

 Volume 21, Number 2, September 2016

 Software Measurement News

 Journal of the Software Metrics Community

Editors:

Alain Abran, Manfred Seufert, Reiner Dumke, Christof Ebert, Cornelius Wille

Software Measurement News 21(2016)2

CONTENTS

Announcements ... 3

Position Paper... 9

Christof Ebert

 Cyclomatic Complexity - 40 Years Later .. 9

Capers Jones

 The Origins of Function Point Metrics .. 12

Andreas Schmietendorf

 Web APIs als Enabler einer erfolgreichen Digitalisierungsstrategie15

Capers Jones

 Exceeding 99% in Defect Removal Efficiency (DRE) for Software19

New Books on Software Measurement ... 45

Conferences Addressing Measurement Issues ... 49

Metrics in the World-Wide Web ... 51

Editors:
Alain Abran

Professor and Director of the Research Lab. in Software Engineering Management

École de Technologie Supérieure - ETS, 1100 Notre-Dame Quest,Montréal, Quebec, H3C 1K3,

Canada, Tel.: +1-514-396-8632, Fax: +1-514-396-8684
alain.abran@etsmtl.ca

Manfred Seufert

Chair of the DASMA, MediaanABS Deutschland GmbH

Franz-Rennefeld-Weg 2, D-40472 Düsseldorf, Tel.: +49 211 250 510 0
manfred.seufert@mediaan.com

Reiner Dumke

Professor on Software Engineering, University of Magdeburg, FIN/IKS

Postfach 4120, D-39016 Magdeburg, Germany, Tel.: +49-391-67-52812
dumke@ivs.cs.uni-magdeburg.de, http://www.smlab.de

Christof Ebert

Dr.-Ing. in Computer Science, Vector Consulting Services GmbH

Ingersheimer Str. 20, D-70499 Stuttgart, Germany, Tel.: +49-711-80670-1525
christof.ebert@vector.com

Cornelius Wille

Professor on Software Engineering, University of Applied Sciences Bingen

Berlinstr. 109, D-55411 Bingen am Rhein, Germany,

Tel.: +49-6721-409-257, Fax: +49-6721-409-158
wille@fh-bingen.de

Editorial Office: Otto-von-Guericke-University of Magdeburg, FIN/IKS, Postfach 4120, 39016

Magdeburg, Germany

Technical Editor: Dagmar Dörge

The journal is published in one volume per year consisting of two numbers. All rights reserved

(including those of translation into foreign languages). No part of this issues may be reproduced in

any form, by photoprint, microfilm or any other means, nor transmitted or translated into a machine

language, without written permission from the publisher.

 2016 by Otto-von-Guericke-University of Magdeburg. Printed in Germany

 Announcements

Software Measurement News 21(2016)2

3

Program
IWSM Mensura is the premier international conference on

measurement and data analytics. Each year practitioners and

researchers from all over the world meet to discuss practical

challenges and solutions in the field of software and IT measurement

and data analytics.

On October 5-7, 2016 the IWSM Mensura conference will be held in Berlin, Germany. The

conference venue will be at the Berlin School of Economics, Campus Lichtenberg. More information

on the conference can be found on the website: http://www.iwsm-mensura.org.

Theme & scope
Software and IT measurement are keys for successfully managing and controlling software

development projects. Data analytics and measurement are essential for both business and

engineering. They enrich scientific and technical knowledge regarding both the practice of software

development and empirical research in software technology. The conference focuses on all aspects

of software measurement and data analytics.

This year focus is the Value of Data, i.e. how to maximize the value for an organization from making

use of data from their software applications and systems. The trend towards digitization also

dramatically increases the amount of data that becomes available. The value of a company is

increasingly hidden in its data and can only be exploited fully if these are used efficiently along the

entire value chain. Big data becomes an important keyword to deal with. The conference also focuses

on novel approaches and innovative ideas on how to optimize existing products and processes

making use of data as well as using Big Data as an enabler for new application cases.

Topics of interest
 We encourage submissions in any field of software measurement, including, but not limited to:

 Practical measurement applications

 Data analytics in practice, e.g. Enterprise embedded solutions

 Usage of big data analytics for improving products and processes

 Quantitative and qualitative methods for software measurement

 Measurement processes and resources, e.g. agile or model-driven

 Empirical case studies

 System and software engineering measurement

 IT and project cost and effort estimation, e.g., cost, effort, defects

 Functional size measurement

 Data analytics and measurement in novel areas, e.g. ECU’s or web services

 Measures for Cognitive Computing

Conference language
The language for the conference, workshops and special sessions is English.

4 Keynotes

31 Presentations

2 Seminars

5 Workshops

http://www.iwsm-mensura.org/

 Announcements

Software Measurement News 21(2016)2

4

CONFERENCE PROGRAM

 Announcements

Software Measurement News 21(2016)2

5

 Announcements

Software Measurement News 21(2016)2

6

 Announcements

Software Measurement News 21(2016)2

7

 Announcements

Software Measurement News 21(2016)2

8

BSAO/BCloud 2016

(Qualitative und quantitative Bewertung)

03.11.2016, Gastgeber Zalando, Berlin

Der diesjährige BSOA/BCloud-Workshop findet am 03.11.2016 in Berlin (Gastgeber

Zalando) statt. Im Mittelpunkt der Vorträge, Diskussionsrunden und des World Cafes stehen

domänenspezifische und wirtschaftliche Bewertungsfragen von Service APIs. Im Einzelnen

geht es um die Identifikation, Gestaltung, Bewertung sowie das Management von Service

APIs im Diskurs verschiedener Branchen (z.B. Banken, Versicherungen, Pharmazie)

auseinander.

Beispiele für Themenbereiche:

 Welchen Einfluss haben Service APIs auf die Industrialisierung unternehmerische

Prozessabläufe?

 Bewertung der mit Service APIs einhergehenden Möglichkeiten, im Sinne innovativer

Produkte und Dienstleistungen?

 Bewertungsansätze im Zusammenhang mit der Identifikation, Spezifikation,

Bewertung und Qualitätssicherung von Serviceangeboten.

 Gestaltung von Architekturen zur serviceorientierten Verzahnung von

unternehmensinternen Lösungen mit Service APIs.

 Herausforderungen der Serviceorientierung im Kontext eines kollaborativen und

interoperablen IT-Service-Managements.

 Gewährleistung von Sicherheits- und Compliance-Aspekten in interoperablen

Architekturansätzen.

Ein besonderes Highlight erwartet die Teilnehmer mit dem eingeladenen Keynote-Sprecher

Herrn Michael Binzen (Chefarchitekt DB Systel GmbH).

Web-Adresse zum Workshop:

 http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/2016/

http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/2016/

Position Paper 9

Software Measurement News 21(2016)2

Cyclomatic Complexity - 40 Years Later

Christof Ebert
Vector Consulting Services, Stuttgart

September 2016

The criticality and risk of software is defined by its complexity. Forty years ago, McCabe introduced his famous
cyclomatic complexity (CC) metric. Today, it is still one of the most popular and meaningful measurements for
analyzing code. Read this blog about the measurement and its value for improving code quality and
maintainability...

It is of great benefit for projects to be able to predict software components likely to have a high defect rate or
which might be difficult to test and maintain. It is of even more value having an indicator which can provide
constructive guidance on how to improve the quality of code. This is what the cyclomatic complexity (CC) metric
gives us.

The CC metric is simple to calculate and intuitive to understand. It can be taught quickly. Control flows in code
are analyzed by counting the decisions, i.e., the number of linear independent paths through the code under
scrutiny. Too many nested decisions make the code more difficult to understand due to the many potential
flows and possibilities of passing through it.

In addition, the CC value of a module correlates directly with the number of test cases necessary for path
coverage, so even a rough indication given by the CC metric is of high value to a developer or project manager.

A high CC thus implies high criticality and the code will have a higher defect density (vis-à-vis code with a
relatively lower CC); test effort is higher and maintainability severely reduced. These relationships are intuitive
for students as well as experts and managers and this is another appealing feature of the CC metric.

It is small wonder therefore that CC, unlike many other metrics which have been proposed over the past
decades is still going strong and is used in almost all tools for criticality prediction and static code analysis.

10 Position Paper

Software Measurement News 21(2016)2

 Figure: Calculation of Cyclomatic Complexity by counting linear independent
 paths through a control flow.

CC, together with change history, past defects and a selection of design metrics (e.g., level of uninitialized data,
method overriding and God classes) can be used to build a prediction model. Based on a ranked list of module
criticality used in a build, different mechanisms namely refactoring, re-design, thorough static analysis and unit
testing with different coverage schemes can then be applied. The CC metric therefore gives us a starting point
for remedial maintenance effort.

Instead of predicting the number of defects or changes (i.e., algorithmic relationships) we consider assignments
to classes (e.g., “defect-prone”). While the first goal can be achieved more or less successfully with regression
models or neural networks mainly in finished projects, the latter goal seems to be adequate for predicting
potential outliers in running projects, where precision is too expensive and not really necessary for decision
support. Christof – I am not sure I follow the point being made in these last two sentences – can you possibly
clarify/elaborate please?

While the benefits of CC are clear, it does need clear counting rules. These days for instance, we do not count
simple “switch” or “case” statements as multiplicities of “if, then, else” decisions. Moreover, the initial proposal
to limit CC to seven plus/minus two per entity is no longer taken as a hard rule, because boundaries for defect-
prone components are rather fuzzy and multi-factorial.

