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Program 
IWSM Mensura is the premier international conference on 

measurement and data analytics. Each year practitioners and 

researchers from all over the world meet to discuss practical 

challenges and solutions in the field of software and IT measurement 

and data analytics.  

 

On October 5-7, 2016 the IWSM Mensura conference will be held in Berlin, Germany. The 

conference venue will be at the Berlin School of Economics, Campus Lichtenberg. More information 

on the conference can be found on the website: http://www.iwsm-mensura.org. 
 

Theme & scope 
Software and IT measurement are keys for successfully managing and controlling software 

development projects. Data analytics and measurement are essential for both business and 

engineering. They enrich scientific and technical knowledge regarding both the practice of software 

development and empirical research in software technology. The conference focuses on all aspects 

of software measurement and data analytics. 

 

This year focus is the Value of Data, i.e. how to maximize the value for an organization from making 

use of data from their software applications and systems. The trend towards digitization also 

dramatically increases the amount of data that becomes available. The value of a company is 

increasingly hidden in its data and can only be exploited fully if these are used efficiently along the 

entire value chain. Big data becomes an important keyword to deal with. The conference also focuses 

on novel approaches and innovative ideas on how to optimize existing products and processes 

making use of data as well as using Big Data as an enabler for new application cases. 
 
 

Topics of interest 
 We encourage submissions in any field of software measurement, including, but not limited to: 

 Practical measurement applications 

 Data analytics in practice, e.g. Enterprise embedded solutions 

 Usage of big data analytics for improving products and processes 

 Quantitative and qualitative methods for software measurement 

 Measurement processes and resources, e.g. agile or model-driven 

 Empirical case studies 

 System and software engineering measurement 

 IT and project cost and effort estimation, e.g., cost, effort, defects 

 Functional size measurement 

 Data analytics and measurement in  novel areas, e.g. ECU’s or web services 

 Measures for Cognitive Computing 

Conference language 
The language for the conference, workshops and special sessions is English. 

4 Keynotes 

31 Presentations 

2 Seminars 

5 Workshops 

http://www.iwsm-mensura.org/
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BSAO/BCloud 2016 

(Qualitative und quantitative Bewertung) 

03.11.2016, Gastgeber Zalando, Berlin  

Der diesjährige BSOA/BCloud-Workshop findet am 03.11.2016 in Berlin (Gastgeber 

Zalando) statt. Im Mittelpunkt der Vorträge, Diskussionsrunden und des World Cafes stehen 

domänenspezifische und wirtschaftliche Bewertungsfragen von Service APIs. Im Einzelnen 

geht es um die Identifikation, Gestaltung, Bewertung sowie das Management von Service 

APIs im Diskurs verschiedener Branchen (z.B. Banken, Versicherungen, Pharmazie) 

auseinander. 

Beispiele für Themenbereiche: 

 Welchen Einfluss haben Service APIs auf die Industrialisierung unternehmerische 

Prozessabläufe? 

 Bewertung der mit Service APIs einhergehenden Möglichkeiten, im Sinne innovativer 

Produkte und Dienstleistungen? 

 Bewertungsansätze im Zusammenhang mit der Identifikation, Spezifikation, 

Bewertung und Qualitätssicherung von Serviceangeboten. 

 Gestaltung von Architekturen zur serviceorientierten Verzahnung von 

unternehmensinternen Lösungen mit Service APIs. 

 Herausforderungen der Serviceorientierung im Kontext eines kollaborativen und 

interoperablen IT-Service-Managements. 

 Gewährleistung von Sicherheits- und Compliance-Aspekten in interoperablen 

Architekturansätzen. 

Ein besonderes Highlight erwartet die Teilnehmer mit dem eingeladenen Keynote-Sprecher 

Herrn Michael Binzen (Chefarchitekt DB Systel GmbH). 

Web-Adresse zum Workshop:  

 http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/2016/ 

 

http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/2016/
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Cyclomatic Complexity - 40 Years Later 
 

 

 

Christof Ebert 
Vector Consulting Services, Stuttgart 

September 2016 
 

 
 
The criticality and risk of software is defined by its complexity. Forty years ago, McCabe introduced his famous 
cyclomatic complexity (CC) metric. Today, it is still one of the most popular and meaningful measurements for 
analyzing code.  Read this blog about the measurement and its value for improving code quality and 
maintainability... 
 
 
It is of great benefit for projects to be able to predict software components likely to have a high defect rate or 
which might be difficult to test and maintain. It is of even more value having an indicator which can provide 
constructive guidance on how to improve the quality of code. This is what the cyclomatic complexity (CC) metric 
gives us.   
 
 
The CC metric is simple to calculate and intuitive to understand. It can be taught quickly. Control flows in code 
are analyzed by counting the decisions, i.e., the number of linear independent paths through the code under 
scrutiny. Too many nested decisions make the code more difficult to understand due to the many potential 
flows and possibilities of passing through it.   
 
 
In addition, the CC value of a module correlates directly with the number of test cases necessary for path 
coverage, so even a rough indication given by the CC metric is of high value to a developer or project manager.  
 
 
A high CC thus implies high criticality and the code will have a higher defect density (vis-à-vis code with a 
relatively lower CC); test effort is higher and maintainability severely reduced. These relationships are intuitive 
for students as well as experts and managers and this is another appealing feature of the CC metric.  
 
 
It is small wonder therefore that CC, unlike many other metrics which have been proposed over the past 
decades is still going strong and is used in almost all tools for criticality prediction and static code analysis. 
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  Figure: Calculation of Cyclomatic Complexity by counting linear independent  
   paths through a control flow. 

 
 
CC, together with change history, past defects and a selection of design metrics (e.g., level of uninitialized data, 
method overriding and God classes) can be used to build a prediction model. Based on a ranked list of module 
criticality used in a build, different mechanisms namely refactoring, re-design, thorough static analysis and unit 
testing with different coverage schemes can then be applied. The CC metric therefore gives us a starting point 
for remedial maintenance effort.   
 
Instead of predicting the number of defects or changes (i.e., algorithmic relationships) we consider assignments 
to classes (e.g., “defect-prone”). While the first goal can be achieved more or less successfully with regression 
models or neural networks mainly in finished projects, the latter goal seems to be adequate for predicting 
potential outliers in running projects, where precision is too expensive and not really necessary for decision 
support. Christof – I am not sure I follow the point being made in these last two sentences – can you possibly 
clarify/elaborate please?  
  
While the benefits of CC are clear, it does need clear counting rules. These days for instance, we do not count 
simple “switch” or “case” statements as multiplicities of “if, then, else” decisions. Moreover, the initial proposal 
to limit CC to seven plus/minus two per entity is no longer taken as a hard rule, because boundaries for defect-
prone components are rather fuzzy and multi-factorial.  
  
Having identified such overly critical modules, risk management must be applied. The most critical and most 
complex of the analyzed modules, for instance, the top 5, are candidates for redesign. For cost reasons 
mitigation is not only achieved with redesign. The top 20% should have a thorough static code analysis, and the 
top 80% should be at least unit tested with C0 coverage of 100%. By concentrating on these critical components 
the productivity of quality assurance is increased.  
 
Critical modules should at least undergo a flash review and subsequent refactoring, redesign or rewriting – 
depending on their complexity, age and reuse in other projects. Refactoring includes reducing size, improving 
modularity, balancing cohesion and coupling, and so on. For instance, apply thorough unit testing with 100 
percent C0 coverage (statement coverage) to those modules ranked most critical. Investigate the details of the 
selected modules’ complexity measurements to determine the redesign approach. Typically, the different 
complexity measurements will indicate the approach to follow. Static control flow analysis tools incorporating 
CC can also find security vulnerabilities such as dead code, often used as backdoors for hijacking software. 
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Our own data but also many published empirical studies demonstrate that a high decision-to-decision path 
coverage or C1 coverage will find over 50% of defects, thus yielding a strong business case in favor of using CC.  
On the basis of the results from many of our client projects and taking a conservative ratio of only 40 percent 
defects in critical components, criticality prediction can yield at least a 20 percent cost reduction for defect 
correction.  
 
 
The additional costs for the criticality analysis and corrections are in the range of few person days per module. 
The necessary tools such as Coverity, Klocwork, Lattix, Structure 101, SonarX, SourceMeter, are off the shelf and 
account for even less per project. These criticality analyses provide numerous other benefits, such as the 
removal of specific code-related risks and defects that otherwise are hard to identify (for example, security 
flaws).  
 
 
CC clearly has its value for critically predictions and thus improving code quality and reducing technical debt. 
Four decades of validity and usage is a tremendous time in software, and I congratulate McCabe for such a 
ground-breaking contribution. 
 
 
 
 
Literature and media: 
 
McCabe, T.J.:  A Complexity Measure. IEEE Transactions on Software Engineering, Vol. SE-2, NO.4, Dec. 1976. 
http://www.literateprogramming.com/mccabe.pdf  
 

 

Selected white papers on quality practices from our media-center: 
http://consulting.vector.com/vc_download_en.html?product=quality  
 
 
Full article on static code analysis technologies in IEEE Software: 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4814967  
 
 
 
 
 
 
 
Author: 
Christof Ebert is the managing director of Vector Consulting Services. He is on the IEEE 
Software editorial board and teaches at the University of Stuttgart and the Sorbonne in 
Paris. 
Contact him at christof.ebert@vector.com  

 
 

 

 

 

 

 

http://www.literateprogramming.com/mccabe.pdf
http://www.literateprogramming.com/mccabe.pdf
http://consulting.vector.com/vc_download_en.html?product=quality
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4814967
mailto:christof.ebert@vector.com
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The Origins of Function Point Metrics 

 
Capers Jones  

 
(IFPUG publication 05/17/2016, permitted by the author) 

Version 3.0 
VP and CTO, Namcook Analytics LLC 
Email:  Capers.Jones3@gmail.com 

 

Introduction 
 
The author was working at IBM in the 1960’s and 1970’s and was able to observe the origins of several IBM 
technologies such as inspections, parametric estimation tools, and function point metrics.  This short paper 
discusses the origins and evolution of function point metrics. 
In the 1960’s and 1970’s IBM was developing new programming languages such as APL, PL/I, PL/S etc.   IBM 
executives wanted to attract customers to these new languages by showing clients higher productivity rates. 
As it happens the compilers for various languages were identical in scope and had the same features.  Some 
older compilers were coded in assembly language while newer compilers were coded in PL/S, which was a new 
IBM language for systems software. 

When we measured the productivity of assembly-language compilers versus PL/S compilers using “lines of 
code” (LOC) we found that even though PL/S took less effort,  the LOC metric of LOC per month favored 
assembly language. 

This problem is easiest to see when comparing products that are almost identical but merely coded in different 
languages.  Compilers, of course, are very similar.  Other products besides compilers that are close enough in 
feature sets to have their productivity negatively impacted by LOC metrics are PBX switches, ATM banking 
controls, insurance claims handling, and sorts.    

To show the value of higher-level languages the first IBM approach was to convert high-level languages into 
“equivalent assembly language.”  In other words we measured productivity against a synthetic size based on 
assembly language instead of against true LOC size in the actual higher level languages.  This method was used 
by IBM from around 1968 through 1972. 

An IBM vice president, Ted Climis, said that IBM was investing a lot of money into new and better programming 
languages.  Neither he nor clients could understand why we had to use the old assembly language as the metric 
to show productivity gains for new languages. This was counter-productive to the IBM strategy of moving 
customers to better programming languages. He wanted a better metric that was language independent and 
could be used to show the value of all IBM high-level languages. 

This led to the IBM investment in function point metrics and to the creation of a function-point development 
team under Al Albrecht at IBM White Plains. Function Point metrics were developed by the IBM team by around 
1975 and used internally and successfully.  In 1978 IBM placed function point metrics in the public domain and 
announced them via a technical paper given by Al Albrecht at a joint IBM/SHARE/Guide conference in 
Monterey, California.   

Table 1 shows the underlying reason for the IBM function point invention based on the early comparison of 
assembly language and PL/S for IBM compilers.   
Table 1 shows productivity in four separate flavors: 

1. Actual lines of code in the true languages. 

2. Productivity based on “equivalent assembly code.” 

3. Productivity based on “function points per month.” 

4. Productivity based on “work hours per function point.” 

mailto:Capers.Jones3@gmail.com
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Note:  table 1 uses simple round numbers to clarify the issues noted with LOC metrics. 

