process, and that the horseshoe model is a generally accepted conceptual model for reengineering. SOA Migration
Framework SOA-MF is a proposed framework that extended form of the horseshoe model as a holistic model of
the migration process. Figure 6 of SOA-MF illustrated the migration process phases: (Reverse Engineering,
Transformation, and Forward Engineering)

 Figure 6: SOA Migration Framework SOA-FM (Razavian and Lago, 2010)

Position Paper 29

The mentioned framework illustrates the migration process together with details of the artifacts included,
activities carried out and types of knowledge exploited within each of migration sub-processes. The graphical
representations of the conceptual elements are depicted in Figure 2.5. The sub-processes, activities, artifacts and
knowledge elements are respectively depicted by thick arrows, rounded rectangles and parallelograms.

2.6.1 Reverse Engineering

Reverse engineering sub process starts from analyzing the legacy code within the code analysis activity. The input
artifact of this activity is the legacy code while the output consists of set of legacy elements (which could be in the
form of components, modules, segments of code, etc.). The extraction of legacy elements from code is influenced
by involvement of code related knowledge (such as code grammar and model) as well as bodies of knowledge
addressing higher level concepts (such as business domain knowledge). Within the reverse engineering sub
process, the extracted legacy elements are inherently design entities recaptured by means of reverse engineering
techniques. However, SOA-FM is go one step further and recaptures the meaningful compositions of these legacy
elements within the architectural recovery activity. In this phase, the composition knowledge such as architectural
patterns and architectural styles are involved in identification of the architectural elements and their associated
relationships.

Finally, the legacy enterprise model is extracted during the business model recovery activity as output, while the
inputs to this activity are the legacy architecture as well as the existing business domain knowledge such as
business rules, business processes, etc.

2.6.2- Transformation

Transformation is restructuring one representation form to another at the same level of abstraction, transformation
process in the SOA-MF is encompasses 3 main activities:

- Design element transformation activity is typically performed to move the encapsulation of the legacy
elements (extracted during the reverse engineering process) to services. Most of the wrapping techniques
fall in this category of transformations. The input artifact to this activity is the legacy element (i.e.
module, component or segment of a code) while the output artifact is basically a service.

- Composition transformation this activity transform the legacy architecture to service compositions
(components and connectors are transformed to a service composition embracing services and
relationships among them).

- Business model transformation in this activity the existing business model is transformed to a to-be
business model based on new requirements as well as opportunities offered by service based systems.
Here, existing business rules, business processes and strategies which are partially embedded in the
legacy enterprise model are transformed to new ones to form the basis for development of service based
system. The input artifact to this activity is legacy enterprise model, whereas the to-be enterprise model
is the output. The business model transformation activity is assisted by the business domain knowledge
such as business rules, risks, benefits and plans.

2.6.3 Forward Engineering

The output of the previous migration process is “To-Be- Enterprise Model”, this model is produced migrated
services throughout:

- Service Analysis During service analysis, based on the to-be enterprise model a set of candidate service
compositions which conceptualize the business processes are identified.

- Service Design renovated services are designed based on the consolidated candidate service compositions.

- Service Implementation candidate services are merged with the services identified during design element
transformation activity. Finally, during service implementation the service design is transformed to code.

30 Position Paper

SOA-MF Method Characteristics: SOA migration framework (SOA-MF) characterize and isolate the
properties of migration approaches in terms of processes it supports, artifacts included, activities carried out, and
types of knowledge exploited. SOA-MF considered that the notion of tier plays an important role in positioning
and classifying the various migration approaches. The tiers of SOA-MF covered by a specific SOA migration
approach can explain the following aspects: the associated level of abstraction in which the transformation occurs
and the transformations that entail lower level ones.

2.7 Model-Driven SOA Migration (SOAMIG)

SOAMIG is extend of IBM’s SOMA method (Service-Oriented Modeling and Architecture [Arsanjani, et al.,
2008]) [Zillmann, et al., 2011], [Fuhr, et al., 2011], can be viewed as an extension of SOMA using “graph-based
reverse engineering and transformation techniques to enable model-driven software migration” (Fuhr, Horn, &
Winter, 2010).

SOAMIG’s characteristics position it in the field of legacy system migration. SOA migration planning is dealt
with, in the SMART approach (Smith, 2007) also. A graph based migration approach has been proposed by
Matos (2008) as well. Furthermore Correia et al. (2007) and Fleurey et al. (2007) have described approaches of
model-driven migration. Lastly, a legacy system migration procedure with wrapping as its strategy’s focus has
been proposed by Marchetto and Ricca (2008) as well as Gimnich (2007).

SOAMIG aims at defining an adaptable iterative migration process model. The SOAMIG process distinguishes
four organizational phases exposing important milestones in migration projects (Figure 7-A). The phases included
several disciplines of activities during migration:

1- Preparation: This phase is starting from the legacy code which has to be prepared and standardized in the
Pre-Renovation discipline by various reengineering activities to alleviate conversion activities. The
migration project infrastructure including defining project goals and work packages or managing
resources is set up in the Project Setup discipline. Migration projects require a high level of automation
by using appropriate tools. General development of reengineering and conversion tools is covered by
Tool Initialization; their adaptation to detailed project-specific requirements is addressed in Tool
Adaptation in the next Conceptualization phase.

2- Conceptualization: A central activity in migration projects is assessing feasibility of migration and
applicability of provided tool sets during Technical Feasibility.

3- Migration: Migrated the entire system is applied after setting up a general migration strategy and tool
support. In the Migration phase, all SOAMIG core disciplines are performed iteratively in different
intensities, resulting in a migrated system in production.

4- Transition: Code migration usually leads to hardly maintainable code, which requires additional
reengineering. Software quality degrades by adopting mindsets from legacy to target structures directly
[Teppe, 2009]. The quality of the migrated system has to be improved in the Post- Renovation discipline
in the target environment.

 Figure 7-A: SOAMIG - SOA Migration Framework (Zillmann, et al., 2011)

Position Paper 31

The SOAMIG Core Disciplines: The SOAMIG Core disciplines (Figure 7-B) are performed during
Conceptualization phase for a small part of the legacy system and eventually in the Migration phase for the entire
system. Most of these disciplines use model driven techniques based on an integrated repository [Fuhr, 2010],
[Zimmermann, 2010] .

1. Business Modeling: the objective of SOAMIG is the migration to SOA, which requires analyzing the
business processes of legacy systems to allow a reasonable tailoring of services in the Target
Architecture discipline. The evaluation and documentation of supported business processes is handled by
the Business Modeling discipline using UML2 activity diagrams and Business Process Modeling
Notation (BPMN). These models are integrated with architecture and code models in the SOAMIG
repository.

2. Legacy Analysis: Legacy Analysis deals with exploring and comprehending the legacy system. Available
information like user or technical documentation, test cases, architecture description and source code
have to be analyzed. In SOAMIG, static and dynamic analysis techniques including FGM (Flow Graph
Manipulator) [Beier, et al., 2009] and JGraLab/GReQL ([Ebert, et al., 2008], [Ebert, et al., 2010]) are
applied. Service candidates are discovered by mapping business processes from Business Modeling to the
legacy.

3. Target Architecture: Finding a best target architecture deals with both, the legacy system and the required
software support [Zillmann, et al., 2010] in the target system. The target architecture is iteratively
approximated, starting from a technically ideal architecture and taking into account special requirements
of the legacy to enable economic migration. The SOA target architecture consists of service design, the
realization design and the orchestration design. The service design describes the interfaces of the target
architecture services. The realization design describes how to implement the services or the user
interfaces, and finally the orchestration design specifies how to orchestrate services to support business
processes.

 Figure 7-B: SOAMIG - Core Migration Activities (Zillmann, et al., 2011)

32 Position Paper

4. Strategy Selection: Strategy Selection decides on the cut-over strategy, which defines delivery of (parts of)
the migrated system and on the realization strategy for converting each package. Cut-over strategies vary
from conversion in one go (big bang) to iterative strategies, providing stepwise migration and calling for
bridging architectures to enable collaboration of parts of legacy and target system [Brodie, et al., 1995].
Performing iterative migrations also includes deciding on the parts of the system to be migrated in each
iteration. The realization strategy addresses the conversion of each migration package. This includes
project, package and service realization strategies. Alternative strategies are reimplementation,
transformation-based conversion, and wrapping. The corresponding strategy is selected according quality
and business value of each migration package [Bennett, et al., 1999].

5. Realization: in this discipline, functionality of the legacy system is converted to the target system.
Migration projects deal with migrating functionality, user interfaces and data, etc. SOAMIG especially
focuses on transformation-based migration. So, it is aspired to convert as much code as possible by an
automated transformation using SOAMIG converters and translators. In SOA migrations, a special focus
lies on services and service orchestration. Whereas service functionality could be extracted and migrated
(semi-)automatically, the orchestration of services usually has to be newly implemented since legacy
systems lack the required orchestration information.

6. Testing: Testing deals with ensuring equivalent behavior of legacy and migrated system by applying
regression tests from the legacy system to the migrated system. System tests account for correctness
within the target environment. The chosen testing strategies depend on the embedding of the migrated
system.

7. Cut Over: Cut Over concludes the core migration in SOAMIG. The migrated system is deployed at the
customer’s site, while the legacy system is turned off. To keep decisions and results based on the legacy
system comprehensible for future analysis, in some cases, the legacy has to be preserved. Cut Over
follows the cut-over strategy selected in Strategy Selection. A fallback strategy is required to ensure
switching back to the old system without loss, if serious errors occur during migration. This also includes
a reverse migration procedure to reconvert e.g. data changes already made in the target system before
fallback [Teppe, 2009].

SOAMIG Method Characteristics: The SOAMIG process is divided into four distinct phases, each being a
milestone during a migration process. Each phase incorporates several disciplines while, at the same time, a set of
core disciplines is presented that influences the two main phases of the procedure. Lastly, besides the first, all
phases pass through a multitude of iterations before their completion.

SOAMIG Core disciplines are performed during Conceptualization phase for a small part of the legacy system and
eventually in the Migration phase for the entire system. Most of these disciplines use model driven techniques
based on an integrated repository. SOAMIG considered testing phase to ensure equivalent behavior of legacy and
migrated system by applying regression tests from the legacy system to the migrated system.

2.8 Consolidation Framework of SOA Migration

According to [Khadka and et al. 2013], [Kontogiannis et al., 2008], [Lewis et al., 2008], [Lewis et al., 2009], and
[Lucia et al., 2008] of SOA migration evaluation process, several approaches to migrate legacy applications to
SOA have been reported. Some approaches are proposed in academia [Khadka and et al. 2012], [Razavian and
Lago, 2010] and others are proposed in industry [Razavian and Lago, 2011], [Razavian and Lago, 2012]. These
approaches can be basically categorized into two aspects: migration planning to determine the migration
feasibility based on technological and economical assessments, and migration execution to develop a supporting
technology so as to expose legacy applications as a service and to provide service provisioning upon exposing the
service.

These given approaches are considered that SOA migration process requires the consolidation of both planning
and execution migration aspects. And considered also that the legacy to SOA migration is not only a complex
technical endeavor, but it also involves various organizational and business perspectives [Nasr et al., 2011]. The

Position Paper 33

mentioned researchers are classified the process of SOA migration framework and its structure in six phases as a
complete merged scenario (figure 8-A [Khadka et al., 2013]), started with planning stage to understand the legacy
and the SOA systems requirements, and then provide the study of migration feasibility from the technical and
ecumenical perspectives according to the given context. So, upon completed this planning stage the decision can
be taken to move to the implementation stage which involves; identified the proper services to be created and re-
used, select or create a technique to expose/leverage the legacy functionalities to a services, and finally the
implementation stage manage the legacy-services deployment and the provisioning to start the migration go-live
process

The following sub-sections will illustrate these migration phases in more common details:

2.8.1- Legacy System Understanding (LSU)

Understanding the legacy system and it’s as-is situation are crucial to the success of any evolution [Seacord and et
al, 2003]. LSU target to understanding what the legacy system do and how it can do it, via deeply analysis in
legacy system for acquiring information including source code characteristics, identifying dependencies,
recovering “as-is” legacy system architecture. Techniques to obtain the legacy information range from manual
inspection of development history, interviewing developers (if any) and current users to automated reengineering
techniques. Techniques to obtain the legacy information range from manual inspection of development history,
interviewing developers (if any) and current users to automated reengineering techniques [Canfora et. al., 2007],
this process also including for instance, business process understanding, reverse engineering, architectural
recovery can be used often with tool support to generate system artifacts.

Although of the challenges that founded during the process of legacy understanding (lack of knowledge and
resources, complexity of codes, not updated documents,…), the LSU phase does not only assist at creating an
inventory of the existing features within the legacy applications, but also facilitates the decomposition of the
legacy applications with the aim to maximize reusability. Hence, LSU is essential to the success of legacy to SOA
migration [Seacord et. al., 2003], [O’Brien et. al., 2005].

 Figure 8-A: The evaluation framework (Khadka et al., 2013)

The current practices of the research papers in this migration phase represents that, using reverse engineering
technique to decomposing the legacy functions and codes is essential to understand the legacy functionalities,
however acquiring knowledge and skills from the end users experiences, developers, system and industry experts
is still very significant tool to understand the legacy system, this concept is founded in [Nasr et. al., 2011], [Murer
et. al., 2011] [Lewis et. al., 2005], [Khadka et. al., 2011], and [Lewis et. al., 2008], and figure 8-B and 8-C
depicts these techniques.

34 Position Paper

 Figure 8-B: Soft Knowledge Technique

 Figure 8-C: Reverse Engineering Technique

In legacy migration, reverse engineering techniques are used to understand the legacy functions via applying
deeply source code analysis such as:

• Architectural Recovery, that used to extract information/views of a software system from the lower-
level artifacts such as source code [Lewis et al., 2008], [Lewis et al., 2005], [O’Brien et al., 2005],
[Cuadrado et al., 2008], and [Zhang et al., 2005].

• Feature location, used in identifying functional units in a source code, which peace of code represent
specific business or technical task [Chen et al., 2005], [Millham, 2010], [Vemuri, 2008].