Having identified such overly critical modules, risk management must be applied. The most critical and most
complex of the analyzed modules, for instance, the top 5, are candidates for redesign. For cost reasons
mitigation is not only achieved with redesign. The top 20% should have a thorough static code analysis, and the
top 80% should be at least unit tested with C0 coverage of 100%. By concentrating on these critical components
the productivity of quality assurance is increased.

Critical modules should at least undergo a flash review and subsequent refactoring, redesign or rewriting –
depending on their complexity, age and reuse in other projects. Refactoring includes reducing size, improving
modularity, balancing cohesion and coupling, and so on. For instance, apply thorough unit testing with 100
percent C0 coverage (statement coverage) to those modules ranked most critical. Investigate the details of the
selected modules’ complexity measurements to determine the redesign approach. Typically, the different
complexity measurements will indicate the approach to follow. Static control flow analysis tools incorporating
CC can also find security vulnerabilities such as dead code, often used as backdoors for hijacking software.

Position Paper 11

Software Measurement News 21(2016)2

Our own data but also many published empirical studies demonstrate that a high decision-to-decision path
coverage or C1 coverage will find over 50% of defects, thus yielding a strong business case in favor of using CC.
On the basis of the results from many of our client projects and taking a conservative ratio of only 40 percent
defects in critical components, criticality prediction can yield at least a 20 percent cost reduction for defect
correction.

The additional costs for the criticality analysis and corrections are in the range of few person days per module.
The necessary tools such as Coverity, Klocwork, Lattix, Structure 101, SonarX, SourceMeter, are off the shelf and
account for even less per project. These criticality analyses provide numerous other benefits, such as the
removal of specific code-related risks and defects that otherwise are hard to identify (for example, security
flaws).

CC clearly has its value for critically predictions and thus improving code quality and reducing technical debt.
Four decades of validity and usage is a tremendous time in software, and I congratulate McCabe for such a
ground-breaking contribution.

Literature and media:

McCabe, T.J.: A Complexity Measure. IEEE Transactions on Software Engineering, Vol. SE-2, NO.4, Dec. 1976.
http://www.literateprogramming.com/mccabe.pdf

Selected white papers on quality practices from our media-center:
http://consulting.vector.com/vc_download_en.html?product=quality

Full article on static code analysis technologies in IEEE Software:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4814967

Author:
Christof Ebert is the managing director of Vector Consulting Services. He is on the IEEE
Software editorial board and teaches at the University of Stuttgart and the Sorbonne in
Paris.
Contact him at christof.ebert@vector.com

http://www.literateprogramming.com/mccabe.pdf
http://www.literateprogramming.com/mccabe.pdf
http://consulting.vector.com/vc_download_en.html?product=quality
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4814967
mailto:christof.ebert@vector.com

12 Position Paper

Software Measurement News 21(2016)2

The Origins of Function Point Metrics

Capers Jones

(IFPUG publication 05/17/2016, permitted by the author)

Version 3.0
VP and CTO, Namcook Analytics LLC
Email: Capers.Jones3@gmail.com

Introduction

The author was working at IBM in the 1960’s and 1970’s and was able to observe the origins of several IBM
technologies such as inspections, parametric estimation tools, and function point metrics. This short paper
discusses the origins and evolution of function point metrics.
In the 1960’s and 1970’s IBM was developing new programming languages such as APL, PL/I, PL/S etc. IBM
executives wanted to attract customers to these new languages by showing clients higher productivity rates.
As it happens the compilers for various languages were identical in scope and had the same features. Some
older compilers were coded in assembly language while newer compilers were coded in PL/S, which was a new
IBM language for systems software.

When we measured the productivity of assembly-language compilers versus PL/S compilers using “lines of
code” (LOC) we found that even though PL/S took less effort, the LOC metric of LOC per month favored
assembly language.

This problem is easiest to see when comparing products that are almost identical but merely coded in different
languages. Compilers, of course, are very similar. Other products besides compilers that are close enough in
feature sets to have their productivity negatively impacted by LOC metrics are PBX switches, ATM banking
controls, insurance claims handling, and sorts.

To show the value of higher-level languages the first IBM approach was to convert high-level languages into
“equivalent assembly language.” In other words we measured productivity against a synthetic size based on
assembly language instead of against true LOC size in the actual higher level languages. This method was used
by IBM from around 1968 through 1972.

An IBM vice president, Ted Climis, said that IBM was investing a lot of money into new and better programming
languages. Neither he nor clients could understand why we had to use the old assembly language as the metric
to show productivity gains for new languages. This was counter-productive to the IBM strategy of moving
customers to better programming languages. He wanted a better metric that was language independent and
could be used to show the value of all IBM high-level languages.

This led to the IBM investment in function point metrics and to the creation of a function-point development
team under Al Albrecht at IBM White Plains. Function Point metrics were developed by the IBM team by around
1975 and used internally and successfully. In 1978 IBM placed function point metrics in the public domain and
announced them via a technical paper given by Al Albrecht at a joint IBM/SHARE/Guide conference in
Monterey, California.

Table 1 shows the underlying reason for the IBM function point invention based on the early comparison of
assembly language and PL/S for IBM compilers.
Table 1 shows productivity in four separate flavors:

1. Actual lines of code in the true languages.

2. Productivity based on “equivalent assembly code.”

3. Productivity based on “function points per month.”

4. Productivity based on “work hours per function point.”

mailto:Capers.Jones3@gmail.com

Position Paper 13

Software Measurement News 21(2016)2

Note: table 1 uses simple round numbers to clarify the issues noted with LOC metrics.

Table 1: IBM Function Point Evolution Circa 1968-1975

(Results for two IBM compilers)

Assembly

PL/S

Language

Language

 Lines of code (LOC) 17,500.00

 5,000.00

 Months of effort 30.00

 12.50

 Hours of effort 3,960.00

 1,650.00

 LOC per month 583.33

 400.00

 Equivalent assembly 17,500.00

 17,500.00

 Equiv. Assembly MO 583.33

 1,400.00

 Function points 100.00

 100.00

 Function Points/month 3.33

 8.00

 Work hours per FP 39.60

 16.50
The three rows highlighted in blue show the crux of the issue. LOC metrics tend to penalize high-level
languages and make low-level languages such as assembly look better than they really are. Function
points metrics, on the other hand, show tangible benefits from higher-level programming languages and
this matches the actual expenditure of effort and standard economic analysis. Productivity of course is
defined as “goods or services produced per unit of labor or expense.” The creation and evolution of
function point metrics was based on a need to show IBM clients the value of IBM’s emerging family of
high-level programming languages such as PL/I, APL, and others. This is still a valuable use of function
points since there are more than 3,000 programming languages in 2016 and new languages are being
created at a rate of more than one per month. Another advantage of function point metrics vis a vis LOC
metrics is that function points can measure the productivity of non-coding tasks such as creation of
requirements and design documents. In fact function points can measure all software activities, while
LOC can only measure coding.Up until the explosion of higher-level programming languages occurred,
assembly language was the only language used for systems software (the author programmed in
assembly for several years when starting out as a young programmer).

With only one programming language LOC metrics worked reasonably well. It was only when higher-
level programming languages appeared that the LOC problems became apparent. It was soon realized
that the essential problem with the LOC metric is really nothing more than a basic issue of manufacturing
economics that had been understood by other industries for over 200 years.

This is a fundamental law of manufacturing economics: “When a manufacturing process has a high
percentage of fixed costs and there is a decline in the number of units produced, the cost per unit will
go up.”

The software non-coding work of requirements, design, and documentation act like fixed costs. When
there is a move from a low-level language such as assembly to a higher-level language such as PL/S, the
cost per unit will

14 Position Paper

Software Measurement News 21(2016)2

go up, assuming that LOC is the “unit” selected for measuring the product. This is because of the fixed costs of
the non-code work and the reduction of code “units” for higher-level programming languages. Function point
metrics are not based on code at all, but are an abstract metric that defines the essence of the features that the
software provides to users. This means that applications with the same feature sets will be the same size in
terms of function points no matter what languages they are coded in. Productivity and quality can go up and
down, of course, but they change in response to team skills. Once function points were released by IBM in 1978
other companies began to use them, and soon the International Function Point User’s Group (IFPUG) was
formed in Canada. Today in 2016 there are hundreds of thousands of function point users and hundreds of
thousands of benchmarks based on function points. There are also several other varieties of function points
such as COSMIC, FISMA, NESMA, etc.
Overall function points have proven to be a successful metric and are now widely used for productivity studies,
quality studies, and economic analysis of software trends. Function point metrics are supported by parametric
estimation tools and also by benchmark studies. There are also several flavors of automatic function point
tools. There are also function point associations in most industrialized countries. There are also ISO standards
for functional size measurement. (There was never an ISO standard for code counting and counting methods
vary widely from company to company and project to project. In a benchmark study performed for a “LOC”
shop we found four sets of counting rules for LOC that varied by over 500%.). Table 2 shows countries with
increasing function point usage circa 2016, and it also shows the countries where function point metrics are
now required for government software projects.

Table 2: Countries Expanding Use of Function Points 2016

 1 Argentina
 2 Australia
 3 Belgium
 4 Brazil Required for government contracts 2008

5 Canada
 6 China
 7 Finland
 8 France
 9 Germany
 10 India
 11 Italy Required for government contracts

12 Japan Required for government contracts

13 Malaysia Required for government contracts

14 Mexico
 15 Norway
 16 Peru
 17 Poland
 18 Singapore
 19 South Korea Required for government contracts

20 Spain
 21 Switzerland
 22 Taiwan
 23 The Netherlands
 24 United Kingdom
 25 United States
 Several other countries will probably also mandate function points for government software contracts by 2017.