Table 1:  IBM Function Point Evolution Circa 1968-1975 

 
(Results for two IBM compilers) 

 

  
Assembly 

 
PL/S 

  
Language 

 
Language 

     Lines of code (LOC)   17,500.00  
 

   5,000.00  

     Months of effort         30.00  
 

        12.50  

     Hours of effort    3,960.00  
 

   1,650.00  

     LOC per month       583.33  
 

      400.00  

     Equivalent assembly   17,500.00  
 

 17,500.00  

     Equiv. Assembly MO       583.33  
 

   1,400.00  

     Function points       100.00  
 

      100.00  

     Function Points/month           3.33  
 

          8.00  

     Work hours per FP           39.60  
 

          16.50  
The three rows highlighted in blue show the crux of the issue.  LOC metrics tend to penalize high-level 
languages and make low-level languages such as assembly look better than they really are.  Function 
points metrics, on the other hand, show tangible benefits from higher-level programming languages and 
this matches the actual expenditure of effort and standard economic analysis.  Productivity of course is 
defined as “goods or services produced per unit of labor or expense.”  The creation and evolution of 
function point metrics was based on a need to show IBM clients the value of IBM’s emerging family of 
high-level programming languages such as PL/I, APL, and others. This is still a valuable use of function 
points since there are more than 3,000 programming languages in 2016 and new languages are being 
created at a rate of more than one per month. Another advantage of function point metrics vis a vis LOC 
metrics is that function points can measure the productivity of non-coding tasks such as creation of 
requirements and design documents.  In fact function points can measure all software activities, while 
LOC can only measure coding.Up until the explosion of higher-level programming languages occurred, 
assembly language was the only language used for systems software (the author programmed in 
assembly for several years when starting out as a young programmer).   

With only one programming language LOC metrics worked reasonably well.  It was only when higher-
level programming languages appeared that the LOC problems became apparent.  It was soon realized 
that the essential problem with the LOC metric is really nothing more than a basic issue of manufacturing 
economics that had been understood by other industries for over 200 years.   
 
This is a fundamental law of manufacturing economics:   “When a manufacturing process has a high 
percentage of fixed costs and there is a decline in the number of units produced, the cost per unit will 
go up.” 
 
The software non-coding work of requirements, design, and documentation act like fixed costs.  When 
there is a move from a low-level language such as assembly to a higher-level language such as PL/S, the 
cost per unit will  
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go up, assuming that LOC is the “unit” selected for measuring the product.  This is because of the fixed costs of 
the non-code work and the reduction of code “units” for higher-level programming languages. Function point 
metrics are not based on code at all, but are an abstract metric that defines the essence of the features that the 
software provides to users.  This means that applications with the same feature sets will be the same size in 
terms of function points no matter what languages they are coded in.  Productivity and quality can go up and 
down, of course, but they change in response to team skills. Once function points were released by IBM in 1978 
other companies began to use them, and soon the International Function Point User’s Group (IFPUG) was 
formed in Canada. Today in 2016 there are hundreds of thousands of function point users and hundreds of 
thousands of benchmarks based on function points.  There are also several other varieties of function points 
such as COSMIC, FISMA, NESMA, etc. 
Overall function points have proven to be a successful metric and are now widely used for productivity studies, 
quality studies, and economic analysis of software trends.  Function point metrics are supported by parametric 
estimation tools and also by benchmark studies.  There are also several flavors of automatic function point 
tools.  There are also function point associations in most industrialized countries. There are also ISO standards 
for functional size measurement. (There was never an ISO standard for code counting and counting methods 
vary widely from company to company and project to project.  In a benchmark study performed for a “LOC” 
shop we found four sets of counting rules for LOC that varied by over 500%.). Table 2 shows countries with 
increasing function point usage circa 2016, and it also shows the countries where function point metrics are 
now required for government software projects. 

 
Table 2:  Countries Expanding Use of Function Points 2016 

   1 Argentina 
 2 Australia 
 3 Belgium 
 4 Brazil Required for government contracts 2008 

5 Canada 
 6 China 
 7 Finland 
 8 France 
 9 Germany 
 10 India 
 11 Italy Required for government contracts 

12 Japan Required for government contracts 

13 Malaysia Required for government contracts 

14 Mexico 
 15 Norway 
 16 Peru 
 17 Poland 
 18 Singapore 
 19 South Korea Required for government contracts 

20 Spain 
 21 Switzerland 
 22 Taiwan 
 23 The Netherlands 
 24 United Kingdom 
 25 United States 
 Several other countries will probably also mandate function points for government software contracts by 2017.  

Eventually most countries will do this. In retrospect function point metrics have proven to be a powerful tool for 
software economic and quality analysis.   
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Web APIs als Enabler einer erfolgreichen  

Digitalisierungsstrategie 

Andreas Schmietendorf 

Hochschule für Wirtschaft und Recht Berlin 
Email: andreas.schmietendorf@hwr-berlin.de 

1. Motivation 

Klassische Unternehmen, wie z.B. in der Automobil- und Maschinenbaubranche, Banken, Versicherungen, 
Versorger oder Speditionen, waren durch eine massive Ressourcenbindung (z.B. Rohstoffe, Anlagen, Fuhrpark, 
Personal) und Fertigungstiefe gekennzeichnet. Für die Wettbewerbsfähigkeit moderner Unternehmen spielen 
aktuelle und konsistente Kenntnisse der Kundenbedürfnisse, die Innovationsfähigkeit, die bedarfsgerechte und 
agile Akquise von Ressourcen sowie vor allem die Möglichkeiten zur Abdeckung von globalen Märkten eine 
entscheidende Rolle. Aufgrund der Omnipräsenz von Software können diese Einflüsse bzw. Anforderungen nur 
über einfach integrierbare IT-Lösungen, die an den Unternehmensgrenzen keinen Halt machen beherrscht 
werden. Web-APIs können entsprechend [Spencer 2015] das strategische, fachliche und technologische Rückrad 
dieser unternehmensübergreifend wirkenden Integrationsanforderungen bilden.  

„Application Programming Interfaces (API's) have gone from a something that only developers 
and architects once discussed to emerge as a capability that is central to many successful 
companies business strategies and a key focus of many of their senior leadership teams.” 

Werden Web-APIs im Sinne eines zusätzlichen Vertriebskanals für Drittanbieter bereitgestellt, wird häufig auch 
von einer API economy gesprochen. Neben der ökonomischen Perspektive sieht [Tang 2015] darin ein 
Gestaltungsprinzip für kompositorisch orientierte Softwarearchitekturen, welches die Möglichkeiten moderner 
Web-APIs mit korrespondierenden Geschäftsmodellen kombiniert. Ohne einen Anspruch auf Vollständigkeit zu 
erheben, finden sich die Ursachen in den folgenden Aspekten: 

- Web-APIs als Rückgrad mobiler Applikationen. 

- Web-APIs als „Enabler・im Diskurs des IoT. 

- Web-APIs als zusätzlicher Vertriebskanal. 

- Web-APIs als Datenquelle für Big Data. 

- Web-APIs als Kollaborationsplattform für soziale Medien. 

Neben den primär wirtschaftlich und fachlich geprägten Einflüssen existieren auch technologische Treiber, wie 
z.B. das Cloud-Computing, Agilitätsanforderungen im Software-Engineering oder aber die konkret eingesetzte 
Schnittstellentechnologie. Diesbezüglich findet sich der Einsatz von RESTful-, XML/SOAP-, JSON- oder auch 
programmiersprachspezifische Web-APIs, welche zumeist HTTP als Übertragungsprotokoll im Internet 
benutzen.  

2. Digitalisierung – Industrialisierung der IT 

Moderne Unternehmen mit einer agilen Sourcingstrategie profitieren von den Möglichkeiten einer 
umfänglichen Digitalisierung, da die für das Geschäft benötigten Daten, Funktionen und Algorithmen über 
fachlich spezialisierte Service APIs aus dem Internet „ad hoc“ bezogen werden. Damit wird die 
unternehmerische IT selbst zum Gegenstand der Industrialisierung. Für den Fall, dass diese nicht als 
Kernkompetenz wahrgenommen wird, kommt es zu einer dramatischen Reduktion der Fertigungstiefe im 
gesamten Lebenszyklus benötigter Softwarelösungen. Damit einher gehen Konsolidierungen der betroffenen 
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Prozesse und Organisationen. Aus diesen resultieren veränderte Kompetenzbedürfnisse, aber auch 
soziologische und gesellschaftliche Implikationen.  

Im Diskurs der Digitalisierung stellt sich für alle Unternehmen die Frage, welchen Wertbeitrag 
unternehmensinterne Daten darstellen und ob diese via Web APIs (Online) oder auch als Dateien (Offline) im 
Internet zur Verfügung gestellt werden sollten. Die Bereitstellung unternehmensintern akquirierter 
Informationen via Service APIs wird aktuell zumeist als ein Risiko, denn als Change zur Bewältigung der 
Herausforderungen einer zunehmend digitalisierten Welt bewertet. In Abhängigkeit der aktuellen Marktpräsenz 
können Innovationen so kurzzeitig behindert bzw. zurück gehalten werden. Allerdings entsagt sich das 
betroffene Unternehmen so auch der Möglichkeiten von entsprechenden Interessengruppen und 
Partnerschaften zu profitieren, einen zwingend benötigten Lernprozess in Gang zu setzen und nicht zuletzt die 
Wünsche der Kunden analytisch bewerten und damit aktiv mit gestalten zu können. Ein derartiges Umfeld birgt 
die Gefahr, sich vom digitalen Fortschritt abzukoppeln.  

Es gilt zu klären, inwieweit die Innovations- und Wettbewerbsfähigkeit der Unternehmen unter dieser 
„Abschottungspolitik“ leidet, da der kreative Umgang mit existierenden Informationen an den 
Unternehmensgrenzen halt macht. 

„Innovationen entstehen erst durch Assoziationen und das Übersetzen von Vorhandenem in neue 
Kontexte.“1  

Um das mit der Digitalisierung einhergehende Potential für den deutschen bzw. europäischen Standort 
wirtschaftlich nutzen zu können, bedarf es regulatorischer Maßnahmen von Seiten des Gesetzgebers. Nur so 
kann für kleinere und junge Unternehmen der Zugang zum „Rohstoff des 21. Jahrhunderts – den Daten“ 
gewährleistet werden, so dass kreative Lösungsansätze nicht an der Behäbigkeit und Geschlossenheit 
marktbeherrschender Unternehmen und ihrer Lobbyisten scheitern. Noch haben singulär betrachtete Web APIs 
einen geringen Einfluss auf existierende Unternehmensprozesse. Die globale API Economy besitzt allerdings das 
Potential, virtualisierte Wertschöpfungsketten agil zu etablieren und damit unternehmerische Aktivitäten zu 
revolutionieren. Bei immer kürzer werdenden Innovationszyklen und Produkten, die über Software definiert 
werden, wird die Geschwindigkeit, mit der Lösungen am Markt platziert werden können, zum entscheidenden 
Wettbewerbsfaktor.  

3. Qualitative Anforderungen an Web-APIs 

Wer von angebotenen Web-APIs profitieren möchte und eine Einbindung in die eigenen Geschäftsprozesse 
vorsieht, um diese mit Informationen und Funktionen anzureichern bzw. zu optimieren, der muss von Anfang an 
großen Wert auf die Service-Qualität legen [Schmietendorf 2016]. 

Es gilt, Web-APIs langfristig und stabil in bestehende Strukturen integrieren zu können, ohne dass im 
Zweifelsfall schwerwiegende Konsequenzen drohen. Gleichzeitig muss es für den Entwickler möglich sein, den 
externen Service mit geringem Aufwand einzubinden. Da die hinter einer Web-API liegenden 
Implementierungen im Sinne einer Black-Box zumeist verborgen bleiben, bedarf es für die Integration einer 
einfachen, sicheren, aber dennoch komfortabel zu handhabenden Schnittstelle [apigee 2012]. Die in Anlehnung 
an [Musser 2014] erstellte Grafik zeigt ausgewählte Problembereiche von Web-APIs und mögliche Ansätze zur 
Lösung. 

                                                         
1
  Quelle: Thomas Sattelberger: Wir brauchen Biotope für die Entwicklung von Neuem 

http://goodimpact.org, 31. März 2016 
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Konsistente Hypermedia Dokumente sowie 

Ressourcen Spezifikation z.B. Swagger/RAML

Eindeutige  Semantik, Lösungsmuster, 

Quellcodefragmente und Test-GUI, 

Monitoring des Betriebsverhaltenes über 

z.B. ein webbasiertes Dashboard

Reduktion der Granularität (Objektanzahl) 

sowie Einsatz von REST und JSON/XML

Exakte Aussagen zu Lizenzen, Dienstgütever-

einbarungen (SLA), Gerichtsstand und Kosten

Roadmap zum Service, Entwicklerforen und 

explizite Versionierung

Potentielle Problembereiche Lösungsansätze

Datenschutz und Datensicherheit
Roadmap zum Service, Entwicklerforen und 

explizite Versionierung

 

Abbildung 1: Qualitätsaspeke einer Web-API [Schmietendorf 2016] 

Die zunehmende Bedeutung von Web-APIs im Bereich zur Verfügung gestellter Methoden des maschinellen 
Lernens (Machine Learning) oder auch der natürlich sprachlichen Programmierung (Natural Language 
Programing) impliziert ein notwendiges Vertrauen in die Richtigkeit der verwendeten Algorithmen. 
Entsprechende Beispiele finden sich mit IBM Bluemix2 und den Watson Service APIs, dem Azure ML Studio3 von 
Microsoft oder auch dem Marktplatz Algorithmia4. 

In diesem Zusammenhang empfiehlt sich eine Plausibilisierung mit Hilfe von Zertifikaten, die durch 
„vertrauenswürdige Dritte“ bereitgestellt werden. Ggf. bietet sich auch eine quelloffene Implementierung der 
Web-API selbst an. Je nach Art der verwendeten Open-Source-Lizenzen sind dabei Risiken in Bezug auf 
Compliance-Anforderunen zu prüfen. 