• Software Metrics, have been extensively used; [Sneed, 2008], [Sneed, 2009] measured the size,
complexity and quality of legacy programs in terms of modularity, reusability, maintainability metrics,
these measurements would support to understand how given legacy system will be ready for
modernization process.

• Source code visualization, a technique to visualize static and animated forms of software artifacts such
as source code and their elements and dependencies, these visualizations would support understand of
the systems functionalities [Geet et al., 2007], [Cuadrado et al. ,2008], [Zillmann et al., 2011].

2.8.2 SOA Target System Understanding (SOA-TSU)

SOA target system understanding, this phase aims to understand the SOA key principles, architecture, and
environment. Define the main SOA components to be design, and which technology, standards to be used. Also,
in this phase some issues like performance, security, governance, and others SOA characteristics to be discussed.
[Lewis, et al., 2005] argue that the target architecture largely determine the reusability of the existing legacy
components. The other crucial factor that indicates the importance of the target system understanding phase is the
fact that legacy applications have undergone numerous bug fixes and over the years they have been efficient,
reliable and responsive to the daily business of the enterprise [Bennett, 1995].

SMART method [Lewis et al., 2008], [Lewis et al., 2005] provide guidelines for developing the SOA target
architecture based on the legacy components and to assess them with the stakeholder by taking into account
various functional and non-functional characteristics of the target system. The SOAMIG method [Zillmann et al.,
2011] describes the importance of service design as a part of target system understanding, which is the result of
forward engineering (design of the target architecture and the orchestration of services) and reverse engineering
(potential features from the previous point of Legacy System Understanding). [Cuadrado et al., 2008] explain the
selection of specification and service platform to preserve maintainability and interoperability nonfunctional
characteristics.

Position Paper 35

2.8.3 Migration Feasibility Study (MFS)

Understanding the complexity level of the current legacy system, and understanding the architecture design and
the new functionalities of the target system would support to shape the feasibility degree of the migration process
from different perspectives. The feasibility assessments are carried out at a technical, economical and
organizational level. The technical assessment includes measuring the code complexity of the legacy system in
terms of cohesion, coupling, reusability and abstraction (Reddy, et al., 2009). Economical assessment includes
determining economic feasibility of the evolution, for instance by using the cost benefit analysis, as suggested by
Sneed (H. M. Sneed, 1995a). This analysis of technical and economic feasibility will provide to the organization
most of necessary information to considering whether its business goals will be achieved via SOA migration
project or not.

Cost-Benefit Analysis (CBA) proposed by [Sneed, 1995] for determining migration feasibility. The CBA
technique is used by [Khadka et al., 2011], [Sneed, 2009], and [Sneed, 2008]. [Umar & Zordan, 2009] extended
the CBA model to include the migration costs, which facilitates decision making in choosing a migration strategy.
The SMART [Lewis et al., 2005] method uses Options Analysis for Re-engineering (OAR) to determine the so
called migration feasibility decision point.

2.8.4 Candidate Service Identification (CSI)

Legacy software is often modified and enhanced by people who did not develop it. Poor documentation and lack
of appropriate resources (e.g. developers, architects) make the understanding of source code a hard task. In such
a scenario, identifying the potential services and service-rich areas in a legacy code is definitely a challenging task
[Zillmann et al., 2011] and [Kontogiannis et al., 2008]. Identifying candidate services is an important activity in
the context of legacy to SOA migration as this activity enables reusability and leveraging the existing legacy
features [Lewis et al., 2005]. A plethora of methods are reported [Gu & Lago, 2010], [Arsanjani et al., 2008]) to
identify potential services.

This phase is focusing on determine which legacy source code’ area is potential for re-use’ services, various
techniques can be used for this purpose. For instance, design pattern recovery, cluster analysis techniques,
architectural reconstruction, feature location, concept analysis, and source code visualization can be used to
identify the needed/re-used services. CSI is categorized into two approaches:

• Top-down, started initially by modeling the business process based on the requirements and then the
process is subdivided into sub-processes until these can be mapped to legacy functions, this approach is
used by [Alahmari et al., 2010], [Fuhr et al., 2011], [Ricca & Marchetto, 2008] , and [Zillmann et al.,
2011].

• Bottom-up approach utilizes the legacy code to identify services using various techniques such as
information retrieval [Aversano et al., 2008], concept analysis [Zhang et al., 2006], business rule
recovery [Ricca & Marchetto, 2008], source code visualization [Geet et al., 2007].

2.8.5 Implementation Process (Imp. Process)

This phase is one of the crucial phases of the process in which the migration is technically realized. This phase
provides techniques to extract/leverage the legacy code as services. [Almonaies et al., 2010] classified the
implementation strategies into four categories figure 9, migration strategy is mostly selected based on two factors,
cost/business value against technical capabilities.

- Replacement in which a legacy application is replaced entirely with a commercial off-the-shelf (COTS) product.

 - Integration in which the existing legacy application is accessible via an interface, and exposing its functionalities
via web services.

- Redevelopment in which the entire legacy application is re-developed into SOA.

- Migration in which a legacy application is gradually moved to SOA with reusing the legacy components.

36 Position Paper

 Figure 9: Migration Strategies (Almonaies et al., 2010)

The implementation techniques used in legacy to SOA migration can be broadly grouped into code level and
architecture level. Figure 10 [Khadka et al., 2013] depicts various implementation techniques (non-exhaustive)
that are used in legacy to SOA migration.

The code level group is further divided into various techniques that have been used in legacy to SOA migration
such as slicing [Khadka et al., 2011], [Zhang et al., 2006], [Marchetto and Ricca, 2008], [Chen et al., 2009],
wrapping [Sneed, 2008], [Sneed, 2009], [Marchetto and Ricca, 2008], refactoring [Cuadrado, 2008], and code
transformation [Zillmann et al., 2011]. In general, wrapping is presented as fast, less risky, economical and easy
implementation technique. At the architecture level, graph transformation techniques are used by [Heckel et al.,
2008] and [Fuhr et al., 2011]. Some of the other techniques being used in legacy to SOA migration are inspired by
model-driven engineering [Fuhr et al., 2011], [Alahmari et al., 2010].

 Figure 10: Implementation Techniques (Khadka et al., 2013)

2.8.6 Services Deployment and Provisioning (SD&P)

In this phase the exposed service is deployed in the SOA framework infrastructure, and tested to determine if the
expected legacy functionality is exposed correctly as a service. A successful deployment then requires service
provisioning that includes activities such as publishing and discovering services in a catalog, maintaining Quality
of Services (QoS), versioning, testing, and evolution of services [Khadka et al., 2011b]. Also this phase includes
post migration activities that are crucial to the SOA environment. Services are loosely coupled computation
entities [Papazoglou et al., 2008] and proper management of these entities throughout their life cycle is an
absolute requirement [Papazoglou et al., 2007]. Activities such as service discovery, maintaining QoS of services,
testing and evolution of services that lead to the proper functioning of the services ensure that the SOA
environment operates reliably and efficiently.

Several research papers are reported on service discovery domain [Rambold et al., 2009] in which the authors
present categories of service discovery approaches and compare those approaches. While a survey of service
testing approaches has been reported by [Canfora & Di Penta, 2009]. And for overall service evolution, various

Position Paper 37

approaches have been reported for managing the evolution of services, such as [Andrikopoulos et al., 2008]
presents a service evolution management framework to identify changes and introduce version control mechanism
for services; [Papazoglou, 2008] present a theoretical approach for addressing the service evolution problem; and
[Fang et al., 2007] describe a service versioning mechanism to assist service evolution.

Consolidation Method Characteristics: The method is considered that the SOA migration process is required
the consolidation of both planning and execution migration aspects. And considered also that the legacy to SOA
migration is not only a complex technical endeavor, but it also involves various organizational and business
perspectives. The method classified the migration stages into two categories of six stages: Legacy System
Understanding, Target system Understanding, Evolution Feasibility Determination, Candidate service
Identification, Implementation, and Deployment & provisioning.

The consolidation method is used the Software Metrics, to measure the size, measure the complexity and quality
of legacy programs in terms of modularity, reusability, maintainability metrics, these measurements would support
to understand how given legacy system will be ready for modernization process.

2.9 ARTIST Project

ARTIST is stands for Advanced Software based-service provisioning and Migration of legacy Software, the
project is established to prepare, support and increase the competitiveness of the European Software and Services
Industry in a global Cloud and Software as a Service (SaaS) business environment, ARTIST develops a set of
methods, tools and techniques that facilitate the transformation and modernization of non-cloud software assets
and businesses. The project creates tools to assess, plan, design, implement and validate the automated evolution
of non-cloud software to SaaS and the Cloud Computing delivery model

 Figure 11: ARTIST Project (On Line, 2015)

The ARTIST approach focuses on migration of non-cloud/Legacy software applications to new computing
paradigms like service oriented architectures and cloud solutions. The ARTIST project is intend to develop the
tools and methods to overcome significant obstacles and reduce the costs and risks associated with the migration
of non-cloud software Applications to new IT paradigms like SOA-based technologies and Cloud platforms. The
project starts with assess, plan, design, then perform and finally validate and verify the migration of non-cloud
software systems into different target framework(s), (Online, http://www.artist-project.eu/objectives, Feb-2015).
The ARTIST Methodology consists of four major phases, figure 11:

38 Position Paper

• Pre-migration: the phase of studying the technical and economic feasibility to perform migration/
modernization of the legacy system.

• Migration: executing and implementing migration phase by using reverse engineering and forward
engineering techniques in order to deploy the legacy system in the cloud includes the verification (V&V)
of the final system.

• Provisioning: checked if both technical and business objectives have been achieved to increase customer
confidence in the new system.

• Evolution: post-implementation phase includes all needed maintenance activities of the application after
migration to the cloud.

The artist migration phases will be described in some details as follows:

2.9.1 Pre-migration

The first step in this pre-migration phase is to analyze how mature the application is in terms of technology and
business. The analysis of the current situation and the ideal situation supports ARTIST to perform a gap analysis,
described in terms of a technical feasibility analysis and the business feasibility analysis. The results obtained in
both the feasibility and business analysis will guide decision makers in the strategy of migrating a legacy
application or start from scratch.

2.9.2 Migration

This phase concerned in implement the transition activities to create new function or improve the existing legacy
functions. ARTIST considered the quality check of the migrated system from the functional and non-functional
concerns such as performance or security. The migrated system has to function similarly to the legacy system and
needs to perform at least equally to the old system. The non-compliance of any of these requirements may cause
project failure.

2.9.3 Provisioning/Post-Migration

ARTIST considered that one of the major problems in such migration project is the reluctance of customers to
consume new software offered as a service. ARTISt recommend to demonstrate the provided services to the
consumers, which gurantee good quality, secure, load-balanced, trustable, etc. ARTISt adopted the use of the
Certification Model that analyses:

• Organization (processes, products, financial aspects, and service continuity),

• Service offered (security, administration, support, QoS, SLA, service operational maturity) and

• Application (functionality, usability, maintenance).

2.9.4 Evolution

ARTIST considered in this phase all maintenance activities needed for the application once the migration to the
cloud and the adaptation to SaaS paradigm have been completed. The generation of models with different levels
of refinement using MDE techniques (Model Driven Engineering) will facilitate the understanding of the whole
system and will facilitate any platform migration process and / or forward engineering that may be necessary.

Position Paper 39

3 CHARACTERISTICS AND GAPS OF EXISTING MIGRATION FRAMEWORKS
In section 2 we have illustrated and discussed the relative work of SOA Migration frameworks and approaches,
review selected publications from 1997 to 2015 and see the state of the art of transforming the legacy systems to
SOA processes. Several different frameworks are illustrated varying from high level abstraction of migration
phases up to re-engineering processes that targeting legacy architecture modernization, including model-driven
based approach, reverse/forward engineering methods, SOMA, SMART, SOA-MF, SOAMIG, and others
migration architectures. Then the structured framework is displayed to consolidate the proposed migration phases
from planning and implementation perspectives.

Also, due to the importance of the migration implementation topic we have illustrated the most migration
strategies and techniques used in SOA migration projects including Replacement, Wrapping, Redevelopment, and
Migration strategies, and described service identification strategies which is the most important and critical
function used in SOA migration, and finally we discovered the common implementation architectures used in
services integration and communications such as web services integration, direct Database access, adapters, and
Enterprise Service Bus ESB.

For summarization, we conduct a comparison Table 1 between these presented approaches on four subjects
(Migration Phases, Legacy Paradigm Change, Migration Goals, and the Adopted Evaluation Measurements) to
evaluate each method’s efficiency and quality as follows:

Table 1: SOA Migration Frameworks - Comparison Table

40 Position Paper

Position Paper 41

4 ISSUES FOR A NEW QUALITY-BASED SOA MIGRATION APPROACH

4.1 Motivations

In many cases the Legacy to SOA Migration is recommended as a new software modernization approach to add
new business and technology features or to avoid the limitations and problems that might cause by the siloed
nature of existing legacy applications which manifest themselves as islands of data, automation, and security
[Massoud 2012]. The cost effective approach to overcome this island behavior and its consequences is to keep
these systems running and to base a new solution on the existing applications portfolio, and leverage integration
as a mechanism for accessing the existing capabilities. Service-Orientated approach with emphasis on reusability
and flexibility is often the optimum solution to improve the legacy functionalities, and to suppo rt the initial
business integration pilot projects to expand their scope to become enterprise-wide. SOA becomes the preferred
approach for delivering business integration platform.
Despite the fact that the SOA migration process is successeded to make the legacy systems running under modern
paradigm and derived benefits from its new features, there are some of legacy limitations and problems are still
exist, and some of the migration outcomes are not efficient as expected. Therefore, SOA migration process should
to be executed under qualified approach that consider the quality characteristics in all its migration phases. This
paper is presented to discuss how to design, implement, and evaluate new quality-based SOA-migration
framework that mitigate the repeating of the legacy issues in the new SOA environment.