Eventually most countries will do this. In retrospect function point metrics have proven to be a powerful tool for
software economic and quality analysis.

Position Paper 15

Software Measurement News 21(2016)2

Web APIs als Enabler einer erfolgreichen

Digitalisierungsstrategie

Andreas Schmietendorf

Hochschule für Wirtschaft und Recht Berlin
Email: andreas.schmietendorf@hwr-berlin.de

1. Motivation

Klassische Unternehmen, wie z.B. in der Automobil- und Maschinenbaubranche, Banken, Versicherungen,
Versorger oder Speditionen, waren durch eine massive Ressourcenbindung (z.B. Rohstoffe, Anlagen, Fuhrpark,
Personal) und Fertigungstiefe gekennzeichnet. Für die Wettbewerbsfähigkeit moderner Unternehmen spielen
aktuelle und konsistente Kenntnisse der Kundenbedürfnisse, die Innovationsfähigkeit, die bedarfsgerechte und
agile Akquise von Ressourcen sowie vor allem die Möglichkeiten zur Abdeckung von globalen Märkten eine
entscheidende Rolle. Aufgrund der Omnipräsenz von Software können diese Einflüsse bzw. Anforderungen nur
über einfach integrierbare IT-Lösungen, die an den Unternehmensgrenzen keinen Halt machen beherrscht
werden. Web-APIs können entsprechend [Spencer 2015] das strategische, fachliche und technologische Rückrad
dieser unternehmensübergreifend wirkenden Integrationsanforderungen bilden.

„Application Programming Interfaces (API's) have gone from a something that only developers
and architects once discussed to emerge as a capability that is central to many successful
companies business strategies and a key focus of many of their senior leadership teams.”

Werden Web-APIs im Sinne eines zusätzlichen Vertriebskanals für Drittanbieter bereitgestellt, wird häufig auch
von einer API economy gesprochen. Neben der ökonomischen Perspektive sieht [Tang 2015] darin ein
Gestaltungsprinzip für kompositorisch orientierte Softwarearchitekturen, welches die Möglichkeiten moderner
Web-APIs mit korrespondierenden Geschäftsmodellen kombiniert. Ohne einen Anspruch auf Vollständigkeit zu
erheben, finden sich die Ursachen in den folgenden Aspekten:

- Web-APIs als Rückgrad mobiler Applikationen.

- Web-APIs als „Enabler・im Diskurs des IoT.

- Web-APIs als zusätzlicher Vertriebskanal.

- Web-APIs als Datenquelle für Big Data.

- Web-APIs als Kollaborationsplattform für soziale Medien.

Neben den primär wirtschaftlich und fachlich geprägten Einflüssen existieren auch technologische Treiber, wie
z.B. das Cloud-Computing, Agilitätsanforderungen im Software-Engineering oder aber die konkret eingesetzte
Schnittstellentechnologie. Diesbezüglich findet sich der Einsatz von RESTful-, XML/SOAP-, JSON- oder auch
programmiersprachspezifische Web-APIs, welche zumeist HTTP als Übertragungsprotokoll im Internet
benutzen.

2. Digitalisierung – Industrialisierung der IT

Moderne Unternehmen mit einer agilen Sourcingstrategie profitieren von den Möglichkeiten einer
umfänglichen Digitalisierung, da die für das Geschäft benötigten Daten, Funktionen und Algorithmen über
fachlich spezialisierte Service APIs aus dem Internet „ad hoc“ bezogen werden. Damit wird die
unternehmerische IT selbst zum Gegenstand der Industrialisierung. Für den Fall, dass diese nicht als
Kernkompetenz wahrgenommen wird, kommt es zu einer dramatischen Reduktion der Fertigungstiefe im
gesamten Lebenszyklus benötigter Softwarelösungen. Damit einher gehen Konsolidierungen der betroffenen

16 Position Paper

Software Measurement News 21(2016)2

Prozesse und Organisationen. Aus diesen resultieren veränderte Kompetenzbedürfnisse, aber auch
soziologische und gesellschaftliche Implikationen.

Im Diskurs der Digitalisierung stellt sich für alle Unternehmen die Frage, welchen Wertbeitrag
unternehmensinterne Daten darstellen und ob diese via Web APIs (Online) oder auch als Dateien (Offline) im
Internet zur Verfügung gestellt werden sollten. Die Bereitstellung unternehmensintern akquirierter
Informationen via Service APIs wird aktuell zumeist als ein Risiko, denn als Change zur Bewältigung der
Herausforderungen einer zunehmend digitalisierten Welt bewertet. In Abhängigkeit der aktuellen Marktpräsenz
können Innovationen so kurzzeitig behindert bzw. zurück gehalten werden. Allerdings entsagt sich das
betroffene Unternehmen so auch der Möglichkeiten von entsprechenden Interessengruppen und
Partnerschaften zu profitieren, einen zwingend benötigten Lernprozess in Gang zu setzen und nicht zuletzt die
Wünsche der Kunden analytisch bewerten und damit aktiv mit gestalten zu können. Ein derartiges Umfeld birgt
die Gefahr, sich vom digitalen Fortschritt abzukoppeln.

Es gilt zu klären, inwieweit die Innovations- und Wettbewerbsfähigkeit der Unternehmen unter dieser
„Abschottungspolitik“ leidet, da der kreative Umgang mit existierenden Informationen an den
Unternehmensgrenzen halt macht.

„Innovationen entstehen erst durch Assoziationen und das Übersetzen von Vorhandenem in neue
Kontexte.“1

Um das mit der Digitalisierung einhergehende Potential für den deutschen bzw. europäischen Standort
wirtschaftlich nutzen zu können, bedarf es regulatorischer Maßnahmen von Seiten des Gesetzgebers. Nur so
kann für kleinere und junge Unternehmen der Zugang zum „Rohstoff des 21. Jahrhunderts – den Daten“
gewährleistet werden, so dass kreative Lösungsansätze nicht an der Behäbigkeit und Geschlossenheit
marktbeherrschender Unternehmen und ihrer Lobbyisten scheitern. Noch haben singulär betrachtete Web APIs
einen geringen Einfluss auf existierende Unternehmensprozesse. Die globale API Economy besitzt allerdings das
Potential, virtualisierte Wertschöpfungsketten agil zu etablieren und damit unternehmerische Aktivitäten zu
revolutionieren. Bei immer kürzer werdenden Innovationszyklen und Produkten, die über Software definiert
werden, wird die Geschwindigkeit, mit der Lösungen am Markt platziert werden können, zum entscheidenden
Wettbewerbsfaktor.

3. Qualitative Anforderungen an Web-APIs

Wer von angebotenen Web-APIs profitieren möchte und eine Einbindung in die eigenen Geschäftsprozesse
vorsieht, um diese mit Informationen und Funktionen anzureichern bzw. zu optimieren, der muss von Anfang an
großen Wert auf die Service-Qualität legen [Schmietendorf 2016].

Es gilt, Web-APIs langfristig und stabil in bestehende Strukturen integrieren zu können, ohne dass im
Zweifelsfall schwerwiegende Konsequenzen drohen. Gleichzeitig muss es für den Entwickler möglich sein, den
externen Service mit geringem Aufwand einzubinden. Da die hinter einer Web-API liegenden
Implementierungen im Sinne einer Black-Box zumeist verborgen bleiben, bedarf es für die Integration einer
einfachen, sicheren, aber dennoch komfortabel zu handhabenden Schnittstelle [apigee 2012]. Die in Anlehnung
an [Musser 2014] erstellte Grafik zeigt ausgewählte Problembereiche von Web-APIs und mögliche Ansätze zur
Lösung.

1
 Quelle: Thomas Sattelberger: Wir brauchen Biotope für die Entwicklung von Neuem

http://goodimpact.org, 31. März 2016

Position Paper 17

Software Measurement News 21(2016)2

Dokumentation der Web- API

Einfachheit der Nutzung

Performance und Verfügbarkeit

Komplexität der Schnittstelle

Vertragliche Einsatzbedingungen

Strategische Entwicklung der Web- API

Konsistente Hypermedia Dokumente sowie

Ressourcen Spezifikation z.B. Swagger/RAML

Eindeutige Semantik, Lösungsmuster,

Quellcodefragmente und Test-GUI,

Monitoring des Betriebsverhaltenes über

z.B. ein webbasiertes Dashboard

Reduktion der Granularität (Objektanzahl)

sowie Einsatz von REST und JSON/XML

Exakte Aussagen zu Lizenzen, Dienstgütever-

einbarungen (SLA), Gerichtsstand und Kosten

Roadmap zum Service, Entwicklerforen und

explizite Versionierung

Potentielle Problembereiche Lösungsansätze

Datenschutz und Datensicherheit
Roadmap zum Service, Entwicklerforen und

explizite Versionierung

Abbildung 1: Qualitätsaspeke einer Web-API [Schmietendorf 2016]

Die zunehmende Bedeutung von Web-APIs im Bereich zur Verfügung gestellter Methoden des maschinellen
Lernens (Machine Learning) oder auch der natürlich sprachlichen Programmierung (Natural Language
Programing) impliziert ein notwendiges Vertrauen in die Richtigkeit der verwendeten Algorithmen.
Entsprechende Beispiele finden sich mit IBM Bluemix2 und den Watson Service APIs, dem Azure ML Studio3 von
Microsoft oder auch dem Marktplatz Algorithmia4.