4. Veranstaltungshinweis 

Abschließend sei noch auf den diesjährigen BSOA/BCloud-Workshop am 03.11.2016 in Berlin (Gastgeber 
Zalando) verwiesen. Im Mittelpunkt der Vorträge, Diskussionsrunden und des World Cafes stehen 
domänenspezifische und wirtschaftliche Bewertungsfragen von Service APIs. Im Einzelnen geht es um die 
Identifikation, Gestaltung, Bewertung sowie das Management von Service APIs im Diskurs verschiedener 
Branchen (z.B. Banken, Versicherungen, Pharmazie) auseinander. 

Beispiele für Themenbereiche: 

 Welchen Einfluss haben Service APIs auf die Industrialisierung unternehmerische Prozessabläufe? 

 Bewertung der mit Service APIs einhergehenden Möglichkeiten, im Sinne innovativer Produkte und 
Dienstleistungen? 

 Bewertungsansätze im Zusammenhang mit der Identifikation, Spezifikation, Bewertung und 
Qualitätssicherung von Serviceangeboten. 

                                                         
2
 https://console.ng.bluemix.net/catalog/ 

3
 https://studio.azureml.net/ 

4
 https://algorithmia.com 
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 Gestaltung von Architekturen zur serviceorientierten Verzahnung von unternehmensinternen 
Lösungen mit Service APIs. 

 Herausforderungen der Serviceorientierung im Kontext eines kollaborativen und interoperablen IT-
Service-Managements. 

 Gewährleistung von Sicherheits- und Compliance-Aspekten in interoperablen Architekturansätzen. 

Ein besonderes Highlight erwartet die Teilnehmer mit dem eingeladenen Keynote-Sprecher Herrn Michael 
Binzen (Chefarchitekt DB Systel GmbH). 

Web-Adresse zum Workshop:  

 http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/2016/ 
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Abstract 
 
Software quality depends upon two important variables.  The first variable is that of “defect potentials” or the 
sum total of bugs likely to occur in requirements, architecture, design, code, documents, and “bad fixes” or new 
bugs in bug repairs.  Defect potentials are measured using function point metrics, since “lines of code” cannot 
deal with requirements and design defects. (This paper uses IFPUG function points version 4.3.  The newer 
SNAP metrics are only shown experimentally due to insufficient empirical quality data with SNAP as of 2016.  
However an experimental tool is included for calculating SNAP defects.) The second important measure is 
“defect removal efficiency (DRE)” or the percentage of bugs found and eliminated before release of software to 
clients.  The metrics of Defect Potentials and Defect Removal Efficiency (DRE) were developed by IBM circa 1973 
and are widely used by technology companies and also by insurance companies, banks, and other companies 
with large software organizations. The author’s Software Risk Master (SRM) estimating tool predicts defect 
potentials and defect removal efficiency (DRE) as standard quality outputs for all software projects. 
Web: www.Namcook.com 
Email: Capers.Jones3@gmail.com 
 
 

Introduction 
 
Defect potentials and defect removal efficiency (DRE) are useful quality metrics developed by IBM circa 1973 
and widely used by technology companies as well as by banks, insurance companies, and other organizations 
with large software staffs.   
 
This combination of defect potentials using function points and defect removal efficiency (DRE) are the only 
accurate and effective measures for software quality.  The “Cost per defect metric” penalizes quality and makes 
buggy software look better than high-quality software. The “Lines of code (LOC)” metric penalizes modern high-
level languages.  The LOC metric can’t measure or predict bugs in requirements and design.  The new technical 
debt metric only covers about 17% of the true costs of poor quality. 
 
Knowledge of effective software quality control has major economic importance because for over 50 years the 
#1 cost driver for the software industry has been the costs of finding and fixing bugs.  Table 1 shows the 15 
major cost drivers for software projects in 2016.  The cost drivers highlighted in red are attributable to poor 
software quality: 
 

http://www.namcook.com/
mailto:Capers.Jones3@gmail.com
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Table 1: U.S. Software Costs in Rank Order: 
 1) The cost of finding and fixing bugs 
 2) The cost of cancelled projects 
 3) The cost of producing English words 
 4) The cost of programming or code development 
 5) The cost of requirements changes 
 6) The cost of successful cyber-attacks 
 7) The cost of customer support 
 8) The cost of meetings and communication 

9) The cost of project management 
 10) The cost of renovation and migration 
 11) The cost of innovation and new kinds of software 

12) The cost of litigation for failures and disasters 

13) The cost of training and learning 
 14) The cost of avoiding security flaws 
 15) The cost of assembling reusable components 

 
Table 1 illustrates an important but poorly understood economic fact about the software industry.  Four of the 
15 major cost drivers can be attributed specifically to poor quality.  The poor quality of software is a professional 
embarrassment and a major drag on the economy of the software industry and for that matter a drag on the 
entire U.S. and global economies. Poor quality is also a key reason for cost driver #2.  A common reason for 
cancelled software projects is because quality is so bad that schedule slippage and cost overruns turned the 
project return on investment (ROI) from positive to negative. Note the alarming location of successful cyber-
attacks in 6th place (and rising) on the cost-driver list.  Since security flaws are another form of poor quality it is 
obvious that high quality is needed to deter successful cyber-attacks. Poor quality is also a key factor in cost 
driver #12 or litigation for breach of contract.  (The author has worked as an expert witness in 15 lawsuits.  Poor 
software quality is an endemic problem with breach of contract litigation.  In one case against a major ERP 
company, the litigation was filed by the company’s own shareholders who asserted that the ERP package 
quality was so bad that it was lowering stock values!) A chronic weakness of the software industry for over 50 
years has been poor measurement practices and bad metrics for both quality and productivity.  For example 
many companies don’t even start quality measures until late testing, so early bugs found by inspections, static 
analysis, desk checking, and unit testing are unmeasured and invisible. 

If you can’t measure a problem then you can’t fix the problem either.  Software quality has been essentially 
unmeasured and therefore unfixed for 50 years.  This paper shows how quality can be measured with high 
precision, and also how quality levels can be improved by raising defect removal efficiency (DRE) up above 99%, 
which is where it should be for all critical software projects. Software defect potentials are the sum total of bugs 
found in requirements, architecture, design, code, and other sources of error.  The approximate U.S. average for 
defect potentials is shown in table 2 using IFPUG function points version 4.3:. 
 
Table 2: Average Software Defect Potentials circa 2016 for the United States 

 Requirements  0.70 defects per function point 

 Architecture  0.10 defects per function point 

 Design   0.95 defects per function point 

 Code   1.15 defects per function point 

 Security code flaws 0.25 defects per function point 

 Documents  0.45 defects per function point 

 Bad fixes  0.65 defects per function point 

 Totals   4.25 defects per function point 
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Note that the phrase “bad fix” refers to new bugs accidentally introduced in bug repairs for older bugs.  The 
current U.S. average for bad-fix injections is about 7%; i.e. 7% of all bug repairs contain new bugs.  For modules 
that are high in cyclomatic complexity and for “error prone modules” bad fix injections can top 75%.  For 
applications with low cyclomatic complexity bad fixes can drop below 0.5%. Defect potentials are of necessity 
measured using function point metrics.  The older “lines of code” metric cannot show requirements, 
architecture, and design defects not any other defect outside the code itself.  (As of 2016 function points are 
the most widely used software metric in the world.  There are more benchmarks using function point metrics 
than all other metrics put together.) Because of the effectiveness of function point measures compared to older 
LOC measures an increasing number of national governments are now mandating function point metrics for all 
software contracts.  The governments of Brazil, Italy, Japan, Malaysia and South Korea now require function 
points for government software.  Table 3 shows the countries with rapid expansions in function point use: 
 

 
Table 3  Countries Expanding Use of Function Points 2016 

   1 Argentina 
 2 Australia 
 3 Belgium 
 4 Brazil Required for government contracts 

5 Canada 
 6 China 
 7 Finland 
 8 France 
 9 Germany 
 10 India 
 11 Italy Required for government contracts 

12 Japan Required for government contracts 

13 Malaysia Required for government contracts 

14 Mexico 
 15 Norway 
 16 Peru 
 17 Poland 
 18 Singapore 
 19 South Korea Required for government contracts 

20 Spain 
 21 Switzerland 
 22 Taiwan 
 23 The Netherlands 
 24 United Kingdom 
 25 United States 
  

To be blunt, any company or government agency in the world that does not use function point metrics does not 
have accurate benchmark data on either quality or productivity.  The software industry has had poor quality for 
over 50 years and a key reason for this problem is that the software industry has not measured quality well 
enough make effective improvements.  Cost per defect and lines of code both distort reality and conceal 
progress.  They are harmful rather than helpful in improving either quality or productivity. Lines of code 
reverses true economic productivity and makes assembly language seem more productive than Objective C.  
Cost per defect reverses true quality economics and makes buggy software look cheaper than high quality 
software.  These distortions of economic reality have slowed software progress for over 50 years. 
The U.S. industries that tend to use function point metrics and therefore understand software economics fairly 
well include automotive manufacturing, banks, commercial software, insurance, telecommunications, and some 
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public utilities. For example Bank of Montreal was one of the world’s first users of function points after IBM 
placed the metric in the public domain; Ford has used function point metrics for fuel injection and navigation 
packages; Motorola has used function points for smart phone applications; AT&T has used function points for 
switching software; IBM has used function points for both commercial software and also operating systems. 
The U.S. industries that do not use function points widely and hence have no accurate data on either software 
quality or productivity include the Department of Defense, most state governments, the U.S. Federal 
government, and most universities (which should understand software economics but don’t seem to.)   
 
Although the Department of Defense was proactive in endorsing the Software Engineering Institute (SEI) 
capability maturity model integrated (CMMI), it lags the civilian sector in software metrics and measurements.  
For that matter the SEI itself has not yet supported function point metrics nor pointed out to clients that both 
lines of code and cost per defect distort reality and reverse the true economic value of high quality and high-
level programming languages. It is interesting that the author had a contract from the U.S. Air Force to examine 
the benefits of ascending to the higher CMMI levels because the SEI itself had no quantitative data available.  In 
fact the findings from this study are shown later in this report in Table 12. Although the Department of Defense 
itself lags in function point use some of the military services have used function points for important projects.  
For example the U.S. Navy has used function points for shipboard gun controls and cruise missile navigation. If a 
company or government agency wants to get serous in improving quality then the best and only effective 
metrics for achieving this are the combination of defect potentials in function points and defect removal 
efficiency (DRE). 
 
Defect removal efficiency (DRE) is calculated by keeping accurate counts of all defects found during 
development.  After release all customer-reported bugs are included in the total.  After 90 days of customer 
usage DRE is calculated.  If developers found 900 bugs and customer reported 50 bugs in the first three months 
then DRE is 95%.  Obviously bug reports don’t stop cold after 90 days, but the fixed 90-day interval provides an 
excellent basis for statistical quality reports. The overall range in defect potentials runs from about 2.00 per 
function point to more than 7.00 per function point.  Factors that influence defect potentials include team skills, 
development methodologies, CMMI levels, programming languages, and defect prevention techniques such as 
joint application design (JAD) and quality function deployment (QFD). Some methodologies such as team 
software process (TSP) are “quality strong” and have low defect potentials.)  Agile is average for defect 
potentials.  Waterfall is worse than average for defect potentials.  Table 4 shows the U.S. ranges for defect 
potentials circa 2016: 
 

Table 4:  U.S Average Ranges of Defect Potentials Circa 2016 

 
(Defects per IFPUG 4.3 function point) 

 

     Defect Origins Best Average Worst 

     Requirements 0.34 0.70 1.35 

Architecture 0.04 0.10 0.20 

Design 
 

0.63 0.95 1.58 

Code 
 

0.44 1.15 2.63 

Security flaws 0.18 0.25 0.40 

Documents 0.20 0.45 0.54 

Bad fixes 
 

0.39 0.65 1.26 

TOTAL 
 

2.21 4.25 7.95 
 
NOTE: the author’s Software Risk Master (SRM) estimating tool predicts defect potentials as a standard output 
for every project estimated. Defect potentials obviously vary by size, with small projects typically having low 
defect potentials.  Defect potentials rise faster than size increases, with large systems above 10,000 function 
points having alarmingly high defect potentials.    
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Table 5 shows U.S. ranges in defect potentials from small projects of 1 function point up to massive systems of 
100,000 function points: 
 

Table 5:  Software Defect Potentials per Function Point by Size 

 
(Defects per IFPUG 4.3 function point) 

 

     Function 
    Points 
 

Best Average Worst 

     1 
 

0.60 1.50 2.55 

10 
 

1.25 2.50 4.25 

100 
 

1.75 3.25 6.13 

1000 
 

2.14 4.75 8.55 

10000 
 

3.38 6.50 12.03 

100000 
 

4.13 8.25 14.19 

Average 
 

2.21 4.25 7.95 
 
As can be seen defect potentials go up rapidly with application size.  This is one of the key reasons why large 
systems fail so often and also run late and over budget. Table 6 shows the overall U.S. ranges in defect removal 
efficiency (DRE) by applications size from a size of 1 function point up to 100,000 function points.  As can be 
seen DRE goes down as size goes up: 
 