4.2 Intentions and Considerations

As per our literature survey in the field of SOA migration frameworks, and based on the research Gap Analysis
mentioned in the previous point, we considered that the most critical quality directions that formulate the quality
level in SOA-Migration process can be classified into three topics. The following figure 12 displays the proposed
quality requirements model in SOA-Migration:

- SOA Architecture Design and Enablement

- SOA Process Integrity

- SOA Quality Evaluation and Measurements

42 Position Paper

4.2.1 SOA Architecture Design- SAD

The quality requirements in target system planning and design phase are intend to choose the architecture design
and its related SOA technologies, which eventually plays an important role in the efficiency and adaptability of the
future SOA system. Basically, target system understanding can be viewed from two perspectives: functional
characteristics and technical characteristics:

- The functional characteristics include the potential functionalities to-be evolved from the legacy code. This
process is referred to service design and application composition. It also defines to what level of
granularity the services are to be defined and, accordingly, the orchestration of the services has to be
managed to support business processes. Various functional and non-functional properties should also be
considered, such as maintainability, interoperability, responsiveness, performance, security, and
availability.

- The technical characteristics of the target environment include service technology (SOAP or REST-based),

messaging technologies, communication protocols, service description languages, and service discovery
mechanisms.

 Figure 12: Quality Requreiments Model in SOA Migration

The paper proposed model figure 12 (Quality Requirements Model in SOA Migration) is considered six major
characteristics that shape the power of SOA architecture design, including Flexibility, Manageability, Security,
Maintainability, Governance, and Virtualization.

4.2.2 SOA Process Integrity - SPI

SOA process integrity is the ability to conduct reliable business activity in a consistent SOA environment with
seamless integration at every interacted and participated service. In general, process integrity is the critical
component of SOA implementation, the ability to synchronize between services, human tasks, information,
applications, domains and users in a secure, scalable SOA environment. Business must be agile enough to deliver
the same reliability, consistency and predictability in an open service-oriented system as in a tightly coupled closed
system. In SOA, the role of migration/integration is not only to bridge the islands legacy systems, but also to deal
with the process integrity/consistency issues. Process integrity has three main elements:

Position Paper 43

Transaction integrity: Ensures that individual updates of business and IT resources are linked and processed as
a single unit of work, all completing successfully or being rolled back in case of technical or business failure.
Interaction integrity: Ensures that elements of people’s interactions with business and IT systems are intact and
remembered wherever and whenever those interactions occur in secure, scalable, and reliable environment.
Information integrity: Helps deliver trusted, secured information to business processes, regardless of delivery
channel, operational platform (IT or people), and information lineage, in which the information to be meaningful,
accurate, correctness, and aligned.

So, the quality requirements model recommended to apply some sort of integrity mechanisms to avoid the pitfalls
that could be encountered when extending SOA infrastructure from limited-scope projects to a broader enterprise
wide implementation, and describes how the considering of the integration quality can help to deliver on the
promises of service-orientation approach.

4.2.3 SOA Evaluation Measurements - SEM

After converting legacy systems to be services by transformation the legacy code (migration approach) or by
exposing/interfacing the legacy functionalities (integration approach), these services have to be deployed. Some
necessary activities are required to manage and control the behavior of services during usage. Monitoring the
service behavior is very important to maintain the service performance, validation, integrity, etc… Service
controlling has been a research challenge in the SOA domain due to the dynamic uses of the services in the SOA
context. Build business logic using the legacy services is needed to be controlled to validate the integration
process workflow, services input/output, and services data mapping. Another important topic is service quality
measurements, measuring the services description, security, data consistency, and others measurements that
support the services quality. The mentioned quality model is considered these kinds of research issues by
providing several considerations during the design phase, and provides integration evaluation metrics to measure
and evaluate the evolved services.

5 ISSUES FOR A NEW SOA MIGRATION FRAMEWORK - SMF

SOA Migration Framework (SMF) is a method that describes the migration processes to transform the legacy
applications to work under SOA environment. As a software development life-cycle method for developing SOA-
based solutions, or any solution using service-oriented principles, SMF defines key techniques and describes the
roles on a SOA migration project includes activities and tasks, the input and output artifact work products for
legacy-SOA transition, and the prescriptive methods, guidance and recommendations needed for detailed analysis,
design, implementation, deployment, and measurements of services, components, and flows to build a robust and
efficient SOA environment.

5.1 SMF Roadmap

SOA Migration Framework (SMF) is designed based on the analysis, considerations and derivations shown in
figure 13. The E4 approach, establish, extract, evaluate and execute is an appropriate measurement approach in
order to qualify the software development and maintenance involving migration processes [Ebert 2007]. SMF
adopted E4 approach during the migration phases to make sure that the migration process is running under
qualified methodology.

44 Position Paper

 Figure 13: The SMF of method derivation

A simple example of the E4 application shows the following description of two kinds of project management
improvement in figure 14 (from [Ebert 2007]):

 Figure 14: Simple Example of E4 measurement process

The application and practical use of SOA Migration Framework (SMF) is based on the following steps and phases
characterizes in figure 15

Position Paper 45

 Figure 15: The SMF cycle of method application

5.3 SMF Migration phases and Major Activities

SMF consists of five qualified migration phases:

Qualified-Based System Identification
This phase is presented as a migration planning phase, interested in four elements (Feasibility Study, Legacy Code
Analysis, Service Identification, and Service Specification) that addresses the issues of making the migration
feasibility study, this phase is aim to decide if the existing legacy systems are needed and ready to be migrated to
SOA solution from the technical and business perspectives, discuss which technical methodology and approach is
a proper one to be used to understand the existing legacy code and its component’s structures and functionalities,
and also this phase is concerning in how to identify the candidate part of the legacy code to be re-presented as a
reusable service in the target SOA architecture.

Qualified-Derived Migration Design
SOA target system design and understanding phase is aim to understand the SOA key principles, architecture, and
environment. Define the main SOA components to be designed, and which technology, standards to be used.
Also, in this phase some issues like performance, security, governance, integrity, and others SOA characteristics
to be discussed. Design phase support to facilitate the representation of the desired SOA architecture, enables the
design of the target architecture with major components of the SOA environment, standards to be used, quality of
service (QoS) expectations, and interaction patterns between services.

In SMF the design phase is considered that the architecture design should align between the legacy systems
characteristics and the enterprise business models toward efficient migration process. So, to achieve this objective,
SMF provides the required architecture tools for the design components including SOA Reference Architecture,
Enterprise Semantic Context and Information models, Enterprise Business Process Model, Integrity Enablements,
and Goverence Controls.

Qualified-Oriented SOA Implementation
Several techniques are presented to implement the migration process. However, SMF adopted the wrapping
technique (fastest, less risky and cost effective technique) to migrate the legacy systems by interfacing it to other
software via web services. It is a black-box modernization technique, since it focuses on the interface of the
legacy systems, hiding the complexity of its logic. Also, the re-engineering technique is target to add the SOA

46 Position Paper

capabilities and functionalities to the existing legacy systems via reverse engineering, and redesigning the existing
software.
SMF is adopted the integration strategy to migrate to SOA architecture, and use the mix between the re-
engineering and wrapping strategies to implement the services needed to build the migration solution. Integration
enables disparate resources to share business data. SMF provides its implementation approach in the following
steps:

1- Validate the migration business drivers

2- Determine which architectural layer to perform the integration activities

3- Identify the implementation access type

4- Designing Service Implementation

5- Identify the integration application form

6- Implement the integration architecture

Qualified-Guaranteed SOA Deployment
After implemented the necessary services which exposing the candidate legacy functionalities, the exposed
services are then deployed in the service infrastructure and tested to determine if the expected functionalities are
formed and integrated correctly. A successful deployment is require a service provisioning that includes activities
such as publishing and discovering services in a repository, maintaining Quality of Services (QoS), versioning,
testing, and evolution of services that lead to the proper functioning of the services and ensure that the SOA
environment operates reliably and efficiently.

SMF considered in the guaranteed the deployment and versioning phase by allowing service implementations to
evolve without breaking existing consumers, leading to more services loosely coupled, minimize the impact of
versioning, and reduce the amount of deployed code. In SOA, service versioning considered the coexistence of
multiple versions of the same service, which allows each consumer to use the target version that it is designed and
tested for. In this multiple coexisting versions of the same service, the system allows for the independent life
cycles of services and their consumers and minimizes the overall impact of changes to new version.

Qualified-Assurance Migration Measurements
Having deployed services is not enough to move the existing legacy enterprise systems from the islands platforms
to SOA environment. SMF is considered that in order to complete the migration project efficiently and
successfully, there is a need to right kind of services, well-designed and properly built services, efficient services
communication, and reliable services that be able to satisfy the current and the future business requirements.
Proposal SMF migration framework is focuses on how we can improve the efficiency factors on SOA-Migration.

SMF describes the migration process as follows:

SMF describes the migration metrics and measurement as follows:

Also, SMF describes the quality improvements as follows:

- Efficiency Measurements ∈ {cost ∨ performance ∨ flexibility}

- Consistency Measurements ∈ {Data Validation ∨ Service Interactions ∨ Service Transactions}

Position Paper 47

- Level of Service-Interoperability ∈ {Input Validation ∨ Output Validation}

- Level of Loose-Coupling ∈{Independent Services ∨ Dependent Services}

- Characteristics of Island Systems ∈ {Overlapping Object ∨ Limited Function ∨ Semantic dissonance ∨
Inconsistent Data ∨ Insufficient Business Workflow ∨ Lack of Enterprise Data and Business Model}

The detailed activities for every phase of the SMF approach are characterized in the following table 2:

Table 2: SMF Migration phases and Activities

*ARC (Software Architectur)
**MP (Measurement Process)

SMF added further aspects that support the migration quality SMF Quality supportive tools and methods using
several artifacts products,methods, recommendations, guidelines, and new design model. Table 3 display in brief
some of these suppo rtive items:

48 Position Paper

Table 3: The principles of SMF suppo rtive tools

Position Paper 49

References

[Almonaies 2010] Almonaies, A.; Cordy, J.; Dean, T.: Legacy system evolution towards Service-Oriented
Architecture. SOAME’10, IEEE, pp. 53–62., 2010

[Alahmari 2010] Alahmari, S.; Zaluska, E.; De Roure, D.: A service identification framework for legacy
system migration into SOA, SCC’10. IEEE, pp. 614–617., 2010

[Andrikopoulos 2008] Andrikopoulos, V.; Benbernou, S.; Papazoglou, M.P.:Managing the evolution of
service specifications., AISE. Springer, pp. 359–374, 2008

[Arsanjani 2008] Arsanjani, A.; Ghosh, S.; Allam, A.; Abdollah, T.; Ganapathy, S.; Holley, K.: SOMA: A
method for developing service-oriented solutions. IBM Sys. J., vol. 47, no. 3, pp. 377–396, 2008

[ARTIST 2015] ARTIST Project: Advanced Software-based Service Provisioning Migration of legacy
Software, ARTIST Newsletter, http://www.artist-project.eu, 2015

[Beier 2009] Beier, A.; Uhlig, D.: Flow Graph Manipulator (FGM): Reverse Engineering Tool. f¨ur
komplexe Softwaresysteme, Softwaretechnik-Trends, 2(29):39–40, 2009

[Bennett 1999] Bennett, K.; Ramage, M.; Munro, M.: Decision model for legacy systems. IEE Proc,
146(3):153-159 Software 1999

[Bergey 1999] Bergey, J.; Smith, D.; Weiderman, N.; Woods, S.: Options Analysis for Reengineering (OAR).
Issues and Conceptual Approach (No CMU/SEI-99-TN-014): SEI, 1999

[Canfora 2007] Canfora, G.; Di Penta, M.: New frontiers of reverse engineering. FSE. IEEE, pp. 326–341,
2007

[Canfora 2009] Canfora, G.; Di Penta, M.: Service-oriented architectures testing: A survey. Software
Engineering, Springer, pp. 78–105, 2009

[Chen 2005] Chen, F.; Li, S.; Yang, H.; Wang, C.-H.; Cheng-Chung Chu, W.: Feature analysis for service-
oriented reengineering. APSEC’05, IEEE, pp. 8–pp, 2005

[Chen 2009] Chen, F.; Zhang, Z.; Li, J.; Kang, J.; Yang, H.: Service identification via ontology mapping.
COMPSAC’09, IEEE, pp. 486–491, 2009

[Correia 2007] Correia, R.; Matos, C.; Heckel, R.; El-Ramly, M.: Architecture migration driven by code
categorization. Software Architecture, 115-122, 2007

[Cuadrado 2008] Cuadrado, F.; Garc´ıa, B.; Dueas, J.; Parada, H.: A case study on software evolution
towards service-oriented architecture. AINAW’08, IEEE, pp. 1399–1404, 2008

[Ebert 2007] Ebert, C.; Dumke, R.: Software Measurement – Establish, Extract, Evaluate, Execute. Springer
Publ., 2007

[Ebert, 2010] Ebert, J.; Bildhauer, D.: Reverse Engineering Using Graph Queries, Graph Transformations
and Model Driven Engineering. LNCS 5765, 2010

[Fang 2007] Fang, R.; Lam, L.; Fong, L.; Frank, D.; Vignola, C.; Chen, Y.; Du, N.: A version-aware
approach for web service directory. ICWS’07, IEEE, pp. 406–413, 2007

50 Position Paper

[Fleurey 2007] Fleurey, F.; Breton, E.; Baudry, B.; Nicolas, A.; Jézéquel, J. M.: Model-driven engineering for
software migration in a large industrial context. Model Driven Engineering Languages and Systems.
482-497, 2007

[Fuhr 2010] Fuhr, A.; Horn T.; Winter, A.: Model-Driven Software Migration. SE 2010, LNI 159:69–80,
2010

[Fuhr 2011] Fuhr, A.; Horn, T.; Riediger, V.; Winter, A.: Model-driven software migration into service-
oriented architectures. CSRD, vol. 28, no. 1, pp.65–84, 2011

[Geet 2007] Geet, J.; Demeyer, S.: Lightweight visualisations of COBOL code for supporting migration to
SOA. Soft Evol’07, 2007

[Gimnich 2007] Gimnich, R. SOA Migration: Approaches and Experience. Softwaretechnik-Trends, 27(1),
13-14, 2007

[Gu 2010] Gu, Q.; Lago, P.: Service identification methods: a systematic literature review. Towards a
Service-Based Internet, Springer, pp. 37–50, 2010

[Kazman 1998] Kazman, R.; Woods, S.G.; Carri`ere, S.J.: Requirements for integrating software architecture
and reengineering models, CORUM II, 154, 1998