In diesem Zusammenhang empfiehlt sich eine Plausibilisierung mit Hilfe von Zertifikaten, die durch
„vertrauenswürdige Dritte“ bereitgestellt werden. Ggf. bietet sich auch eine quelloffene Implementierung der
Web-API selbst an. Je nach Art der verwendeten Open-Source-Lizenzen sind dabei Risiken in Bezug auf
Compliance-Anforderunen zu prüfen.

4. Veranstaltungshinweis

Abschließend sei noch auf den diesjährigen BSOA/BCloud-Workshop am 03.11.2016 in Berlin (Gastgeber
Zalando) verwiesen. Im Mittelpunkt der Vorträge, Diskussionsrunden und des World Cafes stehen
domänenspezifische und wirtschaftliche Bewertungsfragen von Service APIs. Im Einzelnen geht es um die
Identifikation, Gestaltung, Bewertung sowie das Management von Service APIs im Diskurs verschiedener
Branchen (z.B. Banken, Versicherungen, Pharmazie) auseinander.

Beispiele für Themenbereiche:

 Welchen Einfluss haben Service APIs auf die Industrialisierung unternehmerische Prozessabläufe?

 Bewertung der mit Service APIs einhergehenden Möglichkeiten, im Sinne innovativer Produkte und
Dienstleistungen?

 Bewertungsansätze im Zusammenhang mit der Identifikation, Spezifikation, Bewertung und
Qualitätssicherung von Serviceangeboten.

2
 https://console.ng.bluemix.net/catalog/

3
 https://studio.azureml.net/

4
 https://algorithmia.com

18 Position Paper

Software Measurement News 21(2016)2

 Gestaltung von Architekturen zur serviceorientierten Verzahnung von unternehmensinternen
Lösungen mit Service APIs.

 Herausforderungen der Serviceorientierung im Kontext eines kollaborativen und interoperablen IT-
Service-Managements.

 Gewährleistung von Sicherheits- und Compliance-Aspekten in interoperablen Architekturansätzen.

Ein besonderes Highlight erwartet die Teilnehmer mit dem eingeladenen Keynote-Sprecher Herrn Michael
Binzen (Chefarchitekt DB Systel GmbH).

Web-Adresse zum Workshop:

 http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/2016/

5. Quellenverzeichnis

[apigee 2012] apigee, "Web API Design," apigee, 1 March 2012, [Online]. Available:
https://pages.apigee.com/rs/apigee/images/api-design-ebook-2012-03.pdf. [Accessed 2 July 2016].

[Musser 2014] Musser, J.: Ten Reasons Developers Hate Your API (and what to do about it), GlueCon 2014.
[Online]. Available: http://www.programmableweb.com/news/10-reasons-why-developers-hate-your-
api/2014/05/23. [Accessed 4 July 2016].

[Schmietendorf 2016] Schmietendorf, A.; Nadobny, K.; Hentschel, J.: Design Guidelines zur konstruktiven
Qualitätssicherung von Web-APIs, SQ Magazin: Ausgabe 40, ASQF, S. 18-19, September 2016

[Spencer 2015] Spencer, S.: The Service Oriented Business and how API's power the Service Oriented Startup,
APIdays Sydney/Australia, February 2015, [Online]. Available:
http://syd.apidays.io/APIdays_program.pdf [Accessed 2 July 2016].

[Tang 2014] Tang, L.: API Governance and Management, Service Technology Magazine, September/October
2014

http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/2016/

Position Paper 19

Software Measurement News 21(2016)2

Exceeding 99% in Defect Removal Efficiency (DRE)

for Software

Capers Jones

Draft 12.0 September 8, 2016

VP and CTO, Namcook Analytics LLC

Abstract

Software quality depends upon two important variables. The first variable is that of “defect potentials” or the
sum total of bugs likely to occur in requirements, architecture, design, code, documents, and “bad fixes” or new
bugs in bug repairs. Defect potentials are measured using function point metrics, since “lines of code” cannot
deal with requirements and design defects. (This paper uses IFPUG function points version 4.3. The newer
SNAP metrics are only shown experimentally due to insufficient empirical quality data with SNAP as of 2016.
However an experimental tool is included for calculating SNAP defects.) The second important measure is
“defect removal efficiency (DRE)” or the percentage of bugs found and eliminated before release of software to
clients. The metrics of Defect Potentials and Defect Removal Efficiency (DRE) were developed by IBM circa 1973
and are widely used by technology companies and also by insurance companies, banks, and other companies
with large software organizations. The author’s Software Risk Master (SRM) estimating tool predicts defect
potentials and defect removal efficiency (DRE) as standard quality outputs for all software projects.
Web: www.Namcook.com
Email: Capers.Jones3@gmail.com

Introduction

Defect potentials and defect removal efficiency (DRE) are useful quality metrics developed by IBM circa 1973
and widely used by technology companies as well as by banks, insurance companies, and other organizations
with large software staffs.

This combination of defect potentials using function points and defect removal efficiency (DRE) are the only
accurate and effective measures for software quality. The “Cost per defect metric” penalizes quality and makes
buggy software look better than high-quality software. The “Lines of code (LOC)” metric penalizes modern high-
level languages. The LOC metric can’t measure or predict bugs in requirements and design. The new technical
debt metric only covers about 17% of the true costs of poor quality.

Knowledge of effective software quality control has major economic importance because for over 50 years the
#1 cost driver for the software industry has been the costs of finding and fixing bugs. Table 1 shows the 15
major cost drivers for software projects in 2016. The cost drivers highlighted in red are attributable to poor
software quality:

http://www.namcook.com/
mailto:Capers.Jones3@gmail.com

20 Position Paper

Software Measurement News 21(2016)2

Table 1: U.S. Software Costs in Rank Order:
 1) The cost of finding and fixing bugs
 2) The cost of cancelled projects
 3) The cost of producing English words
 4) The cost of programming or code development
 5) The cost of requirements changes
 6) The cost of successful cyber-attacks
 7) The cost of customer support
 8) The cost of meetings and communication

9) The cost of project management
 10) The cost of renovation and migration
 11) The cost of innovation and new kinds of software

12) The cost of litigation for failures and disasters

13) The cost of training and learning
 14) The cost of avoiding security flaws
 15) The cost of assembling reusable components

Table 1 illustrates an important but poorly understood economic fact about the software industry. Four of the
15 major cost drivers can be attributed specifically to poor quality. The poor quality of software is a professional
embarrassment and a major drag on the economy of the software industry and for that matter a drag on the
entire U.S. and global economies. Poor quality is also a key reason for cost driver #2. A common reason for
cancelled software projects is because quality is so bad that schedule slippage and cost overruns turned the
project return on investment (ROI) from positive to negative. Note the alarming location of successful cyber-
attacks in 6th place (and rising) on the cost-driver list. Since security flaws are another form of poor quality it is
obvious that high quality is needed to deter successful cyber-attacks. Poor quality is also a key factor in cost
driver #12 or litigation for breach of contract. (The author has worked as an expert witness in 15 lawsuits. Poor
software quality is an endemic problem with breach of contract litigation. In one case against a major ERP
company, the litigation was filed by the company’s own shareholders who asserted that the ERP package
quality was so bad that it was lowering stock values!) A chronic weakness of the software industry for over 50
years has been poor measurement practices and bad metrics for both quality and productivity. For example
many companies don’t even start quality measures until late testing, so early bugs found by inspections, static
analysis, desk checking, and unit testing are unmeasured and invisible.

If you can’t measure a problem then you can’t fix the problem either. Software quality has been essentially
unmeasured and therefore unfixed for 50 years. This paper shows how quality can be measured with high
precision, and also how quality levels can be improved by raising defect removal efficiency (DRE) up above 99%,
which is where it should be for all critical software projects. Software defect potentials are the sum total of bugs
found in requirements, architecture, design, code, and other sources of error. The approximate U.S. average for
defect potentials is shown in table 2 using IFPUG function points version 4.3:.

Table 2: Average Software Defect Potentials circa 2016 for the United States

 Requirements 0.70 defects per function point

 Architecture 0.10 defects per function point

 Design 0.95 defects per function point

 Code 1.15 defects per function point

 Security code flaws 0.25 defects per function point

 Documents 0.45 defects per function point

 Bad fixes 0.65 defects per function point

 Totals 4.25 defects per function point

Position Paper 21

Software Measurement News 21(2016)2

Note that the phrase “bad fix” refers to new bugs accidentally introduced in bug repairs for older bugs. The
current U.S. average for bad-fix injections is about 7%; i.e. 7% of all bug repairs contain new bugs. For modules
that are high in cyclomatic complexity and for “error prone modules” bad fix injections can top 75%. For
applications with low cyclomatic complexity bad fixes can drop below 0.5%. Defect potentials are of necessity
measured using function point metrics. The older “lines of code” metric cannot show requirements,
architecture, and design defects not any other defect outside the code itself. (As of 2016 function points are
the most widely used software metric in the world. There are more benchmarks using function point metrics
than all other metrics put together.) Because of the effectiveness of function point measures compared to older
LOC measures an increasing number of national governments are now mandating function point metrics for all
software contracts. The governments of Brazil, Italy, Japan, Malaysia and South Korea now require function
points for government software. Table 3 shows the countries with rapid expansions in function point use:

Table 3 Countries Expanding Use of Function Points 2016

 1 Argentina
 2 Australia
 3 Belgium
 4 Brazil Required for government contracts

5 Canada
 6 China
 7 Finland
 8 France
 9 Germany
 10 India
 11 Italy Required for government contracts

12 Japan Required for government contracts

13 Malaysia Required for government contracts

14 Mexico
 15 Norway
 16 Peru
 17 Poland
 18 Singapore
 19 South Korea Required for government contracts

20 Spain
 21 Switzerland
 22 Taiwan
 23 The Netherlands
 24 United Kingdom
 25 United States

To be blunt, any company or government agency in the world that does not use function point metrics does not
have accurate benchmark data on either quality or productivity. The software industry has had poor quality for
over 50 years and a key reason for this problem is that the software industry has not measured quality well
enough make effective improvements. Cost per defect and lines of code both distort reality and conceal
progress. They are harmful rather than helpful in improving either quality or productivity. Lines of code
reverses true economic productivity and makes assembly language seem more productive than Objective C.
Cost per defect reverses true quality economics and makes buggy software look cheaper than high quality
software. These distortions of economic reality have slowed software progress for over 50 years.
The U.S. industries that tend to use function point metrics and therefore understand software economics fairly
well include automotive manufacturing, banks, commercial software, insurance, telecommunications, and some

22 Position Paper

Software Measurement News 21(2016)2

public utilities. For example Bank of Montreal was one of the world’s first users of function points after IBM
placed the metric in the public domain; Ford has used function point metrics for fuel injection and navigation
packages; Motorola has used function points for smart phone applications; AT&T has used function points for
switching software; IBM has used function points for both commercial software and also operating systems.
The U.S. industries that do not use function points widely and hence have no accurate data on either software
quality or productivity include the Department of Defense, most state governments, the U.S. Federal
government, and most universities (which should understand software economics but don’t seem to.)

Although the Department of Defense was proactive in endorsing the Software Engineering Institute (SEI)
capability maturity model integrated (CMMI), it lags the civilian sector in software metrics and measurements.
For that matter the SEI itself has not yet supported function point metrics nor pointed out to clients that both
lines of code and cost per defect distort reality and reverse the true economic value of high quality and high-
level programming languages. It is interesting that the author had a contract from the U.S. Air Force to examine
the benefits of ascending to the higher CMMI levels because the SEI itself had no quantitative data available. In
fact the findings from this study are shown later in this report in Table 12. Although the Department of Defense
itself lags in function point use some of the military services have used function points for important projects.
For example the U.S. Navy has used function points for shipboard gun controls and cruise missile navigation. If a
company or government agency wants to get serous in improving quality then the best and only effective
metrics for achieving this are the combination of defect potentials in function points and defect removal
efficiency (DRE).

Defect removal efficiency (DRE) is calculated by keeping accurate counts of all defects found during
development. After release all customer-reported bugs are included in the total. After 90 days of customer
usage DRE is calculated. If developers found 900 bugs and customer reported 50 bugs in the first three months
then DRE is 95%. Obviously bug reports don’t stop cold after 90 days, but the fixed 90-day interval provides an
excellent basis for statistical quality reports. The overall range in defect potentials runs from about 2.00 per
function point to more than 7.00 per function point. Factors that influence defect potentials include team skills,
development methodologies, CMMI levels, programming languages, and defect prevention techniques such as
joint application design (JAD) and quality function deployment (QFD). Some methodologies such as team
software process (TSP) are “quality strong” and have low defect potentials.) Agile is average for defect
potentials. Waterfall is worse than average for defect potentials. Table 4 shows the U.S. ranges for defect
potentials circa 2016:

Table 4: U.S Average Ranges of Defect Potentials Circa 2016

(Defects per IFPUG 4.3 function point)

 Defect Origins Best Average Worst

 Requirements 0.34 0.70 1.35

Architecture 0.04 0.10 0.20

Design

0.63 0.95 1.58

Code

0.44 1.15 2.63

Security flaws 0.18 0.25 0.40

Documents 0.20 0.45 0.54

Bad fixes

0.39 0.65 1.26

TOTAL

2.21 4.25 7.95

NOTE: the author’s Software Risk Master (SRM) estimating tool predicts defect potentials as a standard output
for every project estimated. Defect potentials obviously vary by size, with small projects typically having low
defect potentials. Defect potentials rise faster than size increases, with large systems above 10,000 function
points having alarmingly high defect potentials.

Position Paper 23

Software Measurement News 21(2016)2

Table 5 shows U.S. ranges in defect potentials from small projects of 1 function point up to massive systems of
100,000 function points:

Table 5: Software Defect Potentials per Function Point by Size

(Defects per IFPUG 4.3 function point)

 Function
 Points

Best Average Worst

 1

0.60 1.50 2.55

10

1.25 2.50 4.25

100

1.75 3.25 6.13

1000

2.14 4.75 8.55

10000

3.38 6.50 12.03

100000

4.13 8.25 14.19

Average

2.21 4.25 7.95

As can be seen defect potentials go up rapidly with application size. This is one of the key reasons why large
systems fail so often and also run late and over budget. Table 6 shows the overall U.S. ranges in defect removal
efficiency (DRE) by applications size from a size of 1 function point up to 100,000 function points. As can be
seen DRE goes down as size goes up:

Table 6: U.S. Software Average DRE Ranges by Application Size

Function
 Points

Best Average Worst

 1

99.90% 97.00% 94.00%

10

99.00% 96.50% 92.50%

100

98.50% 95.00% 90.00%

1000

96.50% 94.50% 87.00%

10000

94.00% 89.50% 83.50%

100000

91.00% 86.00% 78.00%

Average

95.80% 92.20% 86.20%

Table 7 is a somewhat complicated table that combines the results of tables 5 and 6; i.e. both defect potentials
and defect removal efficiency (DRE) ranges are now shown together on the same table. Note that as size
increases defect potentials also increase, but defect removal efficiency (DRE) comes down:

Table 7: Software Defect Potentials and DRE Ranges by Size

 Function
 Points

Best Average Worst

 1 Defect Potential 0.60 1.50 2.55

DRE 99.90% 97.00% 94.00%

Delivered defects 0.00 0.05 0.15

10 Defect Potential 1.25 2.50 4.25

24 Position Paper

Software Measurement News 21(2016)2

DRE 99.00% 96.00% 92.50%

Delivered defects 0.01 0.10 0.32

 100 Defect Potential 1.75 3.50 6.13

DRE 98.50% 95.00% 90.00%

Delivered defects 0.03 0.18 0.61

 1000 Defect Potential 2.14 4.75 8.55

DRE 96.50% 94.50% 87.00%

Delivered defects 0.07 0.26 1.11

 10000 Defect Potential 3.38 6.50 12.03

DRE 94.00% 89.50% 83.50%

Delivered defects 0.20 0.68 1.98

 100000 Defect Potential 4.13 8.25 14.19

DRE 91.00% 86.00% 78.00%

Delivered defects 0.37 1.16 3.12

Best-case results are usually found for software controlling medical devices or complex physical equipment such
as aircraft navigation packages, weapons systems, operating systems, or telecommunication switching systems.
These applications are usually large and range from about 1000 to over 100,000 function points in size. Large
complex applications require very high DRE levels in order for the physical equipment to operate safely. They
normally use pre-test inspections and static analysis and usually at least 10 test stages. Average-case results are
usually found among banks, insurance companies, manufacturing, and commercial software. These applications
are also on the large size and range from 1000 to more than 10,000 function points. Here too high levels of DRE
are important since these applications contain and deal with confidential data. These applications normally use
pre-test static analysis and at least 8 test stages.

Worst-case results tend to show up in litigation for cancelled projects or for lawsuits for poor quality. State,
municipal, and civilian Federal government software projects, and especially large systems such a taxation, child
support, and motor vehicles are often in the worst-case class. It is an interesting point that every lawsuit where
the author has worked as an expert witness has been for large systems > 10,000 function points in size. These
applications seldom use either pre-test inspections or static analysis and sometimes use only 6 test stages.
While function point metrics are the best choice for normalization, it is also important to know the actual
numbers of defects that are likely to be present when software applications are delivered to customers. Table 8
shows data from table 7 only expanded to show total numbers of delivered defects:

Table 8: U.S. Average Delivered Defects by Application Size

 Function

 Points

Best Average Worst

 1

0 0 1

 10

0 1 3

 100

3 18 61

 1000

75 261 1,112

 10000

2,028 6,825 19,841

 100000

3,713 11,550 31,218

 Average

970 3,109 8,706

Position Paper 25

Software Measurement News 21(2016)2

Here too it is painfully obvious that defect volumes go up with application size. However table 8 shows all
severity levels of delivered defects. Only about 1% of delivered defects will be in the high-severity class of 1 and
only about 14% in severity class 2. Severity class 3 usually has about 55% while severity 4 has about 30%.
Defect potentials have also varied by decade. Table 9 shows approximate values starting in 1960 and ending
with projected values for 2019. The reason for the gradual improvement in defect potentials include the advent
of newer programming languages, the average increase in organizations with higher CMMI levels, a gradual
decrease in application size, and a gradual increase on reusable materials from older applications.

Table 9: Defect Potentials by Decade

Best Average Worst

 1960-1969

2.85 5.50 10.29

 1970-1979

2.72 5.25 9.82

 1980-1989

2.59 5.00 9.35

 1990-1999

2.46 4.75 8.88

 2000-2009

2.33 4.50 8.42

 2010-2019

2.20 4.25 7.95

These severity levels are normally assigned by software quality assurance personnel. Because companies fix
high severity bugs faster than low severity bugs, clients often report bugs as being severity 2 that are really only
severity 3 or severity 4. While the IBM average for severity 2 bugs was about 14%, clients tend to exaggerate
and rank over 50% of bug reports as severity 2!
This classification of defect severity levels was developed by IBM circa 1960: It has been used for over 50 years
by thousands of companies for hundreds of thousands of software applications.