Table 6:  U.S. Software Average DRE Ranges by Application Size 

Function 
    Points 
 

Best Average Worst 

     1 
 

99.90% 97.00% 94.00% 

10 
 

99.00% 96.50% 92.50% 

100 
 

98.50% 95.00% 90.00% 

1000 
 

96.50% 94.50% 87.00% 

10000 
 

94.00% 89.50% 83.50% 

100000 
 

91.00% 86.00% 78.00% 

Average 
 

95.80% 92.20% 86.20% 
 
Table 7 is a somewhat complicated table that combines the results of tables 5 and 6; i.e. both defect potentials 
and defect removal efficiency (DRE) ranges are now shown together on the same table. Note that as size 
increases defect potentials also increase, but defect removal efficiency (DRE) comes down: 
 

Table 7:  Software Defect Potentials and DRE Ranges by Size 

     Function 
    Points 
 

Best Average Worst 

     1 Defect Potential 0.60 1.50 2.55 

 
DRE 99.90% 97.00% 94.00% 

 
Delivered defects 0.00 0.05 0.15 

10 Defect  Potential 1.25 2.50 4.25 
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DRE 99.00% 96.00% 92.50% 

 
Delivered defects 0.01 0.10 0.32 

     100 Defect Potential 1.75 3.50 6.13 

 
DRE 98.50% 95.00% 90.00% 

 
Delivered defects 0.03 0.18 0.61 

     1000 Defect Potential 2.14 4.75 8.55 

 
DRE 96.50% 94.50% 87.00% 

 
Delivered defects 0.07 0.26 1.11 

     10000 Defect Potential 3.38 6.50 12.03 

 
DRE 94.00% 89.50% 83.50% 

 
Delivered defects 0.20 0.68 1.98 

     100000 Defect Potential 4.13 8.25 14.19 

 
DRE 91.00% 86.00% 78.00% 

 
Delivered defects 0.37 1.16 3.12 

 
Best-case results are usually found for software controlling medical devices or complex physical equipment such 
as aircraft navigation packages, weapons systems, operating systems, or telecommunication switching systems.  
These applications are usually large and range from about 1000 to over 100,000 function points in size.  Large 
complex applications require very high DRE levels in order for the physical equipment to operate safely.  They 
normally use pre-test inspections and static analysis and usually at least 10 test stages. Average-case results are 
usually found among banks, insurance companies, manufacturing, and commercial software.  These applications 
are also on the large size and range from 1000 to more than 10,000 function points.  Here too high levels of DRE 
are important since these applications contain and deal with confidential data.  These applications normally use 
pre-test static analysis and at least 8 test stages. 
 
Worst-case results tend to show up in litigation for cancelled projects or for lawsuits for poor quality.  State, 
municipal, and civilian Federal government software projects, and especially large systems such a taxation, child 
support, and motor vehicles are often in the worst-case class. It is an interesting point that every lawsuit where 
the author has worked as an expert witness has been for large systems > 10,000 function points in size.  These 
applications seldom use either pre-test inspections or static analysis and sometimes use only 6 test stages. 
While function point metrics are the best choice for normalization, it is also important to know the actual 
numbers of defects that are likely to be present when software applications are delivered to customers.  Table 8 
shows data from table 7 only expanded to show total numbers of delivered defects: 
 

Table 8:  U.S. Average Delivered Defects by Application Size 

 

      Function 

     Points 

 

Best Average Worst 

 1 

 

0 0 1 

 10 

 

0 1 3 

 100 

 

3 18 61 

 1000 

 

75 261 1,112 

 10000 

 

2,028 6,825 19,841 

 100000 

 

3,713 11,550 31,218 

 Average 

 

970 3,109 8,706 
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Here too it is painfully obvious that defect volumes go up with application size.  However table 8 shows all 
severity levels of delivered defects.  Only about 1% of delivered defects will be in the high-severity class of 1 and 
only about 14% in severity class 2. Severity class 3 usually has about 55% while severity 4 has about 30%.    
Defect potentials have also varied by decade.  Table 9 shows approximate values starting in 1960 and ending 
with projected values for 2019.  The reason for the gradual improvement in defect potentials include the advent 
of newer programming languages, the average increase in organizations with higher CMMI levels, a gradual 
decrease in application size, and a gradual increase on reusable materials from older applications. 
 

Table 9:  Defect Potentials by Decade 
 

     

  

Best Average Worst 

     1960-1969 
 

2.85 5.50 10.29 

     1970-1979 
 

2.72 5.25 9.82 

     1980-1989 
 

2.59 5.00 9.35 

     1990-1999 
 

2.46 4.75 8.88 

     2000-2009 
 

2.33 4.50 8.42 

     2010-2019 
 

2.20 4.25 7.95 
 
These severity levels are normally assigned by software quality assurance personnel.  Because companies fix 
high severity bugs faster than low severity bugs, clients often report bugs as being severity 2 that are really only 
severity 3 or severity 4.  While the IBM average for severity 2 bugs was about 14%, clients tend to exaggerate 
and rank over 50% of bug reports as severity 2! 
This classification of defect severity levels was developed by IBM circa 1960:  It has been used for over 50 years 
by thousands of companies for hundreds of thousands of software applications. 
 

Table 10:  IBM Defect Severity Scale (1960 – 2016) 
 
Severity 1 Software does not work at all 
Severity 2 Major features disabled and inoperative 
Severity 3 Minor bug that does not prevent normal use 
Severity 4 Cosmetic errors that do not affect operation 
Invalid Defects not correctly reported; i.e. hardware problems reported as software 
Duplicate Multiple reports of the same bug 
Abeyant Unique defects found by only 1 client that cannot be duplicated 

 
It is obvious that valid high-severity defects of severities 1 and 2 are the most troublesome for software 
projects. Defect removal efficiency (DRE) is a powerful and useful metric.  Every important project should 
measure DRE and every important project should top 99% in DRE, but few do. As defined by IBM circa 1973 DRE 
is measured by keeping track of all bugs found internally during development, and comparing these to 
customer-reported bugs during the first 90 days of usage.  If internal bugs found during development total 95 
and customers report 5 bugs in the first three months of use then DRE is 95%. 
 
Another important quality topic is that of “error-prone modules” (EPM) also discovered by IBM circa 1970.  IBM 
did a frequency analysis of defect distributions and was surprised to find that bugs are not randomly distributed, 
but clump in a small number of modules.  For example in the IBM IMS data base application there were 425 
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modules.  About 300 of these were zero-defect modules with no customer-reported bugs.  About 57% of all 
customer reported bugs were noted in only 31 modules out of 425.  These tended to be high in cyclomatic 
complexity, and also had failed to use pre-test inspections.  Table 11 shows approximate results for EPM in 
software by application size: 
 

Table 11:  Distribution of "Error Prone Modules" (EPM) in Software 

      Function 
     Points 
 

Best Average Worst 
 

      1 
 

0 0 0 
 10 

 
0 0 0 

 100 
 

0 0 0 
 1000 

 
0 2 4 

 10000 
 

0 18 49 
 100000 

 
0 20 120 

 Average 
 

0 7 29 
  

EPM were discovered by IBM but unequal distribution of bugs was also noted by many other companies whose 
defect tracking tools can highlight bug reports by modules.  For example EPM were confirmed by AT&T, ITT, 
Motorola, Boeing, Raytheon, and other technology companies with detailed defect tracking systems. EPM tend 
to resist testing, but are fairly easy to find using pre-test static analysis, pre-test inspections, or both.  EPM are 
treatable, avoidable conditions and should not be allowed to occur in modern software circa 2016.  The 
presence of EPM is a sign of inadequate defect quality measurements and inadequate pre-test defect removal 
activities.   
 
The author had a contract from the U.S. Air Force to examine the value of ascending to the higher levels of the 
capability maturity model integrated (CMMI).  Table 12 shows the approximate quality results for all five levels 
of the CMMI: 
 

Table 12:  Software Quality and the SEI Capability Maturity 

Model Integrated (CMMI) for 2,500 function points 

     

     
CMMI Level Defect Defect Delivered Delivered 

 
Potential per Removal Defects per Defects 

 
Function Point Efficiency Function Point 

 

     
SEI CMMI 1 4.50 87.00% 0.585 1,463 

SEI CMMI 2 3.85 90.00% 0.385 963 

SEI CMMI 3 3.00 96.00% 0.120 300 

SEI CMMI 4 2.50 97.50% 0.063 156 

SEI CMMI 5 2.25 99.00% 0.023 56 

 
Table 12 was based on study by the author commissioned by the U.S. Air Force.  Usage of the CMMI is 
essentially limited to military and defense software.  Few civilian companies use the CMMI and the author has 
met several CIO’s from large companies and state governments that have never even heard of SEI or the CMMI. 
Software defect potentials and DRE also vary by industry.  Table 13 shows a sample of 15 industries with higher 
than average quality levels out of a total of 75 industries where the author has data: 
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Table 13:  Software Quality Results by Industry 

  

       

    
Defect Defect Delivered 

    
Potentials Removal Defects 

    

per Function 
Point Efficiency per Function Pt 

 
Industry 

  
2016 2016 2016 

 
Best Quality 

    1 Manufacturing - medical devices 4.60 99.50% 0.02 

2 Manufacturing - aircraft 4.70 99.00% 0.05 

3 Government - military 
 

4.70 99.00% 0.05 

4 Smartphone/tablet applications 3.30 98.50% 0.05 

5 Government - intelligence 4.90 98.50% 0.07 

6 Software (commercial) 
 

3.50 97.50% 0.09 

7 Telecommunications operations 4.35 97.50% 0.11 

8 Manufacturing - defense 4.65 97.50% 0.12 

9 Manufacturing - telecommunications 4.80 97.50% 0.12 

10 Process control and embedded 4.90 97.50% 0.12 

11 Manufacturing - pharmaceuticals 4.55 97.00% 0.14 

12 Professional support - medicine 4.80 97.00% 0.14 

13 Transportation - airlines 5.87 97.50% 0.15 

14 Manufacturing - electronics 4.90 97.00% 0.15 

15 Banks - commercial 
 

4.15 96.25% 0.16 
There are also significant differences by country.  Table 14 shows a sample of 15 countries with better than 
average quality out of a total of 70 countries where the author has data: 

 
Table 14:  Samples of Software Quality by Country 

      

   
Defect Defect Delivered 

   
Potential Removal Defects 

 
Countries 

 
per FP Efficiency (DRE) per Function Pt 

   
2016 2016 2016 

 
Best Quality 

   1 Japan 
 

4.25 96.00% 0.17 

2 India 
 

4.90 95.50% 0.22 

3 Finland 
 

4.40 94.50% 0.24 

4 Switzerland 
 

4.40 94.50% 0.24 

5 Denmark 
 

4.25 94.00% 0.26 

6 Israel 
 

5.00 94.80% 0.26 

7 Sweden 
 

4.45 94.00% 0.27 

8 Netherlands 
 

4.40 93.50% 0.29 

9 Hong Kong 
 

4.45 93.50% 0.29 

10 Brazil 
 

4.50 93.00% 0.32 

11 Singapore 
 

4.80 93.40% 0.32 

12 United Kingdom 4.55 93.00% 0.32 

13 Malaysia 
 

4.60 93.00% 0.32 

14 Norway 
 

4.65 93.00% 0.33 

15 Taiwan 
 

4.90 93.30% 0.33 
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Countries such as Japan and India tend to be more effective in pre-test defect removal operations and to use 
more certified test personnel than those lower down the table.  Although not shown in table 14 the U.S. ranks 
as country #19 out of  the 70 countries from which the author has data. Table 15 shows quality comparison of 
15 software development methodologies (this table is cut down from a larger table of 80 methodologies that 
will be published in the author’s next book.) 
 