[Kazman 2002] Kazman, R.; O'Brien, L.; Verhoef, C.: Architecture Reconstruction Guidelines, 2nd Edition.
(CMU/SEI-2002-TR-034, ADA 421612), Software Engineering Institute, Carnegie Mellon University,
2002

[Khadka 2011a] Khadka, R. : Service Identification Strategies in Legacy-to-SOA migration. Paper presented
at the Doctoral consortium of the 26th International Conference on Software Maintenance (ICSM'11),
2011

[Khadka 2011b] Khadka, R.; Saeidi, A.; Jansen, S.; Hage, J.; Helms, R.: An Evaluation of Service
Frameworks for the Manangement of Service Ecosystems. Paper presented at the 15th Pacific Asia
Conference on Information System (PACIS’11), Brisbane, Australia, 2011

[Khadka 2012] Khadka, R.; Saeidi, A.; Jansen, S.; Hage, J.: Legacy to SOA evolution- a systematic literature
review in Migrating Legacy Applications: Challenges in Service Oriented Architecture and Cloud
Computing Environments, Ionita, A. D.; Litoiu, M.; Lewis, G. Eds. IGI Global, pp. 40–71., 2012

[Khadka 2013] Khadka, R.; Saeidi, A.; Jansen, S.; Hage, J.: A Structured Legacy to SOA Migration Process
and its Evaluation in Practice. Maintenance and Evolution of Service-Oriented and Cloud-Based
Systems (MESOCA), IEEE 7th International Symposium, pp. 2-11, 23-Sep.2013

[Khusidman 2007] Khusidman, V.; Ulrich, W.: Architecture-Driven Modernization. Transforming the
enterprise Draft V.5: OMG, 2007

[Lewis 2005] Lewis, G.; Morris, E.; O’Brien, L..; Smith, D.; Wrage, L.: SMART: The service-oriented
migration and reuse technique. CMU/SEI, Tech. Rep. CMU/SEI-2005-TN-029, Sept 2005

[Lewis 2006] Lewis, G., Morris, E., Smith, D.: Analyzing the Reuse Potential of Migrating Legacy
Components to a Service-Oriented Architecture. Proceedings of the 10th European Conference on
Software Maintenance and Reengineering, (CSMR 2006), Bari, Italy, March, 22−24, IEEE Computer
Society, 2006

[Lewis 2008] Lewis, G.; Smith, D.: Service-oriented architecture and its implications for software
maintenance and evolution. FoSM’08, IEEE, pp. 1–10, 2008

Position Paper 51

[Lewis 2009] Lewis, G.; Smith, D.; Chapin, N.; Kontogiannis, K.: MESOA’09,”SEI, Tech. Rep. 1424448972,
2009

[Marchetto 2008] Marchetto, A.; Ricca, F.: Transforming a java application in an equivalent web-services
based application: toward a tool supported stepwise approach. WSE’08, IEEE, pp. 27–36., 2008

[Massoud 2012] Massoud, A.; Dumke, R.: Efficient Reference Architecture for Integrated Legacy
Applications based SOA. In: Abran et al.: IWSM/Mensura Proceedings, Assisi, Italy, CPS Publishing
Service of IEEE, Session 1B, 2012

[Massoud 2014] Massoud, A.: Process Integrity in SOA Migration. In: Büren et al.: Praxis der Software-
Messung, Shaker-Verlag, Aachen, S. 205-222, 2014

[Matos, 2008] Matos, C.: Service Extraction from Legacy Systems. Proceedings of the 4th international
conference on Graph Transformations, pp. 505-507, Springer-Verlag, 2008

[Millham 2010] Millham, R.: Migration of a legacy procedural system to service oriented computing using
feature analysis. CISIS’10, IEEE, pp. 538–543, 2010

[Murer 2011] Murer, S.; Bonati, B.; Furrer, F. J.: Managed Evolution. Springer, 2011

[Nasr 2011] Nasr, K. A.; Gross, H.-G.; Deursen, A. van: Realizing service migration in industry: lessons
learned. JSME, 2011

[O’Brien 2002] O'Brien, L.; Stoermer, C.; Verhoef, C.: Software Architecture Reconstruction: Practice Needs
and Current Approaches (CMU/SEI-2002-TR-024, ADA407795). Software Engineering Institute,
Carnegie Mellon University, 2002

[O’Brien 2005] O’Brien, L.; Smith, D.; Lewis, G.: Supporting migration to services using software
architecture reconstruction. STeP’05 IEEE, pp. 81–91, 2005

[Papazoglou 2007] Papazoglou, M. P.; Traverso, P.; Dustdar, S.; Leymann, F.: Service oriented computing:
State of the art and research challenges. Computer, vol. 40, no. 11, pp. 38–45, 2007

[Papazoglou 2008] Papazoglou, M.; Traverso, P.; Dustdar, S.; Leymann, F.: Service oriented computing: a
research roadmap. IJCIS, vol. 17, no 2, pp. 223–255, 2008

[Rambold 2009] Rambold, M.; Kasinger, H.; Lautenbacher, F.; Bauer, B.: Towards autonomic service
discovery: a survey and comparison. SCC’09, IEEE, pp. 192–201, 2009

[Razavian 2010] Razavian, M.; Lago, P.: A frame of reference for SOA migration. Towards a Service-Based
Internet, Springer, pp. 150–162, 2010

[Razavian 2011] Razavian, M.; Lago, P.: A survey of SOA migration in industry. Service-Oriented
Computing, Springer, pp. 618–626, 2011

[Razavian 2012] Razavian, M.; Lago, P.: A lean and mean strategy for migration to services.
WICSA/ECSA’12. ACM, pp. 61–68, 2012

[Reddy 2009] Reddy, V. K.; Dubey, A.; Lakshmanan, S.; Sukumaran, S.; Sisodia, R.: Evaluating legacy
assets in the context of migration to SOA. Software Quality Journal, 17(1), 51-63, 2009

[Seacord 2003] Seacord, R. C.; Plakosh, D.; Lewis, G. A.: Modernizing legacy systems: software
technologies, engineering processes, and business practices. Addison-Wesley Professional, 2003

[Smith 2007] Smith, D.: Migration of legacy assets to service-oriented architecture environments. Software
Engineering-Companion, 29th International Conference on (pp. 174-175). IEEE., 2007

52 Position Paper

[Sneed 2009] Sneed, H.: A pilot project for migrating COBOL code to web services. STTT, vol. 11, no 6, pp.
441–451, 2009

[Teppe 2009] Teppe, W.: The ARNO Project: Challenges and Experiences in a Large-Scale Industrial
Software Migration Project. 13th CSMR, IEEE CSP: 149–158, 2009

[Truyen 2006] Truyen, F.: The Fast Guide to Model Driven Architecture. The Basics of Model Driven
Architecture (MDA), Cephas Consulting Corp., 2006

[Umar 2009] Umar, A.; Zordan, A.: Reengineering for service oriented architectures: A strategic decision
model for integration versus migration. JSS, vol. 82, no. 3, pp. 448–462, 2009

[Warren 2002] Warren, I.; Ransom, J.: Renaissance A Method to Support Software System Evolution. Paper
presented at the 26th Annual International Computer Software and Applications Conference, 2002

[Wu 1997] Wu, B.; Lawless, D.; Bisbal, J.; Grimson, J.; Wade, V.; O'Sullivan, D., et al.: Legacy systems
migration - a method and its tool-kit framework. Paper presented at the Joint 1997 Software
Engineering Conference and International Computer Science Conference Asia Pacific, 1997

[Zhang 2005] Zhang, Z.; Liu, R.; Yang, H.: Service identification and packaging in service oriented
reengineering. SEKE’05, pp. 219–26., 2005

[Zhang 2006] Zhang, Z.; Yang, H.; Chu, W.: Extracting reusable object-oriented legacy code segments with
combined formal concept analysis and slicing techniques for service integration. QSIC’06 IEEE, pp.
385–392, 2006

[Zillmann 2010] Zillmann, C.; Gringel, P.: Iterative Zielarchitektur definition in SOAMIG. SWT-Trends,
2(30):39–40, 2010

[Zillmann 2011] Zillmann, C. ; Winter, A.; Herget, A.; Teppe, W.; Theurer, M.; Fuhr, A.; Horn, T.; Riediger,
V.; Erdmenger, U.; Kaiser et al., U.: The SOAMIG Process Model in Industrial Applications.
CMSR’11, IEEE, pp. 339–342., 2011

[Zimmermann 2010] Zimmermann, Y.; Uhlig, D.; Kaiser, U.: Tool- und Schnittstellenarchitektur f¨ur eine
SOA-Migration. SWTTrends, 2(30):66–67, 2010

Position Paper 53

Established Software Metrics adapting to
COSMIC Measurement

Reiner Dumke, Anja Fiegler, Heike Hegewald, Robert Neumann, Cornelius Wille

University of Magdeburg, SML@b

Abstract – This paper is an extension of our IWSM/Mensura presentation 2014 and discusses the
extensions of the COSMIC Function Point method using empirical aspects in order to support the
broader application of this method for effort estimation and other software system und processes
characterization. The method extensions are based on our experience in different COSMIC
applications for embedded systems, agile development, SOA implementations, cloud computing and
apps implementation in the last ten years.

After a short introduction about this well-known COSMIC method, empirical aspects of software
products and processes are described and applications of effort estimation based on sizing the quality,
technology and methodology are discussed.

1 BASICS OF THE COSMIC FP METHOD AND THEIR APPLICATION

The COSMIC Function Point method (COSMIC FP or CFP method) is a functional size
measurement with following characteristics ([Abran 2010], [COSMIC 2014], [Dumke 2010]):

• the CFP method is conform to the international standard for functional size measurement
(FSM) as ISO/IEC 14143,

• against the other point metrics, the CFP method can be applied for business software,
embedded/real time systems and other modern software system paradigms,

• this method defines a ratio scale functional size with an clear described measurement unit as
CFP,

• the basis of CFP method is a I/O counting of the software system functionality,

• the deriving of the CFP value is independent of the software artefacts (as requirements,
software models, architectures, programming and testing artefacts, documentations and
maintenance artefacts),

• the CFP method itself is an international standard as ISO 19761.

Comparing the software functionality with (mathematical) functions (as e. g. y = f(x1, x2, . . . , xn)

or Gx1+x2+…+xn(z) = Gx1(z)Gx2(z). . . Gxn(z) etc.), the following extensions for software functionality are
essential ([Bundschuh 2008], [Ebert 2007], [Leiss 2007]):

• the software functionality consists (like mathematical functions) of inputs and outputs and the
functional operations in order to produce the (user) outputs,

• the software functionality is usual connected with a graphical user interface and different
application techniques based on user event models,

• the software functionality is based on different paradigms and technologies for functionality/
algorithm implementation and application like a programming technique T including
programming language(s) L and their grammars G, software processors P (as compilers,
editors, emulators, generators etc.), the programming paradigm M (as OOSE, CBSE, SOSE
or AOSE), the programming environment or infrastructure U (as client/server, Web services,
clouds etc.) and the programming experiences E (as laws, rules (of thumb), experiments etc.)
as T = ({L(G)},{P}, M, U, E) .

54 Position Paper

The general functional measurement approach using for the CFP method can be characterized as
following.

 Figure 1: COSMIC FP measurement principles

This figure shows the mainly consideration of functionality of the CFP method as an input/ouput or

I/O counting. The benefit of this approach is the "pure" functional size measurement. The general
components of the COSMIC FP method are shown in the following figure.

 Figure 2: COSMIC FP method components

The measurement process itself is based on so-called I/O metrics involving the analysis of the

data movements in the given functional processes. The elements of I/O counting is given in the
following figure.

Position Paper 55

 Figure 3: COSMIC FP measurement elements

The typical I/O counting of the CFP method are summarized in the COSMIC patterns by Symons

[Symons 2013] (using the usual symbols as E for an entry, X for exit, R for read and W for write)
([Schmietendorf 2012], [Schmietendorf 2007], [Schmietendorf 2013], [Schmietendorf 2010], [Wille
2011]).

• the functional size measurement of embedded or real time systems are based on sets of E and

X with the possible extensions by R and W as

 CFP = |{Ei, Xj }| + #(R, W) (1)

• the functional size measurement of business application involves any rows of E and X and sets
of R and W as

 CFP = #({Ei1, Xj1 }, ..., {Ein, Xjn }) + |{Ri, Wj }| (2)

This characterization includes the typical situations for service oriented systems, apps and
cloud computing.

• the measurement of other software systems like knowledge-based systems or communication
systems can be characterized as

 CFP = #(E, X) + #({Ri1, Wj1 }, ..., {Rin, Wjn }) (3)
or
 CFP = #({Ei1, Xj1 }, ..., {Ein, Xjn }i) (4)

and any other more.

The use of the COSMIC generic software model includes any aspects of their arcgitectural design

noted in the following figure.

56 Position Paper

 Figure 4: Architectural aspects in COSMIC FP measurement

This kind of COSMIC measurement involves special characteristics for the different classes of
software systems and infrastructures characterized in the next figure.

 Figure 5: COSMIC measurement for different software systems

Currently, the most applications of functional size measurement methods are the effort/cost
estimations. The CFP approach needs any empirical extensions in order to perform any COSMIC
effort estimation. It is necessary to involve any (calibration) factors in order to achieve the system
related effort characterization. Typical examples of this effort estimation are ([Abran 2010],
[Bundschuh 2008], [Dumke 2010], [ISBSG 2012], [Kunz 2007])

Position Paper 57

 the unit-based characterization of software development effort as (PM as personal month)

 1 CFPnew_development ≈ 0.07 PM (5)

 the ISBSG application for effort characterization as

 1 CFPmaintenance ≈ 0.013 PM (6)

 the deriving of cost estimation by conversion of different FMS measurement like IFPUG FP to
COSMIC as

 1 FPIFPUG ≈ 1.13 CFP (7)

 the characterization of project duration D in month as

- mainframe computer: D = 0,458 * effort0,366

- mid-range computer: D = 0,548 * effort0,360

- PCs: D = 1,936 * effort0,201 (8)

Note, that the details of this characterization are not relevant in the intention of this paper.