Table 10: IBM Defect Severity Scale (1960 – 2016)

Severity 1 Software does not work at all
Severity 2 Major features disabled and inoperative
Severity 3 Minor bug that does not prevent normal use
Severity 4 Cosmetic errors that do not affect operation
Invalid Defects not correctly reported; i.e. hardware problems reported as software
Duplicate Multiple reports of the same bug
Abeyant Unique defects found by only 1 client that cannot be duplicated

It is obvious that valid high-severity defects of severities 1 and 2 are the most troublesome for software
projects. Defect removal efficiency (DRE) is a powerful and useful metric. Every important project should
measure DRE and every important project should top 99% in DRE, but few do. As defined by IBM circa 1973 DRE
is measured by keeping track of all bugs found internally during development, and comparing these to
customer-reported bugs during the first 90 days of usage. If internal bugs found during development total 95
and customers report 5 bugs in the first three months of use then DRE is 95%.

Another important quality topic is that of “error-prone modules” (EPM) also discovered by IBM circa 1970. IBM
did a frequency analysis of defect distributions and was surprised to find that bugs are not randomly distributed,
but clump in a small number of modules. For example in the IBM IMS data base application there were 425

26 Position Paper

Software Measurement News 21(2016)2

modules. About 300 of these were zero-defect modules with no customer-reported bugs. About 57% of all
customer reported bugs were noted in only 31 modules out of 425. These tended to be high in cyclomatic
complexity, and also had failed to use pre-test inspections. Table 11 shows approximate results for EPM in
software by application size:

Table 11: Distribution of "Error Prone Modules" (EPM) in Software

 Function
 Points

Best Average Worst

 1

0 0 0
 10

0 0 0

 100

0 0 0
 1000

0 2 4

 10000

0 18 49
 100000

0 20 120

 Average

0 7 29

EPM were discovered by IBM but unequal distribution of bugs was also noted by many other companies whose
defect tracking tools can highlight bug reports by modules. For example EPM were confirmed by AT&T, ITT,
Motorola, Boeing, Raytheon, and other technology companies with detailed defect tracking systems. EPM tend
to resist testing, but are fairly easy to find using pre-test static analysis, pre-test inspections, or both. EPM are
treatable, avoidable conditions and should not be allowed to occur in modern software circa 2016. The
presence of EPM is a sign of inadequate defect quality measurements and inadequate pre-test defect removal
activities.

The author had a contract from the U.S. Air Force to examine the value of ascending to the higher levels of the
capability maturity model integrated (CMMI). Table 12 shows the approximate quality results for all five levels
of the CMMI:

Table 12: Software Quality and the SEI Capability Maturity

Model Integrated (CMMI) for 2,500 function points

CMMI Level Defect Defect Delivered Delivered

Potential per Removal Defects per Defects

Function Point Efficiency Function Point

SEI CMMI 1 4.50 87.00% 0.585 1,463

SEI CMMI 2 3.85 90.00% 0.385 963

SEI CMMI 3 3.00 96.00% 0.120 300

SEI CMMI 4 2.50 97.50% 0.063 156

SEI CMMI 5 2.25 99.00% 0.023 56

Table 12 was based on study by the author commissioned by the U.S. Air Force. Usage of the CMMI is
essentially limited to military and defense software. Few civilian companies use the CMMI and the author has
met several CIO’s from large companies and state governments that have never even heard of SEI or the CMMI.
Software defect potentials and DRE also vary by industry. Table 13 shows a sample of 15 industries with higher
than average quality levels out of a total of 75 industries where the author has data:

Position Paper 27

Software Measurement News 21(2016)2

Table 13: Software Quality Results by Industry

Defect Defect Delivered

Potentials Removal Defects

per Function
Point Efficiency per Function Pt

Industry

2016 2016 2016

Best Quality

 1 Manufacturing - medical devices 4.60 99.50% 0.02

2 Manufacturing - aircraft 4.70 99.00% 0.05

3 Government - military

4.70 99.00% 0.05

4 Smartphone/tablet applications 3.30 98.50% 0.05

5 Government - intelligence 4.90 98.50% 0.07

6 Software (commercial)

3.50 97.50% 0.09

7 Telecommunications operations 4.35 97.50% 0.11

8 Manufacturing - defense 4.65 97.50% 0.12

9 Manufacturing - telecommunications 4.80 97.50% 0.12

10 Process control and embedded 4.90 97.50% 0.12

11 Manufacturing - pharmaceuticals 4.55 97.00% 0.14

12 Professional support - medicine 4.80 97.00% 0.14

13 Transportation - airlines 5.87 97.50% 0.15

14 Manufacturing - electronics 4.90 97.00% 0.15

15 Banks - commercial

4.15 96.25% 0.16
There are also significant differences by country. Table 14 shows a sample of 15 countries with better than
average quality out of a total of 70 countries where the author has data:

Table 14: Samples of Software Quality by Country

Defect Defect Delivered

Potential Removal Defects

Countries

per FP Efficiency (DRE) per Function Pt

2016 2016 2016

Best Quality

 1 Japan

4.25 96.00% 0.17

2 India

4.90 95.50% 0.22

3 Finland

4.40 94.50% 0.24

4 Switzerland

4.40 94.50% 0.24

5 Denmark

4.25 94.00% 0.26

6 Israel

5.00 94.80% 0.26

7 Sweden

4.45 94.00% 0.27

8 Netherlands

4.40 93.50% 0.29

9 Hong Kong

4.45 93.50% 0.29

10 Brazil

4.50 93.00% 0.32

11 Singapore

4.80 93.40% 0.32

12 United Kingdom 4.55 93.00% 0.32

13 Malaysia

4.60 93.00% 0.32

14 Norway

4.65 93.00% 0.33

15 Taiwan

4.90 93.30% 0.33

28 Position Paper

Software Measurement News 21(2016)2

Countries such as Japan and India tend to be more effective in pre-test defect removal operations and to use
more certified test personnel than those lower down the table. Although not shown in table 14 the U.S. ranks
as country #19 out of the 70 countries from which the author has data. Table 15 shows quality comparison of
15 software development methodologies (this table is cut down from a larger table of 80 methodologies that
will be published in the author’s next book.)

Table15: Comparisons of 15 Software Methodologies

Defect Defect Delivered

Methodologies Potential Removal Defects

per FP Efficiency per FP

2016 2016 2016

Best Quality

 1 Reuse-oriented (85% reusable materials) 1.30 99.50% 0.007

2 Pattern-based development 1.80 99.50% 0.009

3 Animated, 3D, full color design development 1.98 99.20% 0.016

4 Team software process (TSP) + PSP 2.35 98.50% 0.035

5 Container development (65% reuse) 2.90 98.50% 0.044

6 Microservice development 2.50 98.00% 0.050

7 Model-driven development 2.60 98.00% 0.052

8 Microsoft SharePoint development 2.70 97.00% 0.081

9 Mashup development 2.20 96.00% 0.088

10 Product Line engineering 2.50 96.00% 0.100

11 DevOps development 3.00 94.00% 0.180

12 Pair programming development 3.10 94.00% 0.186

13 Agile + scrum 3.20 92.50% 0.240

14 Open-source development 3.35 92.00% 0.268

15 Waterfall development 4.60 87.00% 0.598

Table 16 shows the details of how defect removal efficiency (DRE) operates. Table 16 must of course use fixed
values but there are ranges for every row and column for both pre-test and test methods.
There are also variations in the numbers of pre-test removal and test stages used. Table 16 illustrates the
maximum number observed.
The data in table 16 is originally derived from IBM”s software quality data collection which is more complete
than most companies. Other companies have been studied as well. Note that requirements defects are among
the most difficult to remove since they are resistant to testing.
To consistently top 99% in DRE the minimum set of methods needed include most of the following:

Pre-Test Removal

1. Formal Inspections (requirements, design, code, etc.)

2. Code Static analysis

3. Automated Requirements modeling

4. Automated correctness proofs

Test Removal
1. Unit test (manual/automated)

2. Function test

3. Regression test

4. Integration test

Position Paper 29

Software Measurement News 21(2016)2

5. Performance test

6. Usability test

7. Security test

8. System test

9. Field or acceptance test

In other words a series of about 13 kinds of defect removal activities are generally needed to top 99% in DRE
consistently. Testing by itself without inspections or static analysis usually is below 90% in DRE.
Of course some critical applications such as medical devices and weapons systems use many more kinds of
testing. As many as 18 kinds of testing have been observed by the author. This paper uses 12 kinds of testing
since these are fairly common on large systems > 10,000 function points in size which is where quality is a
critical factor.
Note that DRE includes bugs that originate in architecture, requirements, design, code, documents, and “bad
fixes” or new bugs in bug repairs themselves. All bug origins should be included since requirements and design
bugs often outnumber code bugs.
Note that the defect potential for next table 16 is somewhat lower than the 4.25 value shown in tables 1, 2, and
3. This is because those tables includes all programming languages and some have higher defect potentials
than Java, which is used for table 16.
Code defect potentials vary by language with low-level languages such as assembly and C having a higher defect
potential than high-level languages such as Java, Objective C, C#, Ruby, Python, etc.

 Table16: Software Quality and Defect Removal Efficiency (DRE)

Note 1: The table represents high quality defect removal operations.