 
Table15:  Comparisons of 15 Software Methodologies 

  

     

  
Defect Defect Delivered 

 
Methodologies Potential Removal Defects 

  
per FP Efficiency per FP 

  
2016 2016 2016 

 
Best Quality 

   1 Reuse-oriented (85% reusable materials) 1.30 99.50% 0.007 

2 Pattern-based development 1.80 99.50% 0.009 

3 Animated, 3D, full color design development 1.98 99.20% 0.016 

4 Team software process (TSP) + PSP 2.35 98.50% 0.035 

5 Container development (65% reuse) 2.90 98.50% 0.044 

6 Microservice development 2.50 98.00% 0.050 

7 Model-driven development 2.60 98.00% 0.052 

8 Microsoft SharePoint development 2.70 97.00% 0.081 

9 Mashup development 2.20 96.00% 0.088 

10 Product Line engineering 2.50 96.00% 0.100 

11 DevOps development 3.00 94.00% 0.180 

12 Pair programming development 3.10 94.00% 0.186 

13 Agile + scrum 3.20 92.50% 0.240 

14 Open-source development 3.35 92.00% 0.268 

15 Waterfall development 4.60 87.00% 0.598 
 
Table 16 shows the details of how defect removal efficiency (DRE) operates.  Table 16 must of course use fixed 
values but there are ranges for every row and column for both pre-test and test methods.   
There are also variations in the numbers of pre-test removal and test stages used.  Table 16 illustrates the 
maximum number observed.    
The data in table 16 is originally derived from IBM”s software quality data collection which is more complete 
than most companies.  Other companies have been studied as well.  Note that requirements defects are among 
the most difficult to remove since they are resistant to testing.    
To consistently top 99% in DRE the minimum set of methods needed include most of the following: 
 
Pre-Test Removal 

1. Formal Inspections (requirements, design, code, etc.) 

2. Code Static analysis 

3. Automated Requirements modeling 

4. Automated correctness proofs 

Test Removal 
1. Unit test (manual/automated) 

2. Function test 

3. Regression test 

4. Integration test 
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5. Performance test 

6. Usability test 

7. Security test 

8. System test 

9. Field or acceptance test 

In other words a series of about 13 kinds of defect removal activities are generally needed to top 99% in DRE 
consistently.  Testing by itself without inspections or static analysis usually is below 90% in DRE. 
Of course some critical applications such as medical devices and weapons systems use many more kinds of 
testing.  As many as 18 kinds of testing have been observed by the author.  This paper uses 12 kinds of testing 
since these are fairly common on large systems > 10,000 function points in size which is where quality is a 
critical factor. 
Note that DRE includes bugs that originate in architecture, requirements, design, code, documents, and “bad 
fixes” or new bugs in bug repairs themselves.  All bug origins should be included since requirements and design 
bugs often outnumber code bugs. 
Note that the defect potential for next table 16 is somewhat lower than the 4.25 value shown in tables 1, 2, and 
3.  This is because those tables includes all programming languages and some  have higher defect potentials 
than Java, which is used for table 16.    
Code defect potentials vary by language with low-level languages such as assembly and C having a higher defect 
potential than high-level languages such as Java, Objective C, C#, Ruby, Python, etc.  

 
 Table16:  Software Quality and Defect Removal Efficiency (DRE) 

  

 
Note 1:  The table represents high quality defect removal operations. 

  

        

 
Application size in function points 

   
          1,000  

 

 
Application language 

    
Java 

 

 
Source lines per FP 

    
53.33 

 

 
Source lines of code 

    
        53,330  

 

        

        

 
Pre-Test Defect Architect. Require. Design Code Document TOTALS 

 
Removal Methods Defects per 

Defects 
per 

Defects 
per 

Defects 
per Defects per 

 

  
Function Function Function Function Function 

 

  
Point Point Point Point Point 

 

        

 

Defect Potentials per 
Function Point 0.25 1.00 1.15 1.30 0.45 4.15 

        

 
Defect potentials 250 1,000 1,150 1,300 450 4,150 

        1 Requirement inspection 5.00% 87.00% 10.00% 5.00% 8.50% 26.52% 

 
Defects discovered 13 870 115 65 38 1,101 

 
Bad-fix injection 0 26 3 2 1 33 

 
Defects remaining 237 104 1,032 1,233 411 3,016 

        2 Architecture inspection 85.00% 10.00% 10.00% 2.50% 12.00% 13.10% 

 
Defects discovered 202 10 103 31 49 395 

 
Bad-fix injection 6 0 3 1 1 12 

 
Defects remaining 30 93 925 1,201 360 2,609 

        3 Design inspection 10.00% 14.00% 87.00% 7.00% 16.00% 36.90% 

 
Defects discovered 3 13 805 84 58 963 



30                                                                                                                 Position Paper   

 

Software Measurement News  21(2016)2 

 
Bad-fix injection 0 0 24 3 2 48 

 
Defects remaining 26 80 96 1,115 301 1,618 

        4 Code inspection 12.50% 15.00% 20.00% 85.00% 10.00% 62.56% 

 
Defects discovered 3 12 19 947 30 1,012 

 
Bad-fix injection 0 0 1 28 1 30 

 
Defects remaining 23 67 76 139 270 575 

        5 Code Static Analysis 2.00% 2.00% 7.00% 55.00% 3.00% 15.92% 

 
Defects discovered 0 1 5 76 8 92 

 
Bad-fix injection 0 0 0 2 0 3 

 
Defects remaining 23 66 71 60 261 481 

        6 IV & V 10.00% 12.00% 23.00% 7.00% 18.00% 16.16% 

 
Defects discovered 2 8 16 4 47 78 

 
Bad-fix injection 0 0 0 0 1 2 

 
Defects remaining 20 58 54 56 213 401 

        7 SQA review 10.00% 17.00% 17.00% 12.00% 12.50% 30.06% 

 
Defects discovered 2 10 9 7 27 54 

 
Bad-fix injection 0 0 0 0 1 3 

 
Defects remaining 18 48 45 49 185 344 

        

 
Pre-test defects removed 232 952 1,105 1,251 265 3,805 

 
Pre-test efficiency % 92.73% 95.23% 96.12% 96.24% 58.79% 91.69% 

 
Test Defect Removal 

      

 
Stages 

      

  
Architect. Require. Design Code Document Total 

1 Unit testing (Manual) 2.50% 4.00% 7.00% 35.00% 10.00% 11.97% 

 
Defects discovered 0 2 3 17 19 41 

 
Bad-fix injection 0 0 0 1 1 1 

 
Defects remaining 18 46 41 31 166 301 

        2 Function testing 7.50% 5.00% 22.00% 37.50% 10.00% 13.63% 

 
Defects discovered 1 2 9 12 17 41 

 
Bad-fix injection 0 0 0 0 0 1 

 
Defects remaining 16 43 32 19 149 259 

        3 Regression testing 2.00% 2.00% 5.00% 33.00% 7.50% 7.84% 

 
Defects discovered 0 1 2 6 11 20 

 
Bad-fix injection 0 0 0 0 0 1 

 
Defects remaining 16 43 30 13 138 238 

        4 Integration testing 6.00% 20.00% 22.00% 33.00% 15.00% 17.21% 

 
Defects discovered 1 9 7 4 21 41 

 
Bad-fix injection 0 0 0 0 1 1 

 
Defects remaining 15 34 23 8 116 196 

        5 Performance testing 14.00% 2.00% 20.00% 18.00% 2.50% 6.07% 

 
Defects discovered 2 1 5 2 3 12 

 
Bad-fix injection 0 0 0 0 0 0 

 
Defects remaining 13 33 19 7 113 184 
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6 Security testing 12.00% 15.00% 23.00% 8.00% 2.50% 7.71% 

 
Defects discovered 2 5 4 1 3 14 

 
Bad-fix injection 0 0 0 0 0 0 

 
Defects remaining 11 28 14 6 110 169 

        7 Usability testing 12.00% 17.00% 15.00% 5.00% 48.00% 36.42% 

 
Defects discovered 1 5 2 0 53 62 

 
Bad-fix injection 0 0 0 0 2 2 

 
Defects remaining 10 23 12 6 56 106 

        8 System testing 16.00% 12.00% 18.00% 12.00% 34.00% 24.81% 

 
Defects discovered 2 3 2 1 19 26 

 
Bad-fix injection 0 0 0 0 1 1 

 
Defects remaining 8 20 10 5 36 79 

        9 Cloud testing 10.00% 5.00% 13.00% 10.00% 20.00% 13.84% 

 
Defects discovered 1 1 1 1 7 11 

 
Bad-fix injection 0 0 0 0 0 0 

 
Defects remaining 7 19 8 5 29 69 

        10 Independent testing 12.00% 10.00% 11.00% 10.00% 23.00% 15.81% 

 
Defects discovered 1 2 1 0 7 11 

 
Bad-fix injection 0 0 0 0 0 0 

 
Defects remaining 6 17 8 4 22 57 

        11 Field (Beta) testing 14.00% 12.00% 14.00% 12.00% 34.00% 20.92% 

 
Defects discovered 1 2 1 1 7 12 

 
Bad-fix injection 0 0 0 0 0 0 

 
Defects remaining 6 15 6 4 14 45 

        12 Acceptance testing 13.00% 14.00% 15.00% 12.00% 24.00% 20.16% 

 
Defects discovered 1 2 1 0 6 10 

 
Bad-fix injection 0 0 0 0 0 0 

 
Defects remaining 5 13 6 3 8 35 

 
Test Defects Removed 13 35 39 46 177 309 

 
Testing Efficiency % 73.96% 72.26% 87.63% 93.44% 95.45% 89.78% 

        

 
Total Defects Removed 245 987 1,144 1,297 442 4,114 

 
Total Bad-fix injection 7 30 34 39 13 123 

 
Cumulative Removal % 98.11% 98.68% 99.52% 99.75% 98.13% 99.13% 

        

 
Remaining Defects 5 13 6 3 8 36 

 
High-severity Defects 1 2 1 1 1 5 

 
Security Defects 0 0 0 0 0 1 

 
Remaining Defects 0.0036 0.0102 0.0042 0.0025 0.0065 0.0278 

 
per Function Point 

      

        

 
Remaining Defects 3.63 10.17 4.23 2.46 6.48 27.81 

 
per K Function Points 

      

 
Remaining Defects 0.09 0.25 0.10 0.06 0.16 0.68 

 
per KLOC 
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Note:  The letters “IV&V” in table 16 stand for “independent verification and validation.”  This is a method used 
by defense software projects but it seldom occurs in the civilian sector.  The efficiency of IV&V is fairly low and 
the costs are fairly high. DRE measures can be applied to any combination of pre-test and testing stages.  Table 
16 shows seven pre-test DRE activities and 12 kinds of testing: 19 forms of defect removal in total.  This 
combination would only be used on large defense systems and also on critical medical devices.  It might also be 
used on aircraft navigation and avionics packages.  In other words software that might cause injury or death to 
humans if quality lags are the most likely to use both DRE measures and sophisticated combinations of pre-test 
and test removal methods. 
 
As of 2016 the U.S. average for DRE is only about 92.50%.  This is close to the average for Agile projects. The 
U.S. norm is to use only static analysis before testing and six kinds of testing:  unit test, function test, regression 
test, performance test, system test, and acceptance test.  This combination usually results in about 92.50% DRE. 
If static analysis is omitted and only six test stages are used, DRE is normally below 85%.  In this situation quality 
problems are numerous. Note that when a full suite of pre-test defect removal and test stages are used, the 
final number of defects released to customers often has more bugs originating in requirements and design than 
in code. Due to static analysis and formal testing by certified test personnel, DRE for code defects can top 
99.75%.  It is harder to top 99% for requirements and design bugs since both resist testing and can only be 
found via inspections, or by text static analysis. 
 

Software Quality and Software Security 
 
Software quality and software security have a tight relationship.  Security flaws are just another kind of defect 
potential.  As defect potentials go up so do security flaws, as DRE declines more and more security flaws will be 
released. 
Of course security has some special methods that are not part of traditional quality assurance.  One of these is 
the use of ethical hackers and another is the use of penetration teams that deliberately try to penetrate the 
security defenses of critical software applications.  
Security also includes social and physical topics that are not part of ordinary software operations.  For example 
security requires careful vetting of personnel.  Security for really critical applications may also require Faraday 
cages around computers to ensure that remote sensors are blocked and can’t steal information from a distance 
or though building walls.  
To provide an approximate set of values for high-severity defects and security flaws table 16 shows what 
happens when defect potentials increase and DRE declines.  To add realism to this example table 17 uses a fixed 
size of 1000 function points.  Delivered defects, high-severity defects, and security flaws are shown in whole 
numbers rather than defects per function point: 
 

Table 17:  Quality and Security Flaws for 1000 Function Points 

      Defect DRE Delivered Delivered High Security 

Potentials 

 

Defects Defects Severity Flaw 

per FP 

 

per FP 

 

Defects Defects 

      2.50 99.50% 0.01 13 1 0 

3.00 99.00% 0.03 30 3 0 

3.50 97.00% 0.11 105 10 1 

4.00 95.00% 0.20 200 21 3 

4.25 92.50% 0.32 319 35 4 

4.50 92.00% 0.36 360 42 6 

5.00 87.00% 0.65 650 84 12 

5.50 83.00% 0.94 935 133 20 

6.00 78.00% 1.32 1,320 206 34 
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The central row in the middle of this table highlighted in blue show approximate 2016 U.S. averages in terms of 
delivered defects, high-severity defects, and latent security flaws for 1000 function points.  The odds of a 
successful cyber-attack would probably be around 15%. At the safe end of the spectrum where defect 
potentials are low and DRE tops 99% the number of latent security flaws is 0.  The odds of a successful cyber-
attack are very low at the safe end of the spectrum: probably below 1%. At the dangerous end of the spectrum 
with high defect potentials and low DRE, latent security flaws top 20 for 1000 function points.  This raises the 
odds of a successful cyber-attack to over 50%. 
 

Software Quality and Technical Debt 
 
Ward Cunningham introduced an interesting metaphor called “technical debt” which concerns latent defects 
present in software applications after deployment. The idea of technical debt is appealing but unfortunately 
technical debt is somewhat ambiguous and every company tends to accumulate data using different methods 
so it is hard to get accurate benchmarks. In general technical debt deals with the direct costs of fixing latent 
defects as they are reported by users or uncovered by maintenance personnel.  However there are other and 
larger costs associated with legacy software and also new software that are not included in technical debt: 
 

1. Litigation against software outsource contractors or commercial software vendors by disgruntled 

users who sue for excessive defects. 