2 EMPIRICAL ASPECTS OF SOFTWARE PRODUCTS AND PROCESSES
Empirical aspects are necessary in order to describe and understand software with all their

characteristics of software products and software processes ([Chemuturi 2009], [Jones 2007], [Kunz
2007], [Laird 2006]). General empirical aspects are classified as software size, software quality and
software complexity.

The empirical aspect for software sizing leads in their possible problems in successful process
management of software system development, maintenance and application. They are some different
kinds of software sizes like

 SIZE = SIZEproduct ⊕ SIZEprocess (9)

with
 SIZEproduct = SIZEartefact ⊕ SIZEempirical , (10)

 SIZEartefact = {#requirements, #models, #components,
 #testCases, #LOC, #docPages etc.}, (11)

 SIZEempirical = {functional size, quality -based size, (12)
 paradigm-based size, platform-based size}
and
 SIZEprocess = {#phases, #activities, #resources, (13)
 #budgets, #versions, #methods etc.} .

Considering the software requirements, we can differ between the functional (user) requirements
(as FUR) and non functional requirements (as NFR) where the NFR can be classified in quality user
requirements (as QUR), system/platform user requirements (as PUR) and process/project
organizational requirements (as POR). The summarizing of software requirements is

 REQ = FUR ∪ NFR = FUR ∪ {QUR, PUR, POR} (14)

The NFR requirements can be written in more details (but not completely) as ([7], [10], [19])

 QURISO 9126 = QURproduct ∪ QURapplication, (15)

58 Position Paper

with
 QURproduct = {FUR, reliability, usability, efficiency,
 maintainability, portability}, (16)

 QURapplication = {effectiveness, productivity,
 safety, satisfaction}, (17)
and
 PUR = {paradigm, architecture, programming technology,
 software processors, infrastructure}, (18)

 POR = {development method, life cycle,
 management aspects, personal resources,
 CASE tools, COTS, hardware resources} (19)
and
 management aspects = {timeline, effort, costs, size}. (20)

Note, that the different kinds of software complexity must be considered in the same manner.
Typical kinds of complexity are ([Ebert 2007], [Jones 2007], [Leiss 2007]):

 COMPL = COMPLartefact ⊕ COMPLempirical, (21)

with

 COMPLartefact = {problem complexity, model complexity,
 architecture complexity, program complexity,
 infrastructure complexity} (22)

and

 COMPLempirical = {topological complexity, information
 complexity, diagnostic complexity, data complexity,
 flow complexity, code complexity, mnemonic complexity,
 cyclomatic complexity etc.} (23)

A typical description of these empirical aspect is given in the COCOMO II method (without
explanations here) as [Boehm 2000]

 QURCOCOMO = {CPLX, DATA, DOCU, RCPX, RUSE etc.}

 PURCOCOMO = {PVOL, STOR, TIME, TURN} (24)

 PORCOCOMO = {ACAP, APEX, LTEX, PCAP, FCIL etc.}

These sets should only demonstrate the (scaling) factors using to execute the project effort based

on empirical aspects.

Considering these empirical aspects, the COSMIC-based effort estimation can be characterized in
general as

 effortCFP-based=α PURQUR
POR

, × size FUR
basedCFP− (25)

with α PURQUR
POR

, as scaling factor achieving an approximated estimation using the equations (5) to (8).
But, that is not the highly quality of COSMIC size measurement achieving white-box estimation where
the NFR characteristics are given explicitly and not summarized in one number (as α).

Position Paper 59

3. EMPRICAL-BASED EXTENSIONS OF THE COSMIC FP METHOD
The main intension is: How we can use the granularity of the COSMIC measurement for empirical

evaluation of software systems like effort estimation (as effort measurement) or other system
characterization? They are many variants of method extensions. We will discuss any of them in this
paper. The following figure characterizes the general extensions of the COSMIC FP measurements.

 Figure 6: Extended COSMIC FP measurements

From the empirical aspects point of view, the COSMIC FP method is a functional size
measurement where the different counting based on (1) to (4) is

 CFP = SIZEfunctional = #(E, X, R, W) (26)

where E = EFUR, X = XFUR, R = RFUR and W = WFUR. This characterization leads to the question of the
measurement of SIZEproduct as a total/whole software system size which would be necessary in order
to estimate/execute the effort and costs.

On the other hand, software process size would be another essential precondition for effort
estimation of software development. These questions lead to the consideration of NFR that makes the
sizing more completely involving ENFR, XNFR, RNFR and WNFR. The principal idea of the empirical
extensions should involve more measurements indeed of justifications with any empirical factors. That
means the following transformations as

 effortCFP-based=α PURQUR
POR

, × size FUR
basedCFP− (27)

into

 effortCFP-based=α QUR
POR × [size PUR

basedCFP− + size FUR
basedCFP−] (28)

into

effortCFP-based=α POR × [size QUR
basedCFP− + size PUR

basedCFP− + size FUR
basedCFP−] (29)

and, finally, into

effortCFP-based=α × [size POR
basedCFP− + size QUR

basedCFP− + size PUR
basedCFP− + size FUR

basedCFP−] (30)

60 Position Paper

Currently, they are a lot of measurements, metrics and/or evaluations in order to count the
different sizes. The following table includes anyone of these in a general characterization (see [Abran
2010], [Dumke 2014], [Jones 2010], [Laird 2006], [Munson 2003], [Rud 2006], [Sneed 2010], [Zuse
1998] and (16), (18) and (19)).

 Tab. 1: Existing NFR-based size measurements

Empirical aspect

Metrics/measurements

Weaknesses

SizePUR measurements:

 Paradigm related metrics for

OOSE:
 #responseForAClass
 #childrenClasses

CBSE:
 #developedComponents,
 #involvedCOTS

SOSE:
max(#serviceOrchestration),
 #servicesInHierarchyLevel

No ratio scaled for classes; no
difference between potential
und used functiona-lities

Dependencies of technology
and component involvements

No clear indentification of
involved functionalities

 Infrastructure and platform
sizes as:
 #networkNodes,
 #serviceClusters

System dependencies and
unclear functional distributions

SizeQUR measurements:

 Usability measurement:

 sizeOfHelpComponent
 #menuButtons

No expression about complete-
ness and appropriateness

 Document measurements:
 #commentsInProgram,
 sizeOfSystemDoc

Natural and programming lan-
guage depended

 Security measurement::
 sizeOfPasswordChecking,
 #firewalls

No ratio scaled in their size of
functional extension

 Testability:
 #testCases
 #testPathes

No functional relationships and
functional coverages

SizePOR measurements:

 Process measurements:

 #milestones,
 sizeOfPEERTdiagram

Development method depended
and project related

 Ressources measurements:
 sizeOfCOTS
 #CASEToolVersions

No ratio scaled and depen-
dencies of platforms

 Personal measurements:
 #teamMembers
 #functionalityExperts

Dependencies of qualification
and effectiveness

These weaknesses could be avoid using a well-defined technology independent and ratio scaled

determination of software sizes reasoning in PUR, QUR and POR characteristics. We will consider
these extensions in principle as following.

Position Paper 61

In order to build a COSMIC based measurement, we suggest any mapping of the following

COSMIC elements achieving the results for size QUR
basedCFP− . The following figure characterizes these

intentions and their involved COSMIC elements.

Figure 7: QUR-extended COSMIC FP measurements

Examples of the quality-based functionalities are characterized in the following figures of Java
examples.

 QUR performance (as a QUR security (as a password QUR usability (as a GUI inter-
 time duration test in Java) checking in Java) action extension in Java)

 Figure 8: QUR Java examples

62 Position Paper

In order to build a COSMIC based measurement for size PUR
basedCFP− , we suggest any mapping of the

following COSMIC elements achieving the appropriate results. The following figure characterizes the
elements that should be modified.

Figure 9: PUR-extended COSMIC FP measurements

Examples of the platform-based functionalities are characterized in the following figures as Java
examples.

 PUR class aspects (as a PUR file management (as exception
 method type protocol in Java) based file deletion in Java)

Figure 10: PUR Java examples

Position Paper 63

In order to build a COSMIC based measurement for size POR

basedCFP− , we suggest any mapping of the
following COSMIC elements achieving the results. The following figure characterizes the involved
COSMIC elements in this case.

Figure 11: POR-extended COSMIC FP measurements

Examples of the organizational-process-based functionalities are characterized in the following
figures Java examples.

 POR maintainabiklity (as POR ressource characteristics (as
 annotations for testing and property protocolling in Java)
 migration in Java)

 Figure 12: POR Java examples

After this short characterization we will describe any aspects and principles of size measurement
based om the COSMIC method.

64 Position Paper

4. COSMIC FP EXTENDED/MODIFIED MEASUREMENTS
4.1 Principles of COSMIC Extensions
In the COSMIC method 4.0 description we can found any principles of method extensions (as so-
called local extension) like:

"If it is judged necessary to account for complex algorithms, a local standard may be arranged for
this exceptional functionality. In any functional process where there is an abnormally complex data
manipulation functional sub-process, the Measurer is free to assign his or her own locally-
determined Function Points" (p. 64)

"When more precision is required in the measurement of data movements, then a sub-unit of the
measure can be defined. For example, a meter can be sub-divided into 100 centimeters or 1000
millimeters. By analogy, the movement of a single data attribute could be used as a sub-unit of
measurement. Measurements on a small sample of software in the field trials of COSMIC indicated
that on the sample measured, the average number of data attributes per data movement did not vary
much across the four types of data movement. " (p. 64)

"Error/confirmation messages issued by the functional process being measured
a) Identify one Exit to account for all types of error or confirmation messages issued by a functional
process from all possible causes, e.g. success or failures of validation of entered data, or for a
requirement to retrieve data or to make data persistent, or arising from the response from a service
requested of another piece of software or intelligent hardware." (p. 57)

The extensions themselves could be realized by calibrations using additional CFPs depending on the
"estimated" additional size. Considering the principles and rules of the COSMIC FP method, the
following simple adaptations could be defined:

[COSMIC 2014], p. 45:

RULES – Entry (E) (QUR extended/modified)

a) The data group of a real-time triggering Entry may consist of only one data
attribute which simply informs the software that ‘an event Y has occurred’ . . .

b) . . .

[COSMIC 2014], p. 46:

RULES – Exit (X) (POR extended/modified)

a) . . . Therefore, a single Exit shall be identified to represent all these message
occurrences within each monthly functional process where they are required by
the FUR.

b) . . .

[COSMIC 2014], p. 47:

RULES – Read (R) (QUR extended/modified)

a) Identify a quality aspect of Read when, according to the FUR, the software being
measured must retrieve a data group from persistent storage.

b) . . .

[COSMIC 2014], p. 47:

RULES –Write (W) (PUR extended/modified)

a) Identify a cloud-based Write when, according to the FUR, the software being
measured must move a data group to persistent storage.

b) . . .

Position Paper 65

In the same manner we could do any adaptations for the other internal elements of COSMIC
measurements as object of interest, triggering event etc. in order to idenify only the QUR, PUR and
POR pieces of size that is necessary to differ it from the original functionalities. In following we
discuss two of examples of COSMIC extensions as general principles.

4.2 COSMIC SP Measurement

SP stands for Software Product Points in a general manner and should be measured the size of
the whole software system or product. The simple execution of COSMIC SP as CSP can be described
considering (9) to (12), (14) to (18), (21) to (24) and (26) as

 CSP = CFP + COSMICNUR . (31)

where NUR (as non functional user requirements) summarizes the QUR and the PUR of the software
product (as NFR = NUR ∪ POR).

The COSMICNUR requires the considerations of the CFP basic counters as (in a first simplified
approximation we can assume that the aspects of COMPL are involved in the QUR and PUR)

 EQUR, XQUR, RQUR and WQUR ,
and
 EPUR, XPUR, RPUR and WPUR

in order to estimate/execute the different kind of product sizing as SIZEartefact and SIZEempirical .

But, how we can count these empirical based E, X, R and W? Based on the COSMIC FP method,
we need the following extensions and/or modifications:

(a) the QUR implies the quality assurance process that involves their own entries (EQUR), exits
(XQUR), reads (RQUR) and writes (WQUR); examples of quality assurance processes are
authorization procedures, user interface adaptation and input value controlling.

(b) the PUR implies the platform ensuring process that also involves their own entries (EPUR) and
exits (XPUR), reads (RPUR) and writes (WPUR); examples of platform ensuring processes are
platform emulation, performance controlling, infrastructure migration and component wrapping.

(c) the entries of the (given and described) COSMIC functional process could be quality- or
platform-based (such like performance requirements) as EQUR or EPUR,

(d) the exits of the COSMIC functional process could be quality- or platform-based as XQUR or XPUR.

(e) the reads of the COSMIC functional process could be quality- or platform-based (such like
performance requirements) as RQUR or RPUR,

(f) the writes of the COSMIC functional process could be quality- or platform-based as WQUR or
WPUR.

The extension of the COSMIC FP method by introducing quality assurance processes and

platform ensuring processes (as cases (a) and (b)) is a simple adaptation of the existing principles
and rules for these further considered processes. Therefore, a simple example of COSMIC SP
measurement could be

 CSP = CFP + #(ENUR, XNUR) + |{RNUR, WNUR}| (32)

The cases (c) to (f) need an introduction of empirical evaluations (like in the IFPUG FP method).
But, it should be conform to the current software system characteristics and modern paradigms.

66 Position Paper

Hence, we suggest (based on our experience) the following evaluations as an initial calibration
([Kunz 2007], [Schmietendorf 2013], [Schmietendorf 2010])

 considering service oriented systems (SOA) we derived the following quality sizing for chosen

(industrial) SOA systems

 COSMICNUR = #(E SOA

QUR , X SOA
QUR) ≈ 0.4 CFP (33)

 considering cloud computing application we suggest the following platform sizing for chosen

software application in cloud computing

 COSMICNUR = #(E Cloud

PUR , X Cloud
PUR , R Cloud

PUR , W Cloud
PUR

)≈ 0.25 CFP (34)

Note, that these results are based on special software consideration and need more experience

for the general applicability. But, we only show the principles of CFP extensions in the described
manner.

In this way, we obtain the size of the whole software system as total product size measurement
that can be used for comparison with other whole system sizing methods.