Application size in function points

 1,000

Application language

Java

Source lines per FP

53.33

Source lines of code

 53,330

Pre-Test Defect Architect. Require. Design Code Document TOTALS

Removal Methods Defects per

Defects
per

Defects
per

Defects
per Defects per

Function Function Function Function Function

Point Point Point Point Point

Defect Potentials per
Function Point 0.25 1.00 1.15 1.30 0.45 4.15

Defect potentials 250 1,000 1,150 1,300 450 4,150

 1 Requirement inspection 5.00% 87.00% 10.00% 5.00% 8.50% 26.52%

Defects discovered 13 870 115 65 38 1,101

Bad-fix injection 0 26 3 2 1 33

Defects remaining 237 104 1,032 1,233 411 3,016

 2 Architecture inspection 85.00% 10.00% 10.00% 2.50% 12.00% 13.10%

Defects discovered 202 10 103 31 49 395

Bad-fix injection 6 0 3 1 1 12

Defects remaining 30 93 925 1,201 360 2,609

 3 Design inspection 10.00% 14.00% 87.00% 7.00% 16.00% 36.90%

Defects discovered 3 13 805 84 58 963

30 Position Paper

Software Measurement News 21(2016)2

Bad-fix injection 0 0 24 3 2 48

Defects remaining 26 80 96 1,115 301 1,618

 4 Code inspection 12.50% 15.00% 20.00% 85.00% 10.00% 62.56%

Defects discovered 3 12 19 947 30 1,012

Bad-fix injection 0 0 1 28 1 30

Defects remaining 23 67 76 139 270 575

 5 Code Static Analysis 2.00% 2.00% 7.00% 55.00% 3.00% 15.92%

Defects discovered 0 1 5 76 8 92

Bad-fix injection 0 0 0 2 0 3

Defects remaining 23 66 71 60 261 481

 6 IV & V 10.00% 12.00% 23.00% 7.00% 18.00% 16.16%

Defects discovered 2 8 16 4 47 78

Bad-fix injection 0 0 0 0 1 2

Defects remaining 20 58 54 56 213 401

 7 SQA review 10.00% 17.00% 17.00% 12.00% 12.50% 30.06%

Defects discovered 2 10 9 7 27 54

Bad-fix injection 0 0 0 0 1 3

Defects remaining 18 48 45 49 185 344

Pre-test defects removed 232 952 1,105 1,251 265 3,805

Pre-test efficiency % 92.73% 95.23% 96.12% 96.24% 58.79% 91.69%

Test Defect Removal

Stages

Architect. Require. Design Code Document Total

1 Unit testing (Manual) 2.50% 4.00% 7.00% 35.00% 10.00% 11.97%

Defects discovered 0 2 3 17 19 41

Bad-fix injection 0 0 0 1 1 1

Defects remaining 18 46 41 31 166 301

 2 Function testing 7.50% 5.00% 22.00% 37.50% 10.00% 13.63%

Defects discovered 1 2 9 12 17 41

Bad-fix injection 0 0 0 0 0 1

Defects remaining 16 43 32 19 149 259

 3 Regression testing 2.00% 2.00% 5.00% 33.00% 7.50% 7.84%

Defects discovered 0 1 2 6 11 20

Bad-fix injection 0 0 0 0 0 1

Defects remaining 16 43 30 13 138 238

 4 Integration testing 6.00% 20.00% 22.00% 33.00% 15.00% 17.21%

Defects discovered 1 9 7 4 21 41

Bad-fix injection 0 0 0 0 1 1

Defects remaining 15 34 23 8 116 196

 5 Performance testing 14.00% 2.00% 20.00% 18.00% 2.50% 6.07%

Defects discovered 2 1 5 2 3 12

Bad-fix injection 0 0 0 0 0 0

Defects remaining 13 33 19 7 113 184

Position Paper 31

Software Measurement News 21(2016)2

6 Security testing 12.00% 15.00% 23.00% 8.00% 2.50% 7.71%

Defects discovered 2 5 4 1 3 14

Bad-fix injection 0 0 0 0 0 0

Defects remaining 11 28 14 6 110 169

 7 Usability testing 12.00% 17.00% 15.00% 5.00% 48.00% 36.42%

Defects discovered 1 5 2 0 53 62

Bad-fix injection 0 0 0 0 2 2

Defects remaining 10 23 12 6 56 106

 8 System testing 16.00% 12.00% 18.00% 12.00% 34.00% 24.81%

Defects discovered 2 3 2 1 19 26

Bad-fix injection 0 0 0 0 1 1

Defects remaining 8 20 10 5 36 79

 9 Cloud testing 10.00% 5.00% 13.00% 10.00% 20.00% 13.84%

Defects discovered 1 1 1 1 7 11

Bad-fix injection 0 0 0 0 0 0

Defects remaining 7 19 8 5 29 69

 10 Independent testing 12.00% 10.00% 11.00% 10.00% 23.00% 15.81%

Defects discovered 1 2 1 0 7 11

Bad-fix injection 0 0 0 0 0 0

Defects remaining 6 17 8 4 22 57

 11 Field (Beta) testing 14.00% 12.00% 14.00% 12.00% 34.00% 20.92%

Defects discovered 1 2 1 1 7 12

Bad-fix injection 0 0 0 0 0 0

Defects remaining 6 15 6 4 14 45

 12 Acceptance testing 13.00% 14.00% 15.00% 12.00% 24.00% 20.16%

Defects discovered 1 2 1 0 6 10

Bad-fix injection 0 0 0 0 0 0

Defects remaining 5 13 6 3 8 35

Test Defects Removed 13 35 39 46 177 309

Testing Efficiency % 73.96% 72.26% 87.63% 93.44% 95.45% 89.78%

Total Defects Removed 245 987 1,144 1,297 442 4,114

Total Bad-fix injection 7 30 34 39 13 123

Cumulative Removal % 98.11% 98.68% 99.52% 99.75% 98.13% 99.13%

Remaining Defects 5 13 6 3 8 36

High-severity Defects 1 2 1 1 1 5

Security Defects 0 0 0 0 0 1

Remaining Defects 0.0036 0.0102 0.0042 0.0025 0.0065 0.0278

per Function Point

Remaining Defects 3.63 10.17 4.23 2.46 6.48 27.81

per K Function Points

Remaining Defects 0.09 0.25 0.10 0.06 0.16 0.68

per KLOC

32 Position Paper

Software Measurement News 21(2016)2

Note: The letters “IV&V” in table 16 stand for “independent verification and validation.” This is a method used
by defense software projects but it seldom occurs in the civilian sector. The efficiency of IV&V is fairly low and
the costs are fairly high. DRE measures can be applied to any combination of pre-test and testing stages. Table
16 shows seven pre-test DRE activities and 12 kinds of testing: 19 forms of defect removal in total. This
combination would only be used on large defense systems and also on critical medical devices. It might also be
used on aircraft navigation and avionics packages. In other words software that might cause injury or death to
humans if quality lags are the most likely to use both DRE measures and sophisticated combinations of pre-test
and test removal methods.

As of 2016 the U.S. average for DRE is only about 92.50%. This is close to the average for Agile projects. The
U.S. norm is to use only static analysis before testing and six kinds of testing: unit test, function test, regression
test, performance test, system test, and acceptance test. This combination usually results in about 92.50% DRE.
If static analysis is omitted and only six test stages are used, DRE is normally below 85%. In this situation quality
problems are numerous. Note that when a full suite of pre-test defect removal and test stages are used, the
final number of defects released to customers often has more bugs originating in requirements and design than
in code. Due to static analysis and formal testing by certified test personnel, DRE for code defects can top
99.75%. It is harder to top 99% for requirements and design bugs since both resist testing and can only be
found via inspections, or by text static analysis.

Software Quality and Software Security

Software quality and software security have a tight relationship. Security flaws are just another kind of defect
potential. As defect potentials go up so do security flaws, as DRE declines more and more security flaws will be
released.
Of course security has some special methods that are not part of traditional quality assurance. One of these is
the use of ethical hackers and another is the use of penetration teams that deliberately try to penetrate the
security defenses of critical software applications.
Security also includes social and physical topics that are not part of ordinary software operations. For example
security requires careful vetting of personnel. Security for really critical applications may also require Faraday
cages around computers to ensure that remote sensors are blocked and can’t steal information from a distance
or though building walls.
To provide an approximate set of values for high-severity defects and security flaws table 16 shows what
happens when defect potentials increase and DRE declines. To add realism to this example table 17 uses a fixed
size of 1000 function points. Delivered defects, high-severity defects, and security flaws are shown in whole
numbers rather than defects per function point:

Table 17: Quality and Security Flaws for 1000 Function Points

 Defect DRE Delivered Delivered High Security

Potentials

Defects Defects Severity Flaw

per FP

per FP

Defects Defects

 2.50 99.50% 0.01 13 1 0

3.00 99.00% 0.03 30 3 0

3.50 97.00% 0.11 105 10 1

4.00 95.00% 0.20 200 21 3

4.25 92.50% 0.32 319 35 4

4.50 92.00% 0.36 360 42 6

5.00 87.00% 0.65 650 84 12

5.50 83.00% 0.94 935 133 20

6.00 78.00% 1.32 1,320 206 34

Position Paper 33

Software Measurement News 21(2016)2

The central row in the middle of this table highlighted in blue show approximate 2016 U.S. averages in terms of
delivered defects, high-severity defects, and latent security flaws for 1000 function points. The odds of a
successful cyber-attack would probably be around 15%. At the safe end of the spectrum where defect
potentials are low and DRE tops 99% the number of latent security flaws is 0. The odds of a successful cyber-
attack are very low at the safe end of the spectrum: probably below 1%. At the dangerous end of the spectrum
with high defect potentials and low DRE, latent security flaws top 20 for 1000 function points. This raises the
odds of a successful cyber-attack to over 50%.