 
2. Consequential damages or financial harm to users of defective software.  For example if the 

computerized brake system of an automobile fails and causes a serious accident, neither the cost of 

repairing the auto nor any medical bills for injured passengers are included in technical debt.  

 

3. Latent security flaws that are detected by unscrupulous organizations and lead to data theft, denial 

of service, or other forms of cyber-attack are not included in technical debt either.   

 
Technical debt is an appealing metaphor but until consistent counting rules become available it is not a 
satisfactory quality metric.  The author suggests that the really high cost topics of consequential damages, 
cyber-attacks, and litigation for poor quality should be included in technical debt or at least not ignored as they 
are in 2016. 
Assume a software outsource vendor builds a 10,000 function point application for a client for a cost of 
$30,000,000 and it has enough bugs to make the client unhappy.  True technical debt or the costs of repairing 
latent defects found and reported by clients over several years after deployment might cost about $5,000,000. 
However depending upon what the application does, consequential damages to the client could top 
$25,000,000; litigation by the unhappy client might cost $5,000,000; severe cyber-attacks and data theft might 
cost $30,000,000: a total cost of $60,000,000 over and above the nominal amount for technical debt.  
Of these problems cyber-attacks are the most obvious candidates to be added to technical debt because they 
are the direct result of latent security flaws present in the software when it was deployed.  The main difference 
between normal bugs and security flaws is that cyber criminals can exploit security flaws to do very expensive 
damages to software (and even hardware) or to steal valuable and sometimes classified information. 
 In other words possible post-release costs due to poor quality control might approach or exceed twice the 
initial costs of development; and 12 times the costs of “technical debt” as it is normally calculated. 
 
 

SNAP Metrics for Non-Functional Size 
 
In 2011 the IFPUG organization developed a new metric for non-functional requirements.  This metric is called 
“SNAP” which is sort of an acronym for “software non-functional assessment process.”  (No doubt future 
sociologists will puzzle over software naming conventions.) Unfortunately the SNAP metric was not created to 
be equivalent to standard IFPUG function points. That means if you have 100 function points and 15 SNAP 
points you cannot add them together to create 115 total “points.”  This makes both productivity and quality 
studies more difficult because function point and SNAP work needs to be calculated separately. Since one of the 
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most useful purposes for function point metrics has been for predicting and measuring quality, the addition of 
SNAP metrics to the mix has raised the complexity of quality calculations. Pasted below are the results of an 
experimental quality calculation tool developed by the author that can combine defect potentials and defect 
removal efficiency (DRE) for both function point metrics and the newer SNAP metrics.   
 

Table 18:  SNAP Software Defect Calculator 
  6/9/2016 

     

      

 
l 

 

      

      Size in Function Points        1,000  
  Size in SNAP Points          152  
  

      

      Defect 
 

Defects Defects SNAP 
 Origins 

 
Per FP per SNAP Percent 

 

      Requirements 0.70 0.14 19.50% 
 Architecture 0.10 0.02 15.50% 
 Design 

 
0.95 0.18 18.50% 

 Source code 1.15 0.13 11.50% 
 Security flaws 0.25 0.05 20.50% 
 Documents 0.45 0.02 3.50% 
 Bad Fixes 

 
0.65 0.12 18.50% 

 TOTALS 
 

4.25 0.65 15.23% 
 

      

      Defect 
 

Defect Defects 
  Origins 

 
Potential Potential 

  

      Requirements           700             21  
  Architecture           100               2  
  Design 

 
          950             27  

  Source code         1,150             20  
  Security flaws           250               8  
  Documents           450               2  
  Bad Fixes 

 
          650             18  

  TOTALS 
 

        4,250             99  
  

      

      Defect 
 

Removal Removal 
  Origins 

 
Percent Percent 

  

      Requirements 75.00% 75.00% 
  Architecture 70.00% 70.00% 
  Design 

 
96.00% 96.00% 
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Source code 98.00% 98.00% 
  Security flaws 87.00% 87.00% 
  Documents 95.00% 95.00% 
  Bad Fixes 

 
78.00% 78.00% 

  Average 
 

85.57% 85.57% 
  

      

      Defect 
 

Delivered Delivered 
  Origins 

 
Defects Defects 

  

      Requirements           175               5  
  Architecture             30               1  
  Design 

 
            38               1  

  Source code             23               0  
  Security flaws             33               1  
  Documents             23               0  
  Bad Fixes 

 
          143               4  

  Total 
 

          464             13  
  

      

      Defect 
 

Delivered Delivered SNAP 
 Origins 

 
Per FP per SNAP Percent 

 

      Requirements         0.175         0.034  19.50% 
 Architecture         0.030         0.005  15.50% 
 Design 

 
        0.038         0.007  18.50% 

 Source code         0.023         0.003  11.50% 
 Security flaws         0.023         0.007  29.61% 
 Documents         0.143         0.026  18.50% 
 Bad Fixes 

 
        0.464         0.082  17.75% 

 Total 
 

        0.896         0.164  18.31% 
  

In real life defect potentials go up with application size and defect removal efficiency (DRE) comes down with 
application size.  This experimental tool holds defect potentials and DRE as constant values.  The purpose is 
primarily to experiment with the ratios of SNAP defects and with DRE against SNAP bugs. 
A great deal more study and more empirical data is needed before SNAP can actually become useful for 
software quality analysis.  Right now there is hardly any empirical data available on SNAP and software quality. 
 
 

Economic Value of High Software Quality 
 
One of the major economic weaknesses of the software industry due to bad metrics and poor measurements is 
a total lack understanding of the economic value of high software quality.  If achieving high quality levels added 
substantially to development schedules and development costs it might not be worthwhile to achieve it.  But 
the good news is that high software quality levels comes with shorter schedules and lower costs than average 
or poor quality! These reductions in schedules and costs, or course, are due to the fact that finding and fixing 
bugs has been the #1 software cost driver for over 50 years.  When defect potentials are reduced and DRE is 
increased due to pre-test defect removal such as static analysis, then testing time and testing costs shrink 
dramatically.    
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Table 19 shows the approximate schedules in calendar months, the approximate effort in work hours per 
function point, and the approximate $ cost per function point that results from various combinations of 
software defect potentials and defect removal efficiency. 
The good news for the software industry is that low defect potentials and high DRE levels are the fastest and 
cheapest way to build software applications!   
 

Table 19:  Schedules, Effort, Costs for 1000 Function Points 

  

 

(Monthly costs = $10,000) 

    

        Defect DRE Delivered Delivered Schedule Work Development $ per 

Potentials 

 

Defects Defects Months Hours per Cost per Defect 

per FP 

 

per FP 

  

Function Function (Caution!) 

     

Point Point 

 

        2.50 99.50% 0.01 13 13.34 12.00 $909.09  $4,550.00 

3.00 99.00% 0.03 30 13.80 12.50 $946.97  $3,913.00 

3.50 97.00% 0.11 105 14.79 13.30 $1,007.58  $3,365.18 

4.00 95.00% 0.20 200 15.85 13.65 $1,034.09  $2,894.05 

4.25 92.50% 0.32 319 16.00 13.85 $1,050.00  $2,488.89 

4.50 92.00% 0.36 360 16.98 14.00 $1,060.61  $2,140.44 

5.00 87.00% 0.65 650 18.20 15.00 $1,136.36  $1,840.78 

5.50 83.00% 0.94 935 19.50 16.50 $1,250.00  $1,583.07 

6.00 78.00% 1.32 1,320 20.89 17.00 $1,287.88  $1,361.44 
 
The central row highlighted in blue shows approximate U.S. average values for 2016.  This table also shows the 
“cost per defect” metric primarily to caution readers that this metric is inaccurate and distorts reality since it 
make buggy applications look cheaper than high-quality applications. 
 
 

A Primer on Manufacturing Economics and the Impact of Fixed Costs 
 
The reason for the distortion of the cost per defect metric is because cost per defect ignores the fixed costs of 
writing test cases, running test cases, and for maintenance the fact that the change team must be ready 
whether or not bugs are reported. 
To illustrate the problems with the cost per defect metric, assume you have data on four identical applications 
of 1000 function points in size.  Assume for all four that writing test cases costs $10,000 and running test cases 
costs $10,000 so fixed costs are $20,000 for all four cases.   
Now assume that fixing bugs costs exactly $500 each for all four cases.  Assume Case 1 found 100 bugs, Case 2 
found 10 bugs, Case 3 found 1 bug, and Case 4 had zero defects with no bugs found by testing.  Table 20 
illustrates both cost per defect and cost per function point for these four cases: 
 

Table 20:  Comparison of $ per defect and $ per function point 

      

  
Case 1 Case 2 Case 3 Case 4 

      Fixed costs 
 

$20,000  $20,000  $20,000  $20,000  

      Bug repairs 
 

$50,000  $5,000  $500  $0  

      Total costs 
 

$70,000  $25,000  $20,500  $20,000  
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      Bugs found 
 

100 10 1 0 

      $ per defect 
 

$700  $2,500  $20,500  Infinite 

      $ per FP 
 

$70.00  $25.00  $20.50  $20.00  
   
As can be seen the “cost per defect” metric penalizes quality and gets more expensive as defect volumes 
decline.  This is why hundreds of refereed papers all claim that cost per defect goes up later in development.   
The real reason that cost per defect goes up is not that the actual cost of defect repairs goes up, but rather fixed 
costs make it look that way.  Cost per function point shows the true economic value of high quality and this 
goes down as defects decline. 
 
Recall a basic law of manufacturing economics that “If a manufacturing process has a high percentage of fixed 
costs and there is a decline in the number of units produced, the cost per unit will go up .”  For over 50 years the 
cost per defect metric has distorted reality and concealed the true economic value of high quality software. 
Some researchers have suggested leaving out the fixed costs of writing and running test cases and only 
considering the variable costs of actual defect repairs.  This violates both economic measurement principles and 
also and good sense. Would you want a contractor to give you an estimate for building a house that only 
showed foundation and framing costs but not the more variable costs of plumbing, electrical wiring, and 
internal finishing?  Software Cost of Quality (COQ) needs to include ALL of the cost elements of finding and 
fixing bugs and not just a small subset of those costs. 
 
The author has read over 100 refereed software articles in major journals such as IEEE Transactions, IBM 
Systems Journal, Cutter Journal, and others that parroted the stock phrase “It costs 100 times more to fix a bug 
after release than it does early in development.” Not even one of these 100 articles identified the specific 
activities that were included in the cost per defect data.  Did the authors include test case design, test case 
development, test execution,  defect logging, defect analysis, inspections, desk checking, correctness proofs, 
static analysis, all forms of testing, post-release defects, abeyant defects, invalid defects, duplicate defects, bad 
fix injections, error-prone modules or any of the other topics that actually have a quantified impact on defect 
repairs?   
 
Not even one of the 100 journal articles included such basic information on the work elements that comprised 
the “cost per defect” claims by the authors. In medical journals this kind of parroting of a stock phrase without 
defining any of its elements would be viewed as professional malpractice.  But the software literature is so lax 
and so used to bad data, bad metrics, and bad measures that none of the referees probably even noticed that 
the cost per defect claims were unsupported by any facts at all. The omission of fixed costs also explains why 
“lines of code” metrics are invalid and penalize high-level languages.  In the case of LOC metrics requirements, 
design, architecture, and other kinds of non-code work are fixed costs, so when there is a switch from a low-
level language such as assembly to a higher level language such as Objective C the “cost per line of code” goes 
up. 
 
Table 21 shows 15 programming languages with cost per function point and cost per line of code in side by side 
columns, to illustrate that LOC penalizes high-level programming languages, distorts reality, and reverses the 
true economic value of high-level programming languages: 
 

Table 21: Productivity Expressed Using both LOC  and Function Points 
  

        

 
Languages Size in Coding Total Total $ per $ per 

  
LOC Work hrs Work hrs Costs FP LOC 

        1 Application Generators          7,111            1,293             4,293  $325,222 $325.22 $45.73 

2 Mathematica10          9,143            1,662             4,662  $353,207 $353.21 $38.63 
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3 Smalltalk        21,333            3,879             6,879  $521,120 $521.12 $24.43 

4 Objective C        26,667            4,848             7,848  $594,582 $594.58 $22.30 

5 Visual Basic        26,667            4,848             7,848  $594,582 $594.58 $22.30 

6 APL        32,000            5,818             8,818  $668,044 $668.04 $20.88 

7 Oracle        40,000            7,273            10,273  $778,237 $778.24 $19.46 

8 Ruby        45,714            8,312            11,312  $856,946 $856.95 $18.75 

9 Simula        45,714            8,312            11,312  $856,946 $856.95 $18.75 

10 C#        51,200            9,309            12,309  $932,507 $932.51 $18.21 

11 ABAP        80,000          14,545            17,545  $1,329,201 $1,329.20 $16.62 

12 PL/I        80,000          14,545            17,545  $1,329,201 $1,329.20 $16.62 

13 COBOL      106,667          19,394            22,394  $1,696,511 $1,696.51 $15.90 

14 C      128,000          23,273            26,273  $1,990,358 $1,990.36 $15.55 

15 Macro Assembly      213,333          38,788            41,788  $3,165,748 $3,165.75 $14.84 

 
Recall that the standard economic definition for productivity for more than 200 years has been “Goods or 
services produced per unit of labor or expense.”    If a line of code is selected as a unit of expense then moving 
to a high-level programming language will drive up the cost per LOC because of the fixed costs of non-code 
work.  
 