4.3 COSMIC PP Measurement

PP stands for Software Process Points in a general manner and should be measured the size of
software processes like development, maintenance or application. The simple execution of COSMIC
PP as CPP can be described considering (9) and (13), (19) to (20), (24) and (26) as

 CPP = COSMICPOR . (35)

where POR we have defined above as a set as {development method, life cycle, management
aspects, personal resources, CASE tools, COTS, hardware resources} and management aspects =
{timeline, effort, costs, size}. Note, that this list is a typical conclusion from our given experience and
our references and can be differ in any other environment or IT areas.

The COSMICPOR requires the considerations of the CFP basic counters as

 EPOR, XPOR, RPOR and WPOR

in order to estimate/execute the different kind of product sizing as SIZEprocess.

In the same manner like the QUR- and PUR-based SP counting, we can define the following POR-
based modifications for PP counting as:

(g) the POR implies the project organizational process that involves their own entries (EPOR), exits
(XPOR), reads (RPOR) and writes (WPOR),

(h) the entries of the (given and described) COSMIC functional process could be quality- or
platform-based (such like performance requirements) as EPOR,

(i) the exits of the COSMIC functional process could be quality- or platform-based as XPOR.

(j) the reads of the COSMIC functional process could be quality- or platform-based (such like
performance requirements) as RPOR,

(k) the writes of the COSMIC functional process could be quality- or platform-based as WPOR.

Position Paper 67

Here again, the extension of the COSMIC FP method with (g) is a simple adaptation such as

 CPP = #(EPOR, XPOR) + |{RPOR, WPOR}| (36)

In the cases of (h) to (k) we must define any initial empirical evaluations. As an example we will
chose the application process involving the size aspects of system handling and (simple) controlling
(as control entries and exits etc.) with the following evaluations ([Schmietendorf 2012],
[Schmietendorf 2007], [Wille 2011]):

 considering service oriented systems (SOA) we derived the following application process sizing

for chosen (industrial) SOA systems

 CPP = #(E SOA

POR , X SOA
POR) ≈ 0.14 CFP (37)

 considering cloud computing application we suggest the following application process sizing for

chosen software application in cloud computing

 CPP = #(E Cloud

POR ,X Cloud
POR ,R Cloud

POR ,W Cloud
POR) ≈ 0.2 CFP . (38)

In this way, we obtain the size of the software process(es) as a essential basis for software

management.

4.4 COSMIC Extensions Applications

The essential areas of COSMIC extension application can be characterized as following (using
(31) and (35)):

 The deriving of the whole software system size as CSP allows to estimate development,

maintenance and application effort of a software product SP in the following manner:

 effortdevelopment(SP) = α (CSP+CPPdevelopment) [PM] (39)

where α ≈ 0.05 for our software examples, because the extended sizing considers the effort
basis of the NFR themselves,

 effortmaintanance(SP)= β (CSP+CPPmaintenance) [PM] (40)

where β ≈ 0.2α using the experience of the ISBSG data above.

 effortapplication(SP) = γ CPPapplication [PM] (41)

where γ ≈ 0.014 for our examples of measured software systems.

 The consideration of the NFR-based allows measures the size and estimates the effort of the
quality assurance process and the platform ensuring process separately.

 The deriving of the software processes size as CPP allows to compare different kinds of
software processes as waterfall, evolutionary or agile development.

 Other applications of the COSMIC FP extensions could be used for classifying different
software system by their complexity and manageability considering the COMPLartefact ⊕
COMPLempirical relationships.

68 Position Paper

5. FURTHER COSMIC MEASUREMENTS
5.1 General Intentions of other COSMIC Measurements

Note that the measurements are addressed mainly to the requirements and not to source code,
manuals, test scripts or something like that. The following figure shows any aspects of these further
measurements.

 Figure 13: Other kinds of software measurements

Therefore, we can/should consider more than the system I/O charcateristics as E, X, R and W such
as

 considering the complexity of the E, X, R, W themselves involving their set and structure of
attributes,

 general input/output description with detailed references, relationships and other process
ingridients like proactivity, self controlling etc.,

 more internal characteristics of functionalities and functional processes in the systems
themselves.

5.2 COSMIC CP Measurement

CP stands for Software Complexity Points as measurement of the complexity as indicator for
usability, effort and comprehension (see COMPL characterizations in (21) to (23)). Therefore, a
general classification of system complexity is characterized by Lehmann (see [Pfleeger 1998]) as

• S systems: as simple system including well-defined algorithms and programming techniques

• P systems: as partial algorithmic-based system including non deterministic algorihms solved
by any interactive solutions and paradigms

• E systems: as extreme system out of algorithmic in general could be given in country-based
ecosystems etc.

Position Paper 69

Another general overview about the main types of software complexity is defined by Jones [Jones

2007] as annotations in the following class diagram.

 Figure 14: Complexities of Jones charcterized in a Java class diagram

Two of them are described in more details in the following general characterizations [Jones 2007]

(1) Data complexity: “deals with the number of attributes associated with entities.” Its importance
has been increased using complex network technologies like Grid or Cloud Computing (see
[Agapi 2011], [Bhowmick 2004], [Jatuun 2009], [Papazoglou 2011], [Rud 2006],
[Schmietendorf 2007] and [Yau 2011]).

(2) Flow complexity: “is a major topic in the studies of fluid dynamics and meteorology. It deals
with the turbulence of fluids moving through channels and across obstacles.” This complexity
could be used for characterization the Web service application and orchestration (see [Ahn
2011], [Armbrust 2010], [Banerjee 2011], [Dumke 2008], [Neumann 2013], [Sing 2005] and
[Wei 2010]).

Adapting the basics of the COSMIC FP method, we must explain the meaningfulness of the
considerations as

 ECOMPL, XCOMPL, RCOMPL and WCOMPL.

70 Position Paper

Note, the number of attributes/parameters of an exit or entry is not considered in the original

COSMIC method. Therefore, a very simple extension could define in the counting of these aspects.
This leads to the simple characterization as

 E COMPL

data = #attributes(E), X COMPL
data = #attributes(X), (42)

and
 R COMPL

data = #parameters(R), W COMPL
data = #parameters(W). (43)

Furthermore, we can consider the measurement aspects of flow complexity like

 E COMPL

flow , X COMPL
flow , R COMPL

flow and W COMPL
flow .

The entries and exits could be services (as flow process indicators). Thererfore, we can apply the

Rud service complexity metrics like [Rud 2006]

 µ complexity
NSIC as number of services involved in the compound service that increase the

complexity in the manner of structured depenedencies and

 µ complexity
SIY as number of independed services in the system that expresses a descreasing of

complexity because of lower dependencies.

These metrics lead to any extensions of the COSMIC data movements considering the
relationships between the Entries and Exits written as pair in following

 #(E COMPL

flow , X COMPL
flow .) (44)

and in details as

 #({{Ei} | Ei ∈ Ecompound } COMPL

NSIC , {{Xj, Xk} | Xj ∩ Xk = ∅} COMPL
SIY) (45)

The reads and writes could be service application based on (persitstent stored) data/service basis.

Thererfore, we can apply the Rud service complexity metrics like [Rud 2006]

 µ complexity

CVS as count of simultaneous versions of the service that increases the complexity in
the manner of service variability and

 µ complexity
MCFS as metadata (md) change frequency of the service that increases the complexity

because of higher changements of service descriptions.

These metrics lead to any extensions of the COSMIC data movements considering the
changements in the Reads and Writes written as pair in following

 #(R COMPL

flow , W COMPL
flow .) (46)

and in details as

 #({{R} | t(Ri) = t(Rj) } COMPL

CVS , {{Wk} | ∆t(mdWk)} COMPL
MCFS) (47)

In order to achieve more evidence in industrial applications, the characteristics of the Cloud

computing, Internet of Things and Big data could be involved in these considerations (see [Fiegler
2014]. [Nair 2015] and [Neumann 2013]).

Position Paper 71

5.3 COSMIC DP Measurement
DP stands for Software Document Points as the further essential part of software systems and

infarstructures. There are different kinds of software documents that can be found in the different
software processes like (see [Andersson 2006], [Jones 2010], [Kandt 2006], [Pfleeger 1998],
[Sommerville 2010])

• Software development documents: Description and charts of the software models,
architectures and implementations like formal specifications, UML diagrams, test cases
documentation, program comments etc.,

• Software maintenance documents: Trouble reports, test scenarious, configuration
descriptions etc.

• Software application documents: User manuals, reference documentations, help
documentations etc.

Document measurements are given in the following kinds and intentions (see [Hobelsberger

2012], [Laird 2006], [Lehner 1994], [Mencke 2010])

(a) Software document measurements: considering of the measures like readability,
understandability, changeability, document sizes etc.

(b) Web ressources measurements: identifying the counts of ressources sizes, performance,
stability, availability, frequency etc.

(c) Documents as Web contents measurements: considering of the operationalities, process
involvements, content quality, usability, completeness etc.

(d) Social network measurements: determination of user behavior, size of communities, size of
user groups, user frequency etc.

Adapting the COSMIC method for document measurements, we must define any measurement

princplies and rules as

 EDOC, XDOC, RDOC and WDOC.

A first simple definition of DP could be the counting of the consideration of the data movements in
the software docuements like a user manual characterized as

 #({{EDOC}|E DOC
i ≅Ei },{{XDOC}|X DOC

j ≅Xj },{{RDOC}|R DOC
k ≅Rk },{{WDOC}|W DOC

l ≅Wl },) (48)

Where is described which elements of functional process as I/O characteristics are involved in the

documentation and which are not.

Further descriptions of document measurements or measurements of the documentation could be
based on the characterizations in (a) to (d) and are intended in the same manner like (48).

72 Position Paper

6. CONCLUSION AND FUTURE WORK
This paper discusses the extension of the COSMIC FP method considering the non functional

requirements with their modification of the basis counters (as E, X, R and W) and involving further
NFR-based processes for complete deriving of software sizes.

On the one hand, the COSMIC extensions consider the empirical aspects of the I/O counting of
the COSMIC FP method by scaling the input/output counters themselves.

On the other hand, the COSMIC extensions introduce empirical based processes (quality
assurance and platform ensuring processes) as a extended functional processes that would be
measured as the same manner like the I/O counting in the COSMIC FP method itself.

This point of view qualifies the COSMIC-based effort estimation from the black-box estimation as

 effortCFP-based=α PURQUR

POR
, × size FUR

basedCFP−

to the white-box estimation as

 effortCFP-based=α × [size POR

basedCFP− + size QUR
basedCFP− + size PUR

basedCFP− + size FUR
basedCFP−]

Two examples arre the extended measurement-based formulas as COSMIC function points

involving COSMIC product point and COSMIC process points as

 COSMIC software size = CSPCFP + CPP
 with (NUR = QUR ⊕ PUR)

 CSP = CFP + #(ENUR, XNUR) + |{RNUR, WNUR}|

 and

 CPP = #(EPOR, XPOR) + |{RPOR, WPOR}|

The other kinds of extensions are the application of the COSMIC method for measurements of
other characteristics/attribtes of software like complexity and documentation. Examples of these
extensions are

 COSMIC complexity points as

 CCP = #(ECOMPL, XCOMPL, RCOMPL, WCOMPL)

 COSMIC documentation points as

 CDP = #(EDOC, XDOC, RDOC, WDOC)

This papers discussed the general principles of COSMIC extemsions. But, the detailed principles
and rules must be defined in next steps. Furthermore, experience in the industrial sector for the
software system sizing in order to achieve more granularity and refinements in the software product
and process measurement based on the kernel idea of the COSMIC FP method are necessary.

REFERENCES
[Abran 2010] A. Abran, "Software Metrics and Software Metrology" John Wiley & Sons, 2010

Position Paper 73

[Agapi 2011] Agapi, A. et al.: Routers for the Cloud. IEEE Internet Computing, Sept./Oct. 2011, pp.
72-76

[Ahn 2011] Ahn, G.; Shebab, M.; Squicciarini, A.: Security and Privacy in Social Networks. IEEE
Internet Computing, May/June 2011, pp. 10-12

[Armbrust 2010] Arnbrust, M. et al.: A View of Cloud Computing. Comm. of the ACM, 53(2010)4, pp.
50-58

[Andersson 2006] Andersson, E.; Greespun, P.; Grumet, A.: Software Engineering for Internet
Applications. MIT Press, Cambridge, Mass., 2006

[Banerjee 2011] Banerjee, P. et al.: Everything as a Service: Powering the New Information Economy.
IEEE Computer, March 2011, pp. 36-43

[Bhowmick 2004] Bhowmick, S. S.; Madria, S. K.; Ng, W. K.: "Web Data Management." Srpinger
Publ., 2004

[Boehm 2000] B. W. Boehm, "Software Cost Estimation with COCOMO II" Prentice Hall, 2000

[Bundschuh 2008] M. Bundschuh, C. Dekkers, "The IT Measurement Compendium" Springer Publ.,
2008

[Chemutui 2009] M. Chemuturi, "Software Estimation Best Practices" Tools & Techniques. J. Ross
Publ., Lauderdale, FL, 2009

[COSMIC 2014] COSMIC-FFP: Measurement Manual – The COSMIC Implementation Guide for
ISO/IEC 19761:2014. v 4.0, (http://www.cosmicon.com, 2014)

[Dumke 2010] R. Dumke, A. Abran, "COSMIC Function Points: Theory and Advanced Practices"
CRC Press, Boca Raton, 2010

[Dumke 2008] Dumke, R. R. et al.: "Software Process und Product Measurement." Springer Publ.,
2008

[Dumke 2014] R. Dumke, A. Schmietendorf, M. Seufert, C. Wille, „Handbuch der
Softwareumfangsmessung und Aufwandschätzung." Logos-Verlag Berlin, 2014

[Ebert 2007] C. Ebert, R. Dumke, "Software Measurement – Establish, Extract, Evaluate, Execute"
Springer Publ., 2007

[Fiegler 2014] Fiegler, A.; Zwanziger, A.; Herden, S.; Zenker, N.; Dumke, R.: Analyse von Ressource
Pooling Varianten in Cloud-Systemen. In: Büren et al.: Praxis der Software-Messung, Shaker-
Verlag, Aachen, 2014, S. 53-66