Function point metrics, on the other hand, do not distort reality and are a good match to manufacturing 
economics and also to standard economics because they correctly show that the least expensive version has 
the highest economic productivity.  LOC metrics make the most expensive version seem to have higher 
productivity than the cheapest, which of course violates standard economics. Also, software has a total of 126 
occupation groups.  The only occupation that can be measured at with “lines of code” is that of programming.  
Function point metrics, on the other hand, can measure the productivity of non-code occupations such as 
business analysts, architects, data base designers, technical writers, project management and everybody else.   
The author is often asked questions such as “If cost per defect and lines of code are such bad metrics why do so 
many companies still use them?” The questioners are assuming, falsely, that if large numbers of people do 
something it must be beneficial.  There is no real correlation between usage and benefits.  Usually it is only 
necessary to pose a few counter questions: 
 

“If obesity is harmful why are so many people overweight?” 
 
“If tobacco is harmful why do so many people smoke?” 

 
As will be shown later in this report the number of users of the very harmful anti-pattern development 
methodology outnumber the users of the very beneficial pattern-based development methodology.  There is 
very poor correlation between value and numbers of users.  Many harmful things have thousands of users. 
The reason for continued usage of bad metrics is “cognitive dissonance” which is a psychological topic studied 
by Dr. Leon Festinger and first published in 1962.  Today there is an extensive literature on cognitive 
dissonance. Dr. Festinger studied opinion formation and found that once an idea is accepted by the human 
mind, it is locked in place and won’t change until evidence against the idea is overwhelming.  Then there will be 
an abrupt change to a new idea. Cognitive dissonance has been a key factor for resistance to many new 
innovations and new scientific theories including: 
 

 Resistance to the theories of Copernicus and Galileo. 

 Resistance to Lister’s and Semmelweis’s proposals for sterile surgical procedures. 

 Resistance to Alfred Wegener’s theory of continental drift. 

 Resistance to Charles Darwin’s theory of evolution. 

 British naval resistance to self-leveling shipboard naval cannons. 

 Union and Confederate Army resistance to replacing muskets with rifles. 
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 Naval resistance to John Ericsson’s inventions of screw propellers and iron-clad ships. 

 Army resistance to Christie’s invention of military tank treads. 

 Military and police resistance to Samuel Colt’s revolvers (he went bankrupt.) 

 Military resistance and the court martial of Gen. Billy Mitchell for endorsing air power. 

Cognitive dissonance is a powerful force that has slowed down acceptance of many useful technologies. Table 
22 illustrates the use of function points for 40 software development activities.  It is obvious that serious 
software economic analysis needs to use activity-based costs and not just use single-point measures or phase-
based measures neither of which can be validated. 
 

 
Table 22: Function Points for Activity-Based Cost Analysis for 10,000 Function Points 

      

  
Work Burdened 

  

  
Hours per Cost per Project % of 

 
Development Activities Funct. Pt. Funct. Pt. Cost Total 

      1 Business analysis 0.01 $0.42 $4,200 0.02% 

2 Risk analysis/sizing 0.00 $0.14 $1,400 0.01% 

3 Risk solution planning 0.00 $0.21 $2,100 0.01% 

4 Requirements 0.29 $23.33 $233,333 1.36% 

5 Requirement. Inspection 0.24 $19.09 $190,909 1.11% 

6 Prototyping 0.38 $30.00 $30,000 0.17% 

7 Architecture 0.05 $4.20 $42,000 0.24% 

8 Architecture. Inspection 0.04 $3.00 $30,000 0.17% 

9 Project plans/estimates 0.04 $3.00 $30,000 0.17% 

10 Initial Design 0.66 $52.50 $525,000 3.06% 

11 Detail Design 0.88 $70.00 $700,000 4.08% 

12 Design inspections 0.53 $42.00 $420,000 2.45% 

13 Coding 6.60 $525.00 $5,250,000 30.58% 

14 Code inspections 3.30 $262.50 $2,625,000 15.29% 

15 Reuse acquisition 0.00 $0.14 $1,400 0.01% 

16 Static analysis 0.01 $0.70 $7,000 0.04% 

17 COTS Package purchase 0.01 $0.42 $4,200 0.02% 

18 Open-source acquisition. 0.00 $0.21 $2,100 0.01% 

19 Code security audit. 0.07 $5.25 $52,500 0.31% 

20 Ind. Verif. & Valid. (IV&V) 0.01 $1.05 $10,500 0.06% 

21 Configuration control. 0.03 $2.10 $21,000 0.12% 

22 Integration 0.02 $1.75 $17,500 0.10% 

23 User documentation 0.26 $21.00 $210,000 1.22% 

24 Unit testing 1.06 $84.00 $840,000 4.89% 

25 Function testing 0.94 $75.00 $750,000 4.37% 

26 Regression testing 1.47 $116.67 $1,166,667 6.80% 

27 Integration testing 1.06 $84.00 $840,000 4.89% 

28 Performance testing 0.26 $21.00 $210,000 1.22% 

29 Security testing 0.38 $30.00 $300,000 1.75% 

30 Usability testing 0.22 $17.50 $175,000 1.02% 

31 System testing 0.75 $60.00 $600,000 3.49% 

32 Cloud testing 0.06 $4.38 $43,750 0.25% 

33 Field (Beta) testing 0.03 $2.63 $26,250 0.12% 
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34 Acceptance testing 0.03 $2.10 $21,000 0.12% 

35 Independent testing 0.02 $1.75 $17,500 0.10% 

36 Quality assurance 0.18 $14.00 $140,000 0.82% 

37 Installation/training 0.03 $2.63 $26,250 0.15% 

38 Project measurement 0.01 $1.11 $11,053 0.06% 

39 Project office 0.24 $19.09 $190,909 1.11% 

40 Project management 1.76 $140.00 $1,400,000 8.15% 

      

 
Cumulative Results 21.91 $1,743.08 $17,168,521 100.00% 

 
In table 22 the activities that are related to software quality are highlighted in blue.   Out of a total of 40 
activities 26 of them are directly related to quality and defect removal.  These 26 quality-related activities sum 
to 50.50% of software development costs while actual coding is only 30.58% of development costs. The 
accumulated costs for defect-related activities were $8,670,476.  The author is not aware of any other industry 
where defect-related costs sum to more than half of total development costs.  This is due to the high error 
content of custom designs and manual coding, rather than construction of software from certified reusable 
components. 
 
So long as software is built using custom designs and manual coding defect detection and defect removal must 
be the major cost drivers of all software applications.  Construction of software from certified reusable 
components would greatly increase software productivity and benefit the economics of not only software itself 
but of all industries that depend on software, which essentially means every industry in the world. Table 22 
shows the level of granularity needed to understand the cost structures of large software applications where 
coding is just over 30% of the total effort.  Software management and C-level executives such as Chief Financial 
Officers (CFO) and Chief Information Officers (CIO) need to understand the complete set of activity-based costs 
and also costs by occupation group such as business analysts and architects over and above programmers. 
 
When you build a house you need to know the costs of everything:  foundations, framing, electrical systems, 
roofing, plumbing etc.  You also need to know the separate costs of architects, carpenters, plumbers, 
electricians, and all of the other occupations that work on the house. Here too for large systems in the 10,000 
function point size range a proper understanding of software economics needs measurements of ALL activities 
and all occupation groups and not just coding programmers, whose effort is often less than 30% of the total 
effort for large systems. 
 
Both LOC metrics and cost per defect metrics should probably be viewed as professional malpractice for 
software economic studies because they both distort reality and make bad results look better than good 
results. It is no wonder that software progress resembles and drunkard’s walk when hardly anybody knows how 
to measure either quality or productivity with metrics that make sense and match standard economics. 
 
 

Software’s Lack of Accurate Data and Poor Education on Quality and Cost of Quality (COQ) 
 
One would think that software manufacturing economics would be taught in colleges and universities as part of 
computer science and software engineering curricula, but universities are essentially silent on the topic of fixed 
costs probably because the software faculty does not understand software manufacturing economics either.  
There are a few exceptions such as the University of Montreal however. The private software education 
companies and the professional associations are also silent on the topic of software economics and the hazards 
of cost per defect and lines of code. It is doubtful if either of these sectors understands software economics well 
enough to teach it.  They certainly don’t seem to understand either function points or quality metrics such as 
defect removal efficiency (DRE). Even more surprising some of the major software consulting groups with 
offices and clients all over the world are also silent on software economics and the hazards of both cost per 
defect and lines of code.  Gartner Group uses function points but apparently has not dealt with the impact of 
fixed costs and the distortions caused by the LOC and cost per defect metrics. 
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You would think that major software quality tool vendors such as those selling automated test tools, static 
analysis tools, defect tracking tools, automated correctness proofs, or test-case design methods based on 
cause-effect graphs or design of experiments would measure defect potentials and DRE because these metrics 
could help to demonstrate the value of their products.  Recall that IBM used defect potentials and DRE metrics 
to prove the value of formal inspections back in 1973.   
 
But the quality companies are just as clueless as their clients when it comes to defect potentials and defect 
removal efficiency (DRE) and the economic value of high quality.  They make vast claims of quality 
improvements but provide zero quantitative data.  For example only CAST Software that sells static analysis 
uses function points on a regular basis from among the major quality tool companies.  But even CAST does not 
use defect potentials and DRE although some of their clients do. You would also think that project management 
tool companies that market tools for progress and cost accumulation reporting and project dashboards would 
support function points and show useful economic metrics such as work hours per function point and cost per 
function point.  You would also think they would support activity-based costs.  However most project 
management tools do not support either function point metrics or activity-based costs, although a few do 
support earned value and some forms of activity-based cost analysis.  This means that standard project 
management tools are not useful for software benchmarks since function points are the major benchmark 
metric. 
 
The only companies and organizations that seem to know how to measure quality and economic productivity 
are the function point associations such as COSMIC, FISMA, IFPUG, and NESMA; the software benchmark 
organizations such as ISBSG, David’s Consulting, Namcook Analytics, TIMetricas, Q/P Management Group, and 
several others; and some of the companies that sell parametric estimation tools such as KnowledgePlan, SEER, 
SLIM, and the author’s Software Risk Master (SRM).  In fact the author’s SRM tool predicts software application 
size in a total of 23 metrics including all forms of function points plus story points, use-case points, physical and 
logical code, and a number of others.  It even predicts bad metrics such as cost per defect and lines of code 
primarily to demonstrate to clients why those metrics distort reality. Probably not one reader out of 1000 of this 
paper has quality and cost measures that are accurate enough to confirm or challenge the data in tables 19, 20, 
and 21 because software measures and metrics have been fundamentally incompetent for over 50 years.    This 
kind of analysis can’t be done with “cost per defect” or “lines of code” because they both distort reality and 
conceal the economic value of software quality.   
 
However the comparatively few companies and fewer government organizations that do measure software 
costs and quality well using function points and DRE can confirm the results.   The quality pioneers of Joseph 
Juran, W. Edwards Deming, and Phil Crosby showed that for manufactured products quality is not only free it 
also saves time and money. The same findings are true for software, only software has lagged all other 
industries in discovering the economic value of high software quality because software metrics and measures 
have been so bad that they distorted reality and concealed progress. The combination of function point metrics 
and defect removal efficiency (DRE) measures can finally prove that high software quality, like the quality of 
manufactured products, lowers development costs and shortens development schedules.   High quality also 
lowers maintenance costs, reduces the odds of successful cyber-attacks, and improves customer satisfaction 
levels. 
 
 

Summary and Conclusions 
 
The combination of defect potentials and defect removal efficiency (DRE) measures provide software 
engineering and quality personnel with powerful tools for predicting and measuring all forms of defect 
prevention and all forms of defect removal.   
 
Function points are the best metric for normalizing software defect potentials because function points are the 
only metrics that can handle requirements, design, architecture, and other sources of non-code defects. This 
paper uses IFPUG 4.3 function points.  Other forms of function point metric such as COSMIC, FISMA, NESMA, 
etc. would be similar but not identical to the values shown here.   
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As of 2016 there is insufficient data on SNAP metrics to show defect potentials and defect removal efficiency.  
However it is suspected that non-functional requirements contribute to defect potentials in a significant 
fashion.  There is insufficient data in 2016 to judge DRE values against non-functional defects. Note that the 
author’s Software Risk Master (SRM) tool predicts defect potentials and defect removal efficiency (DRE) as 
standard outputs for all projects estimated.  
 
For additional information on 25 methods of pre-test defect removal and 25 forms of testing, see The 
Economics of Software Quality, Addison Wesley, 2012 by Capers Jones and Olivier Bonsignour. 
 
 

References and Readings on Software Quality 
 
Beck, Kent; Test-Driven Development; Addison Wesley, Boston, MA; 2002; ISBN 10: 0321146530; 240 pages. 
 
Black, Rex; Managing the Testing Process: Practical Tools and Techniques for Managing Hardware and Software 

Testing; Wiley; 2009; ISBN-10 0470404159; 672 pages. 
 