[ISBSG 2012] ISBSG Software Project Estimation – A Workbook for Macro-Estimation of Software
Development Effort and Duration. Melbourne, 2003 (Release 12, 2012, http://www.isbsg.org)

[Jatuun 2009] Jaatun et al.: "Cloud Computing." LNCS 5931, Springer Publ., 2009

[Jones 2007] C. Jones, "Estimating and Measuring Software Costs: Bringing Realism to Estimating"
McGraw-Hill Publ., 2007

[Jones 2010] Jones, C.: "Software Engineering Best Practices – Lessons from Successful Projects in
the Top Companies." McGraw-Hill Publ., 2010

[Kandt 2006] Kandt, R. K.: "Software Engineering Quality Practices." Auerbach Publications, Boca
Raton New York, 2006

[Kunz 2007] M. Kunz, R. Dumke, "Empirical Foundations of COSMIC FFP Application for Effort
Estimation" (German). Preprint No 7, University of Magdeburg, 2007 (http://www-ivs.cs.uni-
magdeburg.de/sw-eng/agruppe/ forschung/Preprints.shtml)

[Laird 2006] L. M. Laird, M. C. Brennan, "Software Measurement and Estimation: A Practical
Approach" John Wiley & Sons Publ., 2006

http://www.isbsg.org/�

74 Position Paper

[Lehner 1994] Lehner, F.: "Messung der Software-Dokumentation und Messung der
Dokumentationsqualität." Carl-Hanser-Veröag, München, 1994

[Leiss 2007] E. L.Leiss, "A Programmer’s Companion to Algorithm Analysis" Chapman & Hall
Publ., 2007

[Lother 2001] M. Lother, R. Dumke, "Point Metrics – Comparison and Analysis" In Dumke/Abran:
Current Trends in Software Measurement, Shaker Publ., Aachen, 2001, pp. 228-267

[Munson 2003] Munson, J., C.: "Software Engineering Measurement." CRC Press Company, Boca
Raton London New York, 2003

[Nair 2015] Nair, R.: “Big Data Needs Approximate Computing”, CACM, 58(2015)1, P. 104

[Neumann 2013] Neumann, R.: "The Internet of Products." Springer Publ., Berlin, New York , 2013

[Papazoglou 2011] Papazoglou, M. P.; Andrikopoulos, V.; Benbernou, S.: Managing Evolving
Services. IEEE Software, May/June 2011, pp. 49-55

[Pfleeger 1998] Pfleeger, S. L.: "Software Engineering – Theory and Practice." Prentice Hall Publ.,
1998

[Rud 2006] Rud, D: "Qualität von Web Services." VDM Verlag Dr. Müller, Berlin, 2006

[Schmietendorf 2012] A. Schmietendorf, "Kosten- und Aufwandschätzung bei der Entwicklung von
Smartphone-Apps, eine Bestandsaufnahme" Büren, G.; Dumke, R.; Ebert, C.; Münch, J.:
MetriKon 2012 - Praxis der Software-Messung. Shaker Publ., Aachen, 2012, pp. 141-148

[Schmietendorf 2007] A. Schmietendorf, R. Dumke, "Approaches of Effort Estimation in the Age of
Agile Development" (German). In: Büren et. al.: Practice of Software Measurement, Shaker
Publ., Aachen, 2007, pp. 309-326

[Schmietendorf 2013] A. Schmietendorf, A. Fiegler, R. Neumann, C. Wille, R. R. Dumke, "COSMIC
Functional Size Measurement of Cloud Systems" Proc. of the IWSM 2013, October, 24 - 26,
2013, Ankara, Turkey

[Schmietendorf 2010] A. Schmietendorf, R. Neumann, R. Dumke, "COSMIC and SOA Sizing - A
critical analysis and proposals for improvement potentials" In: Abran et al.: Applied Software
Measurement, Shaker-Verlag, Aachen, 2010, S. 559-569

[Singh 2005] Singh, M. P.: "The Practical Handbook of Internet Computing." Chapman & Hall CRC
Publ., 2005

[Sneed 2010] Sneed, H.; Seidl, R.; Baumgartner, M.: "Software in Zahlen - Die Vermessung von
Applikationen." München: Carl-Hanser 2010

[Sommerville 2010] Sommerville, I., "Software Engineering." Addison-Wesley, 11th edition, 2010

[Symons 2013] C. Symons, "Guideline for Measurement Strategy Patterns" Version 1., March 2013

[Wei 2010] Wei Y.; Blake, M. B.: Service-Oriented Computing and Cloud Computing – Challenges
and Opportunities. IEEE Internet Computing, Nov./Dec. 2010, pp. 72-75

[Wille 2011] C. Wille, A. Fiegler, R. Neumann, R. R. Dumke, "Evidence-Based Evaluation of Effort
Estimation Methods" Proceedings of the IWSM-MENSURA 2011, November 3-4, 2011, Nara,
Japan, IEEE Computer Society Los Alamitos, California, Washington, Tokyo, S. 196-208

[Yau 2011] Yau, S. S.; An, H. G.: Software Engineering Meets Service and Cloud Computing. IEEE
Computer, October 2011, pp. 47-53

[Zuse 1998] H. Zuse, “A Framework of Software Measurement”, DeGruyter Verlag, Berlin, 1998

New Books on Software Measurement 75

Konstantina Richter, Reiner Dumke:
Modeling, Evaluating and Predicting

IT Human Resource Performance

CRC Press, Boca Raton, Florida, 2015 (275 Seiten)

Modeling, Evaluating, and Predicting IT Human Resources Performance explains why it is
essential to account for the human factor when determining the various risks in the software
engineering process. The book presents an IT human resources evaluation approach that is rooted in
existing research and describes how to enhance existing approaches through strict use of software
measurement and statistical principles and criteria.

Büren, G.; Dumke, R.R.; Ebert, C, Münch, J., Seufert, M.:

MetriKon 2014 - Praxis der Softwaremessung
Tagungsband des DASMA Software Metrik Kongresses

 6. - 7. November 2014, Stuttgart

Shaker Verlag, Aachen, 2014 (222 Seiten)

The book includes the proceedings of the MetriKon 2014 held in Stuttgart in November 2014, which
constitute a collection of theoretical studies in the field of software measurement and case reports on
the application of software metrics in companies and universities.

 New Books on Software Measurement 76

Vogelezang, F., Daneva, M.:

IWSM-MENSURA 2014 Proceedings
October 6 - 8, 2014, Rotterdam, Netherlands

IEEE CPS Publishing Service (online), 2014

This proceedings includes the full papers and the short papers of the 2014 Conference of the 24nd
International Workshop on Software Measurement (IWSM) and the 2014 Ninth International
Conference on Software Process and Product Measurement (MENSURA).

New Books on Software Measurement 77

Der Themenschwerpunkt der vorliegenden Monografie beschäftigt sich mit der professionellen
Entwicklung und Bereitstellung mobiler Business-Apps, die im Kontext unternehmerischer Aktivitäten
zum Einsatz kommen. Bei der Softwareentwicklung gilt es, vielfältigen Qualitätsanforderungen wie
z.B. der Performance, der Wartbarkeit, der Plattformunabhängigkeit, der Ergonomie oder der
Sicherheit gerecht zu werden. Darüber hinaus bedarf es des Managements betrieblich eingesetzter
Geräte und Apps unter Berücksichtigung unternehmensspezifisch festzulegender
Mobilitätsstrategien. Innerhalb der vorliegenden Forschungsarbeit wurden neben diesen Themen
auch spezielle Aspekte wie der datenschutzrechtliche Umgang mit Nutzerdaten oder auch
Qualitätsmodelle und Ansätze zur plattformübergreifenden Entwicklung behandelt.

Bestellung ¨uber den Buchhandel oder direkt beim Verlag, entweder online oder per Fax beim Logos
Verlag Berlin GmbH· Comeniushof – Gubener Str. 47 · D-10243 Berlin

Schmietendorf, A. (Hrsg.):

Eine praxisorientierte Bewertung von Architekturen
und Techniken für Big Data

(110 Seiten) Shaker-Verlag Aachen, März 2015 ISBN 978-3-8440-2939-0

 New Books on Software Measurement 78

Die Idee zum vorliegenden Buch entstand während der Durchführung von Seminaren, Workshops
und Lehrveranstaltungen zum Thema Big Data. Die sowohl im industriellen als auch universitären
Umfeld durchgeführten Veranstaltungen verdeutlichten den Bedarf einer praxisorientierten
Auseinandersetzung mit den vielfältig angebotenen Architekturansätzen und Techniken. Mit Hilfe des
Buchs soll dem entsprechend eine Einarbeitung in das sich ständig verändernde Big Data Ökosystem
unterstützt werden. Dabei geht es weniger um eine Favorisierung nur eines Frameworks als vielmehr
um die Anregung einer kritischen Auseinandersetzung mit alternativen Systemlösungen. Neben der
Verdeutlichung von Einsatzszenarien galt das besondere Interesse den mannigfaltigen Integrations-
und Migrationsanforderungen einer realen Big Data Lösung. Die Möglichkeiten zur Berücksichtigung
vielfältiger Datenquellen und Persistenzmechanismen haben maßgeblichen Einfluss auf den Erfolg
entsprechender Big Data Ansätze. Der einführende Beitrag beschäftigt sich mit grundlegenden
Eigenschaften von Big Data Lösungen und möglichen Systemansätzen. Darauf aufbauend geht ein
weiterer Beitrag auf die technischen Details des Apache Hadoop-Kerns und die detaillierte Abbildung
des MapReduce-Algorithmus ein. Die Architektur und Einsatzmöglichkeiten von NoSQL-
Datenbanksystemen stehen im Mittelpunkt der folgenden Beiträge. Im Einzelnen werden Apache
HBase, MongoDB sowie der zur echtzeitbasierten Suche einsetzbare ElasticSearch-Ansatz
aufgegriffen. Mit SAP Hana existiert ein alternativer Architekturansatz für das SAP-Umfeld. Neben
einer bodenständigen Einordnung und Abgrenzung zu klassischen BI-Ansätzen geht es im Beitrag
insbesondere um mögliche Einsatzszenarien und Aspekte der Migration. Der abschließende Beitrag
greift im Sinne eines Exkurses die cloudbasierte Bereitstellung einer Hadoop-Installation mit Hilfe der
Container-Technologie Docker auf. Dabei wird unter anderem auf die Apache Ambari Lösung
eingegangen, welche zur Bereitstellung, Konfiguration und Überwachung eines Hadoop Clusters
verwendet werden kann. Mit dem vorliegenden Buch soll eine ingenieurmäßige Auseinandersetzung
mit den aktuellen Big Data Technologien angeregt werden, dem entsprechend würde sich die Autoren
über Feedbacks und weiterführende Diskussionen freuen. Für die konstruktive Zusammenarbeit
möchte ich mich bei allen Autoren bedanken. Ebenso bei Frau Leany Maaßen vom Shaker Verlag
Aachen für ihre schnelle und unkonventionelle Unterstützung des Buchprojekts.

New Books on Software Measurement 79

Christof Ebert:

Risikomanagement kompakt
- Risiken und Unsicherheiten bewerten und beherrschen

Springer-Verlag, 2014, ISBN 978-3-642-41047-5

Risikomanagement ist das Schlüsselwerkzeug für Führungskräfte im Projekt und in der Linie. Es hilft dabei,
Chancen, Unsicherheiten und Gefahren bewusst und proaktiv anzupacken, und damit kritische Probleme zu
vermeiden. Sein pragmatischer Einsatz ist heute überlebensnotwendig und aufgrund von wachsenden
Anforderungen an Produkthaftung und Governance für die Unternehmensführung verpflichtend. Das
deutschsprachige Standardwerk "Risikomanagement kompakt" ist jetzt in einer komplett überarbeiteten neuen
Auflage bei Springer erschienen. Das Buch fasst praxisnah zusammen, was Risikomanagement ist, wie es
eingeführt und eingesetzt wird.

Dumke, R., Schmietendorf, A., Seufert, M., Wille, C.:

Handbuch der Softwareumfangsmessung und Aufwandschätzung

Logos Verlag, Berlin, 2014 (570 Seiten), ISBN 978-3-8325-3784-5

Den Kern des Buches bildet eine erstmals umfassende und vollständige Beschreibung einer exakten
Bestimmung des Softwarefunktionsumfangs nach den so genannten COSMIC Function Points. Dabei
werden neben der Methode selbst auch umfassende Beispiele für die verschiedensten
Anwendungsgebiete und -paradigmen, wie Business Applikationen, SOA, Cloud Computing,
wissenschaftlich-technische Berechnungen und vor allem auch für eingebettete Systeme ausführlich
dargestellt, die auch die Grundlage für eine mögliche Zertifizierung nach dieser Methode bilden. Für
die Anwendung dieser Methode werden einige Tools und Web-Dienste vorgestellt. Ebenso wird die
Relevanz und der Inhalt einer internationalen Erfahrungsdatenbasis zur Aufwandschätzung erläutert.

 New Books on Software Measurement 80

Schmietendorf, A.; Simon, F.:
BSOA/BCloud 2014

9. Workshop Bewertungsaspekte serviceorientierter Architekturen
4. November 2014, Frankfurt

Shaker Verlag, Aachen, 2014 (112 Seiten), ISBN 978-3-8440-2108-0

The book includes the proceedings of the BSOA/BCloud 2014 held in Frankfurt in November 2014,
which constitute a collection of theoretical studies in the field of measurement and evaluation of
service oriented and cloud architectures.

New Books on Software Measurement 81

Adam Trendowicz;
Software Cost Estimation, Benchmarking, and Risk Assessment -

The Software Decision-Makers
Springer-Verlag, 2013, ISBN: 978-3-642-30763-8

Richard Seidl und Harry Sneed:

Softwareevolution
dpunkt-Verlag, 2013

http://link.springer.com/search?facet-author=%22Adam+Trendowicz%22�

 New Books on Software Measurement 82

Robert Neumann:

The Internet of Products
An Approach to Establishing Total Transparency in Electronic Markets

Springer Vieweg, 2013 (263 Seiten), ISBN: 978-3-658-00904-5

Janus, A.:

Konzepte für Agile Qualitätssicherung und -bewertung in Wartungs- und
Weiterentwicklungs-Projekten

Shaker Verlag, 2013 (177 Seiten), ISBN: 978-3-8440-1578-2

 Conferences Addressing Metrics Issues 83

Software Measurement Involved Conferences

January 2015:

SWQD 2015:

Software Quality Days
January 20-22, 2015, Vienna, Austria
 see: http://2015.software-quality-days.com/en/conference/overview

ICPE 2015:

5th

January 31- February 4, 2015, Austin, Texas, USA

 ACM/SPEC International Conference on Performance
Engineering

see: http://icpe2015.ipd.kit.edu/

February 2015:

CSMR 2014:

17th

see:

 European Conference on Software Maintenance and Reengineering
February 3-7, 2014, Antwerp, Belgium

http://csmr.eu/ (not in 2015)

ISEC 2015:

8th

February 18 - 20, 2015, Bangalore, India
 India Software Engineering Conference

see: http://isoft.acm.org/isec2015/

March 2015:

UKSMA 2015:

Workshop on Defect Measurement and Analysis
March 4 , 2015, London, UK
see

ICSQ 2015:

http://uksma.co.uk/workshops.asp

International Conference on Software Quality
March 9 - 11, 2015, Long Beach, California, USA
see:

REFSQ 2015:

http://www.asq-icsq.org/

21th International Working Conference on Requirements Engineering:
Foundation for Software Quality
March 23-26, 2014, Essen, Germany
see: http://refsq.org/2015/-

http://www.software-quality-days.com/en/�
http://icpe2013.ipd.kit.edu/�
http://csmr2013.disi.unige.it/�
http://isoft.acm.org/isec2013/docs/ISEC-2013%20CFP.pdf�
http://www.refsq.org/2013/�

 Conferences Addressing Metrics Issues 84

April 2015:

FASE 2015:

18th

April 11-18, 2015, London, UK

 International Conference on Fundamental Approaches to Software
Engineering

see: http://www.etaps.org/index.php/2015/fase

ISMA 2015:

10th

April 30, 2015, Charlotte, North Caroline, USA
ISMA Conference of the IFPUG

see: http://www.ifpug.org/

ASWEC
2014:

23nd

April 7 - 10, 2014, Sydney, Australia
 Australian Software Engineering Conferences

see: http://www.aswec2014.org/ (not in 2015)

ICST 2015:

8th

April 13 - 17, 2015, Graz, Austria

 International Conference on Software Testing, Verification &
Validation

see:

ASQT 2015:

http://icst2015.ist.tu-graz.ac.at

Arbeitskonferenz Softwarequalität und Test
April 16 - 17., 2015, Graz, Austria
see: http://www.asqt.org/

SOFTENG
2015

First International Conference on Advances and Trends in Software
Engineering
April 19 - 24, 2015, Barcelona, Spain
see:

CIbSE 2015:

http://www.iaria.org/conferences2015/SOFTENG15.html
18th

April 22-24, 2015, Lima, Peru
 Iberoamerican Conference on Software Engineering

see:

CSEE&T
2014:

https://sites.google.com/a/spc.org.pe/cibse2015/
26th

April 23-25, 2014, Klagenfurt, Austria
 Conference on Software Engineering Education and Training

see: http://conferences.computer.org/cseet/2014/ (not in 2015)

EASE 2015:

19th International Conference on Empirical Assessment in Software
Engineering
April 27-29, 2015, Nanjing, China
see:

iqnite 2015:

http://emse.nju.edu.cn/ease2015/

Software Quality Conference
April 28 30, 2015, Düsseldorf, Germany
see: http://www.iqnite-conferences.com/de/index.aspx

ENASE 2015:

10th

April 29 - 30, 2015, Barcelona, Spain

 International Conference on Evaluation of Novel Approaches to
Software Engineering

see: http://www.enase.org/

http://www.etaps.org/2013/fase13�
http://www.ifpug.org/�
http://aswec2013.ict.swin.edu.au/�
http://www.icst.lu/�
http://www.asqt.org/�
http://conferences.computer.org/cseet/2013/�
http://www.iqnite-conferences.com/de/index.aspx�
http://www.enase.org/�

 Conferences Addressing Metrics Issues 85

May 2015:

WICSA 2015:
12th

May 4 - 8, 2015, Montreal, Canada
 Working IEEE/IFIP Conference on Software Architecture

see:

STAREAST
2015:

http://wicsa2015.org/index.html
Software Testing Analysis & Review Conference
May 3-8, 2014, Orlando, FL, USA
see: http://stareast.techwell.com/

QoSA 2015:

11th

May 4 - 8, 2015, Montreal, Canada

 International ACM Sigsoft Conference on the Quality of Software
Architectures

see: http://qosa.ipd.kit.edu/qosa_2015/

EMEA 2015:

PMI Global Congress 2015 - EMEA
May 11-13, 2015,London, UK
see:

SERA 2015:

http://www.pmi.org/Learning/professional-development/Congress-PMI-
Global-Congresses/EMEA-2015.aspx

13th

May 13 - 15, 2015, Hammamet, Tunesia
 ACIS Conference on Software Engineering

see:

SAM 2015

http://sera2015.redcad.org/

Workshop on Software Architecture and Metrics
May 16, 2015, Florence, Italy
see:

OSS 2015:
http://www.sei.cmu.edu/community/sam2015/

11th

May 16 - 17, 2015, Florence, Italy
 International Conference on Open Source Systems

see:

ICSE 2015:

http://www.oss2015.org/

37th International Conference on Software Engineering
 May 16- 24, 2015, Florence, Italy
see

MSR 2015:

: http://2015.icse-conferences.org/

11th

May 16 - 17, 2014, Florence, Italy
 Working Conference on Mining Software Repositories

see: http://2015.msrconf.org/

ICPC 2015:

22th International Conference on Program Comprehension
May 18 - 19, 2015, Florence, Italy
see:

XP 2015:

http://www.program-comprehension.org/

16th

May 25-29, 2015, Helsinki, Finland
 International Conference on Agile Software Development

see: http://www.xp2015.org/

http://stareast.techwell.com/content/stareast-2013�
http://qosa.ipd.kit.edu/qosa_2013/�
http://2013.msrconf.org/�
http://xp2013/�

 Conferences Addressing Metrics Issues 86

June 2015:
EJC 2015:

25th

June 9 - 12, 2015, Maribor, Slovenia

 European Japanese Conference on Information Modeling and
Knowledge Bases

see

ICWE 2015:

: http://ejc2015.um.si/

International Conference on Web Engineering
June 23 - 26, 2015, Rotterdam, Netherlands
see: http://icwe2015.webengineering.org/

SPICE 2015:

15th

June 16 - 17, 2015, Gothenburg, Sweden
 International SPICE Conference

see: http://www.spiceconference.com/

SQ 2015
Sixth International Symposium on Software Quality
June 22 - 25, 2015, Banff, Canada
see:

http://sq.covenantuniversity.edu.ng/

July 2015:

UKPEW 2014:

24th Annual United Kingdom Workshop on Performance
Engineering
 July 4 - 5, 2014, Edinburgh, UK
see: http://ukpew.lboro.ac.uk/ (not in 2015)

VDA Automotive SYS
Conference 2015:

Quality Management for Automotive Software-based Systems
and Functionality
July 15 - 17, 2015, Potsdam, Germany
see:

ICSOFT 2015:

http://vda-qmc.de/software-prozesse/vda-automotive-sys/

10th

July 20 - 22, 2015, Colmar, Alsace, France

 International Conference on Software and Data
Technologies

see: http://www.icsoft.org/

SERP 2015

13th

July 27 - 30, 2015, Las Vegas, Nevada, USA

 Internatinal Conference on Software Engineering Research
and Practice

see:

ICGSE 2015:

http://www.world-academy-of-science.org/worldcomp15/ws/
conferences/serp15

10th

July 13 - 16, 2015, Ciudad Real, Spain
 International Conference on Global Software Engineering

see: http://www.icgse.org/

http://icwe2013.webengineering.org/�
http://www.spiceconference.com/�
http://ukpew.lboro.ac.uk/�
http://www.icsoft.org/�
http://collab.di.uniba.it/icgse2013/�

 Conferences Addressing Metrics Issues 87

August 2015:

AGILE 2015:

International Conference on Agile
August 3 - 7, 2015, Washington D. C., USA
see: http://agile2015.agilealliance.org/

RE 2015:

23th

August 24-28, 2015, Ottawa, Canada
 IEEE International Requirement Engineering Conference

see: http://re15.org/

Euromicro DSD/
SEAA 2015:

41th

August 26 - 28, 2015, Funchal, Madeira, Portugal
 Software Engineering & Advanced Application Conference

see: http://esd.scienze.univr.it/dsd-seaa-2015/

September 2015:

QEST 2015:

12th

September 1 - 3, 2015, Madrid, Spain

 International Conference on Quantitative Evaluation of
Systems

see: http://www.qest.org/qest2015/

EuroSPI 2015:

22th

September 20 - October 2, 2015, Ankara, Turkey

 European Systems & Software Process Improvement and
Innovation Conference,

see: http://www.eurospi.net/

October 2015:

IWSM-MENSURA
2015:

Common International Conference on Software Measurement
October 5 - 7, 2015, Cracow, Poland
see: http://www.iwsm-mensura.org/2015/cfp

ESEM 2015:

9th

October 22 - 23, 2015, Beijing, China

 International Symposium on Empirical Software Engineering &
Measurement

see:

http://eseiw.iscas.ac.cn/eseiw2015/esem/

http://agile2013.agilealliance.org/�
http://www.re13.org/�
http://www.teisa.unican.es/dsd-seaa-2013/�
http://www.qest.org/qest2013/�
http://2013.eurospi.net/�
http://iwsm2013.wordpress.com/�

 Conferences Addressing Metrics Issues 88

November 2015:

ISSRE 2015

26th

November 2 - 5, 2015, Gaithersburg, USA

International IEEE Symposium on Software Reliability
Engineering

see:

BSOA/BCloud
2015:

http://issre.net/Invitation

10. Workshop Bewertungsaspekte service-orientierte und Cloud-
Architekturen
November , 2015,
 see: http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/

MetriKon 2015:

International Conference on Software Measurement
November 5-6, 2015, Cologne, Germany
see: http://www.metrikon.de/

ICSEA 2015
10th

November 15 - 20, 2015, Barcelona, Spain
 International Conference on Software Engineering Advances

see:

http://www.iaria.org/conferences2015/ICSEA15.html

December 2015:

PROFES 2015:

16th

December 2 - 4, 2015, Bolzano, Italy

 International Conference on Product Focused Software Process
Improvement

see:

ICSEFM 2015

http://profes2015.inf.unibz.it/
XIII International Conference on Software Engineering and Formal
Methods
December 13 - 14, 2015, Melbourne, Australia
see:

https://www.waset.org/conference/2015/12/melbourne/ICSEFM

see also: Conferences Link of Luigi Buglione (http://www.semq.eu/leng/eveprospi.htm)

http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/�
http://www.metrikon.de/�
http://www.semq.eu/leng/eveprospi.htm�
http://www.semq.eu/leng/eveprospi.htm�

 Metrics in the World-Wide Web 89

See the GI-Web site http://fg-metriken.gi.de/ for the digital contents of the Software Measurement
News:

Help to qualify the software measurement knowledge and intentions in the world wide web:

 Metrics in the World-Wide Web 90

See our further software measurement and related communities:

 www.dasma.org:

 www.isbsg.org:

 Metrics in the World-Wide Web 91

 www.cecmg.de:

 www.mai-net.org:

 www.swebok.org:

 Metrics in the World-Wide Web 92

 isern.iese.de:

 www.pmbok.org:

 www.smlab.de:

 Metrics in the World-Wide Web 93

 www.psmsc.com/:

 sebokwiki.org/wiki/Measurement:

 Metrics in the World-Wide Web 94

 www.fisma.fi/in-english/:

 wwwagse.informatik.uni-kl.de/research/:

 http://nesma.org/:

 Metrics in the World-Wide Web 95

 www.sei.cmu.edu/measurement/:

 bitergia.com/:

SOFTWARE MEASUREMENT NEWS

VOLUME 20 2015 NUMBER 1

CONTENTS

Announcements .. 3

Conference Report .. 11

Position Papers:

Ayman Massoud: Quality-Based Issues in SOA Migration 19

Reiner Dumke,Anja Fiegler,Heike Hegewald, Robert Neumann,Cornelius Wille:
Established Software Metrics adapting to COSMIC Measurement 53

New Books on Software Measurement .. 75

Conferences Addressing Measurement Issues 83

Metrics in the World-Wide Web ... 89

ISSN 1867-9196

	01DeckblattNeu
	02Editors
	Alain Abran
	Günter Büren
	Reiner Dumke
	Christof Ebert
	Cornelius Wille

	03Announcements
	04ConferenceReport
	Bewertungsaspekte service- und cloudbasierter Architekturen (BSOA/BCloud2014) - detaillierter Workshopbericht
	1. Hintergründe zur Initiative BSOA/BCloud
	2. Beiträge des Workshops
	3. Ergebnisse der Diskussionsrunde
	3.1 Bereitgestellte Diskussionsthemen
	3.2 Ausgewählte Ergebnisse

	4 Weitere Informationen
	5 Quellenverzeichnis
	1 Dank
	2 Organisation

	05PositionPaper
	06New-Books
	Schmietendorf, A. (Hrsg.):
	Eine praxisorientierte Bewertung von Architekturen
	und Techniken für Big Data
	(110 Seiten) Shaker-Verlag Aachen, März 2015 ISBN 978-3-8440-2939-0
	Software Cost Estimation, Benchmarking, and Risk Assessment -
	The Software Decision-Makers

	The Internet of Products
	An Approach to Establishing Total Transparency in Electronic Markets
	Konzepte für Agile Qualitätssicherung und -bewertung in Wartungs- und Weiterentwicklungs-Projekten

	07Conferences
	Software Measurement Involved Conferences
	January 2015:
	February 2015:
	March 2015:
	April 2015:
	May 2015:
	July 2015:
	August 2015:
	September 2015:
	October 2015:
	November 2015:
	December 2015:

	08World-Wide-Web
	09Inhaltsverzeichnis
	VOLUME 20 2015 NUMBER 1
	CONTENTS