Chelf, Ben and Jetley, Raoul; “Diagnosing Medical Device Software Defects Using Static Analysis”; Coverity 

Technical Report, San Francisco, CA; 2008. 
 
Chess, Brian and West, Jacob; Secure Programming with Static Analysis; Addison Wesley, Boston, MA; 20007; 

ISBN 13: 978-0321424778; 624 pages. 
 
Cohen, Lou; Quality Function Deployment – How to Make QFD Work for You; Prentice Hall, Upper Saddle River, 

NJ; 1995; ISBN 10: 0201633302; 368 pages. 
 
Crosby, Philip B.; Quality is Free; New American Library, Mentor Books, New York, NY; 1979; 270 pages. 
 
Everett, Gerald D. And McLeod, Raymond; Software Testing; John Wiley & Sons, Hoboken, NJ; 2007; ISBN 978-0-

471-79371-7; 261 pages. 
 
Festinger, Dr. Leon; A Theory of Cognitive Dissonance; Stanford University Press, 1962. 
 
Gack, Gary; Managing the Black Hole:  The Executives Guide to Software Project Risk; Business Expert 

Publishing, Thomson, GA; 2010; ISBN10: 1-935602-01-9. 
 
Gack, Gary; Applying Six Sigma to Software Implementation Projects; 

http://software.isixsigma.com/library/content/c040915b.asp. 
 
Gilb, Tom and Graham, Dorothy; Software Inspections; Addison Wesley, Reading, MA;  1993; ISBN 10: 

0201631814. 
 
Hallowell, David L.; Six Sigma Software Metrics, Part 1.; 

http://software.isixsigma.com/library/content/03910a.asp. 
 
International Organization for Standards; ISO 9000 / ISO 14000; http://www.iso.org/iso/en/iso9000-

14000/index.html. 
 
Jones, Capers: Software Risk Master (SRM) tutorial; Namcook Analytics LLC, Narragansett RI, 2015. 
 
Jones, Capers:  Software Defect Origins and Removal Methods; Namcook Analytics LLC; Narragansett RI, 2015. 
 
Jones, Capers: The Mess of Software Metrics; Namcook Analytics LLC, Narragansett RI; 2015. 
 
Jones, Capers; The Technical and Social History of Software Engineering; Addison Wesley, 2014. 

http://software.isixsigma.com/library/content/c040915b.asp
http://software.isixsigma.com/library/content/03910a.asp
http://www.iso.org/iso/en/iso9000-14000/index.html
http://www.iso.org/iso/en/iso9000-14000/index.html


Position Paper  43 

 

Software Measurement News  21(2016)2 

 
 
Jones, Capers and Bonsignour, Olivier; The Economics of Software Quality;  
        Addison Wesley, Boston, MA; 2011; ISBN 978-0-13-258220-9; 587 pages. 
 
Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York; 2010; ISBN 978-0-07-162161-8;660 

pages. 
 
Jones, Capers; Applied Software Measurement; McGraw Hill, 3rd edition 2008; ISBN 978=0-07-150244-3; 662 

pages. 
 
Jones, Capers; Critical Problems in Software Measurement; Information Systems Management Group, 1993; 

ISBN 1-56909-000-9; 195 pages. 
 
Jones, Capers; Software Productivity and Quality Today -- The Worldwide Perspective;  Information Systems 

Management Group, 1993; ISBN -156909-001-7;  200 pages. 
 
Jones, Capers; Assessment and Control of Software Risks; Prentice Hall, 1994;  ISBN 0-13-741406-4; 711 pages. 

 
Jones, Capers;  New Directions in Software Management; Information Systems Management Group;  ISBN 1-

56909-009-2;  150 pages. 
 
Jones, Capers; Patterns of Software System Failure and Success;  International Thomson Computer Press, 

Boston, MA;  December 1995; 250 pages; ISBN 1-850-32804-8; 292 pages. 
 
Jones, Capers;  Software Quality – Analysis and Guidelines for Success; International Thomson Computer Press, 

Boston, MA; ISBN 1-85032-876-6; 1997; 492 pages. 
 
Jones, Capers; Estimating Software Costs; 2nd edition; McGraw Hill, New York; 2007; 700 pages.. 
 
Jones, Capers; “The Economics of Object-Oriented Software”; SPR Technical Report; Software Productivity 

Research, Burlington, MA; April 1997; 22 pages. 
 
Jones, Capers; “Software Project Management Practices:  Failure Versus Success”; 

Crosstalk, October 2004. 
 

Jones, Capers; “Software Estimating Methods for Large Projects”; Crosstalk, April 2005. 
 
Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd edition;  Addison Wesley Longman, 

Boston, MA; ISBN 0-201-72915-6; 2003; 528 pages. 
 
Land, Susan K; Smith, Douglas B; Walz, John Z; Practical Support for Lean Six Sigma Software Process Definition: 

Using IEEE Software Engineering Standards; WileyBlackwell; 2008; ISBN 10: 0470170808; 312 pages.  
 
Mosley, Daniel J.; The Handbook of MIS Application Software Testing; Yourdon Press, Prentice Hall; Englewood 

Cliffs, NJ; 1993; ISBN 0-13-907007-9; 354 pages. 
 
Myers, Glenford; The Art of Software Testing; John Wiley & Sons, New York; 1979; ISBN 0-471-04328-1; 177 

pages. 
 
Nandyal; Raghav; Making Sense of Software Quality Assurance; Tata McGraw Hill Publishing, New Delhi, India; 

2007; ISBN 0-07-063378-9; 350 pages. 
 
 
 



44                                                                                                                 Position Paper   

 

Software Measurement News  21(2016)2 

Radice, Ronald A.; High Qualitiy Low Cost Software Inspections;  Paradoxicon Publishingl Andover, MA; ISBN 0-
9645913-1-6; 2002; 479 pages. 

 
Royce, Walker E.; Software Project Management: A Unified Framework; Addison Wesley Longman, Reading, 

MA; 1998; ISBN 0-201-30958-0. 
 
Wiegers, Karl E.; Peer Reviews in Software – A Practical Guide;  Addison Wesley Longman, Boston, MA; ISBN 0-

201-73485-0; 2002; 232 pages. 
 



     New Books on Software Measurement  45 

 

Software Measurement News  21(2016)2 

 

Abran, A.:  

Software Project Estimation: The Fundamentals for Providing 

High Quality Information to Decision Makers 

 Wiley IEEE Computer Society Press, 2015 (288 pages), ISBN 978-1-118-95408-9 

 

 

This book introduces theoretical concepts to explain the fundamentals of the design and evaluation of 

software estimation models. It provides software professionals with vital information on the best 

software management software out there. 

 End-of-chapter exercises 

 Over 100 figures illustrating the concepts presented throughout the book 

 Examples incorporated with industry data 

 

 

Seufert, M.; Ebert, C, Fehlmann, T.; Pechlivanidis, S.; Dumke, R. R.: 

MetriKon 2015 - Praxis der Softwaremessung 
Tagungsband des DASMA Software Metrik Kongresses 

 5. - 6. November 2015, IBM, Köln 

Shaker Verlag, Aachen, 2015 (272 Seiten) 

The book includes the proceedings of the MetriKon 2015 held in Cologne in November 2015, which 

constitute a collection of theoretical studies in the field of software measurement and case reports on 

the application of software metrics in companies and universities. 

 



46                                          New Books on Software Measurement        

 

Software Measurement News  21(2016)2 

 

 

Schmietendorf, A.; Simon, F.: 

BSOA/BCloud 2015 
10. Workshop Bewertungsaspekte serviceorientierter Architekturen 

3. November 2015, Leipzig 

Shaker Verlag, Aachen, 2015 (112 Seiten),  ISBN 978-3-8440-2108-0 

The book includes the proceedings of the BSOA/BCloud 2015 held in Leipzig in November 2015, 

which constitute a collection of theoretical studies in the field of measurement and evaluation of 

service oriented and cloud architectures. 

 

 

 

  



     New Books on Software Measurement  47 

 

Software Measurement News  21(2016)2 

 

 

 

 

 

 
 

 

 

Konstantina Richter, Reiner Dumke: 

Modeling, Evaluating and Predicting  
IT Human Resource Performance 

 

CRC Press, Boca Raton, Florida, 2015 (275 pages) 
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Schmietendorf, A. (Hrsg.):  
 

Eine praxisorientierte Bewertung von Architekturen  
und Techniken für Big Data 

 

(110 Seiten) Shaker-Verlag  Aachen, März 2015 ISBN 978-3-8440-2939-0 

 

 

 

Dumke, R., Schmietendorf, A., Seufert, M., Wille, C.: 

Handbuch der Softwareumfangsmessung und Aufwandschätzung 

Logos Verlag, Berlin, 2014 (570 Seiten), ISBN 978-3-8325-3784-5 
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Software Measurement & Data Analysis Addressed 

Conferences 

 

August 2016: 

ICGSE 2016: 

 

11
th

 International Conference on Global Software Engineering 

August 2 - 5, 2016, Orange Country, California, USA 

see: http://www.ics.uci.edu/~icgse2016/2_0cfp.html 

ICSEA 2016: 

10
th

 International Conference on Software Engineering 

Advances 

August 21 - 25, 2016, Brussels, Belgium 

see: http://www.iaria.org/conferences2016/ICSEA16.html 

QEST 2016: 

 

13
th

 International Conference on Quantitative Evaluation of 

Systems 

August 23 - 25, 2016, Quebec City, Canada 

see: http://www.qest.org/  

ICDSE 2016: 

International Conference on Data Science and Engineering 

August 23 - 25, Kerala, India 

See: http://icdse.cusat.ac.in/ 

Euromicro DSD/ 

SEAA 2016: 

Software Engineering & Advanced Application Conference 

August 31 - September 2, 2016, Limassol, Cypros 

see: http://dsd-seaa2016.cs.ucy.ac.cy/ 

 

September 2016: 

ESEM 2016: 

 

10
th

 International Symposium on Empirical Software Engineering 

& Measurement 

September 8 - 9, 2016, Ciudad Real, Spain 

see: http://alarcos.esi.uclm.es/eseiw2016/esem/ 

RE 2016: 

 

24
th

 IEEE International Requirement Engineering Conference 

September 12 - 16, 2016, Beijing, China 

see: http://re16.org/ 

EuroAsiaSPI
2
 2016: 

 

23
th

 European Systems & Software Process Improvement and 

Innovation Conference, 

September 14 - 16, 2016, Graz, Austria 

see: http://www.eurospi.net/ 

ASQT 2016: 
Arbeitskonferenz Softwarequalität, Test und Innovation 

September 21 - 23, 2016, Klagenfurt, Austria 

http://www.qest.org/qest2013/
http://www.re13.org/
http://2013.eurospi.net/
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 see: http://www.asqt.org/  

Big Data 2016:  

Big Data Analysis and Data Mining 

September 26 - 27, 2016, London, UK 

See: http://datamining.conferenceseries.com/ 

 

October 2016: 

IWSM-MENSURA 

2016: 

 

Common International Conference on Software Measurement 

October 5 - 7, 2016, Berlin, Germany 

see: http://www.iwsm-mensura.org/  

ISSRE 2016: 

 

27
th 

International IEEE Symposium on Software Reliability 

Engineering 

October 23 - 27, 2016, Ottawa, Canada 

see: http://issre.net/ 

 

November 2016: 

BSOA/BCloud 

2016: 

 

11. Workshop Bewertungsaspekte service-orientierte und Cloud- 

Architekturen 

November , 2016, Berlin, Germany 

 see: http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/ 

ICDM 2016:  

IEEE International Conference on Data Mining 

November 28 - 30, 2016, Barcelona, Spain 

See: http://icdm2016.eurecat.org/ 

 

December 2016: 

PROFES 2015: 

 

16
th

 International Conference on Product Focused Software Process 

Improvement 

December 2 - 4, 2015, Bolzano, Italy 

see: http://profes2015.inf.unibz.it/                                (not in 2016) 

 

see also: Conferences Link of Luigi Buglione (http://www.semq.eu/leng/eveprospi.htm) 

http://www.asqt.org/
http://iwsm2013.wordpress.com/
http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/
http://www.semq.eu/leng/eveprospi.htm
http://www.semq.eu/leng/eveprospi.htm
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See the GI-Web site http://fg-metriken.gi.de/  for the digital contents of the Software Measurement 

News: 

 

 
 

Help to qualify the software measurement knowledge and intentions in the world wide web: 
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 cosmic-sizing.org: 
 

 
 

See our overview about software metrics and measurement in the Bibliografie at http://fg-

metriken.gi.de/bibliografie.html including any hundreds of books and papers: 
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See our further software measurement and related communities: 

 www.dasma.org: 

 
 

 www.isbsg.org: 
 

 
 

 www.cecmg.de: 
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 www.mai-net.org: 
 

 
 

 

 www.swebok.org: 
 

 
 

 

 isern.iese.de: 
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 www.smlab.de: 

 
 

 
 www.psmsc.com/: 
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 sebokwiki.org/wiki/Measurement: 
 

 
 

 

 

 

 www.fisma.fi/in-english/: 
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 http://nesma.org/: 
 

 
 

 www.sei.cmu.edu/measurement/: 
 

 
 

 

 http://www.omg.org/news/releases/pr2013/02-07-13.htm: 
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