Software Quality and Technical Debt

Ward Cunningham introduced an interesting metaphor called “technical debt” which concerns latent defects
present in software applications after deployment. The idea of technical debt is appealing but unfortunately
technical debt is somewhat ambiguous and every company tends to accumulate data using different methods
so it is hard to get accurate benchmarks. In general technical debt deals with the direct costs of fixing latent
defects as they are reported by users or uncovered by maintenance personnel. However there are other and
larger costs associated with legacy software and also new software that are not included in technical debt:

1. Litigation against software outsource contractors or commercial software vendors by disgruntled

users who sue for excessive defects.

2. Consequential damages or financial harm to users of defective software. For example if the

computerized brake system of an automobile fails and causes a serious accident, neither the cost of

repairing the auto nor any medical bills for injured passengers are included in technical debt.

3. Latent security flaws that are detected by unscrupulous organizations and lead to data theft, denial

of service, or other forms of cyber-attack are not included in technical debt either.

Technical debt is an appealing metaphor but until consistent counting rules become available it is not a
satisfactory quality metric. The author suggests that the really high cost topics of consequential damages,
cyber-attacks, and litigation for poor quality should be included in technical debt or at least not ignored as they
are in 2016.
Assume a software outsource vendor builds a 10,000 function point application for a client for a cost of
$30,000,000 and it has enough bugs to make the client unhappy. True technical debt or the costs of repairing
latent defects found and reported by clients over several years after deployment might cost about $5,000,000.
However depending upon what the application does, consequential damages to the client could top
$25,000,000; litigation by the unhappy client might cost $5,000,000; severe cyber-attacks and data theft might
cost $30,000,000: a total cost of $60,000,000 over and above the nominal amount for technical debt.
Of these problems cyber-attacks are the most obvious candidates to be added to technical debt because they
are the direct result of latent security flaws present in the software when it was deployed. The main difference
between normal bugs and security flaws is that cyber criminals can exploit security flaws to do very expensive
damages to software (and even hardware) or to steal valuable and sometimes classified information.
 In other words possible post-release costs due to poor quality control might approach or exceed twice the
initial costs of development; and 12 times the costs of “technical debt” as it is normally calculated.

SNAP Metrics for Non-Functional Size

In 2011 the IFPUG organization developed a new metric for non-functional requirements. This metric is called
“SNAP” which is sort of an acronym for “software non-functional assessment process.” (No doubt future
sociologists will puzzle over software naming conventions.) Unfortunately the SNAP metric was not created to
be equivalent to standard IFPUG function points. That means if you have 100 function points and 15 SNAP
points you cannot add them together to create 115 total “points.” This makes both productivity and quality
studies more difficult because function point and SNAP work needs to be calculated separately. Since one of the

34 Position Paper

Software Measurement News 21(2016)2

most useful purposes for function point metrics has been for predicting and measuring quality, the addition of
SNAP metrics to the mix has raised the complexity of quality calculations. Pasted below are the results of an
experimental quality calculation tool developed by the author that can combine defect potentials and defect
removal efficiency (DRE) for both function point metrics and the newer SNAP metrics.

Table 18: SNAP Software Defect Calculator
 6/9/2016

l

 Size in Function Points 1,000
 Size in SNAP Points 152

 Defect

Defects Defects SNAP
 Origins

Per FP per SNAP Percent

 Requirements 0.70 0.14 19.50%
 Architecture 0.10 0.02 15.50%
 Design

0.95 0.18 18.50%

 Source code 1.15 0.13 11.50%
 Security flaws 0.25 0.05 20.50%
 Documents 0.45 0.02 3.50%
 Bad Fixes

0.65 0.12 18.50%

 TOTALS

4.25 0.65 15.23%

 Defect

Defect Defects
 Origins

Potential Potential

 Requirements 700 21
 Architecture 100 2
 Design

 950 27

 Source code 1,150 20
 Security flaws 250 8
 Documents 450 2
 Bad Fixes

 650 18

 TOTALS

 4,250 99

 Defect

Removal Removal
 Origins

Percent Percent

 Requirements 75.00% 75.00%
 Architecture 70.00% 70.00%
 Design

96.00% 96.00%

Position Paper 35

Software Measurement News 21(2016)2

Source code 98.00% 98.00%
 Security flaws 87.00% 87.00%
 Documents 95.00% 95.00%
 Bad Fixes

78.00% 78.00%

 Average

85.57% 85.57%

 Defect

Delivered Delivered
 Origins

Defects Defects

 Requirements 175 5
 Architecture 30 1
 Design

 38 1

 Source code 23 0
 Security flaws 33 1
 Documents 23 0
 Bad Fixes

 143 4

 Total

 464 13

 Defect

Delivered Delivered SNAP
 Origins

Per FP per SNAP Percent

 Requirements 0.175 0.034 19.50%
 Architecture 0.030 0.005 15.50%
 Design

 0.038 0.007 18.50%

 Source code 0.023 0.003 11.50%
 Security flaws 0.023 0.007 29.61%
 Documents 0.143 0.026 18.50%
 Bad Fixes

 0.464 0.082 17.75%

 Total

 0.896 0.164 18.31%

In real life defect potentials go up with application size and defect removal efficiency (DRE) comes down with
application size. This experimental tool holds defect potentials and DRE as constant values. The purpose is
primarily to experiment with the ratios of SNAP defects and with DRE against SNAP bugs.
A great deal more study and more empirical data is needed before SNAP can actually become useful for
software quality analysis. Right now there is hardly any empirical data available on SNAP and software quality.

Economic Value of High Software Quality

One of the major economic weaknesses of the software industry due to bad metrics and poor measurements is
a total lack understanding of the economic value of high software quality. If achieving high quality levels added
substantially to development schedules and development costs it might not be worthwhile to achieve it. But
the good news is that high software quality levels comes with shorter schedules and lower costs than average
or poor quality! These reductions in schedules and costs, or course, are due to the fact that finding and fixing
bugs has been the #1 software cost driver for over 50 years. When defect potentials are reduced and DRE is
increased due to pre-test defect removal such as static analysis, then testing time and testing costs shrink
dramatically.

36 Position Paper

Software Measurement News 21(2016)2

Table 19 shows the approximate schedules in calendar months, the approximate effort in work hours per
function point, and the approximate $ cost per function point that results from various combinations of
software defect potentials and defect removal efficiency.
The good news for the software industry is that low defect potentials and high DRE levels are the fastest and
cheapest way to build software applications!

Table 19: Schedules, Effort, Costs for 1000 Function Points

(Monthly costs = $10,000)

 Defect DRE Delivered Delivered Schedule Work Development $ per

Potentials

Defects Defects Months Hours per Cost per Defect

per FP

per FP

Function Function (Caution!)

Point Point

 2.50 99.50% 0.01 13 13.34 12.00 $909.09 $4,550.00

3.00 99.00% 0.03 30 13.80 12.50 $946.97 $3,913.00

3.50 97.00% 0.11 105 14.79 13.30 $1,007.58 $3,365.18

4.00 95.00% 0.20 200 15.85 13.65 $1,034.09 $2,894.05

4.25 92.50% 0.32 319 16.00 13.85 $1,050.00 $2,488.89

4.50 92.00% 0.36 360 16.98 14.00 $1,060.61 $2,140.44

5.00 87.00% 0.65 650 18.20 15.00 $1,136.36 $1,840.78

5.50 83.00% 0.94 935 19.50 16.50 $1,250.00 $1,583.07

6.00 78.00% 1.32 1,320 20.89 17.00 $1,287.88 $1,361.44

The central row highlighted in blue shows approximate U.S. average values for 2016. This table also shows the
“cost per defect” metric primarily to caution readers that this metric is inaccurate and distorts reality since it
make buggy applications look cheaper than high-quality applications.

A Primer on Manufacturing Economics and the Impact of Fixed Costs

The reason for the distortion of the cost per defect metric is because cost per defect ignores the fixed costs of
writing test cases, running test cases, and for maintenance the fact that the change team must be ready
whether or not bugs are reported.
To illustrate the problems with the cost per defect metric, assume you have data on four identical applications
of 1000 function points in size. Assume for all four that writing test cases costs $10,000 and running test cases
costs $10,000 so fixed costs are $20,000 for all four cases.
Now assume that fixing bugs costs exactly $500 each for all four cases. Assume Case 1 found 100 bugs, Case 2
found 10 bugs, Case 3 found 1 bug, and Case 4 had zero defects with no bugs found by testing. Table 20
illustrates both cost per defect and cost per function point for these four cases:

Table 20: Comparison of $ per defect and $ per function point

Case 1 Case 2 Case 3 Case 4

 Fixed costs

$20,000 $20,000 $20,000 $20,000

 Bug repairs

$50,000 $5,000 $500 $0

 Total costs

$70,000 $25,000 $20,500 $20,000

Position Paper 37

Software Measurement News 21(2016)2

 Bugs found

100 10 1 0

 $ per defect

$700 $2,500 $20,500 Infinite

 $ per FP

$70.00 $25.00 $20.50 $20.00

As can be seen the “cost per defect” metric penalizes quality and gets more expensive as defect volumes
decline. This is why hundreds of refereed papers all claim that cost per defect goes up later in development.
The real reason that cost per defect goes up is not that the actual cost of defect repairs goes up, but rather fixed
costs make it look that way. Cost per function point shows the true economic value of high quality and this
goes down as defects decline.

Recall a basic law of manufacturing economics that “If a manufacturing process has a high percentage of fixed
costs and there is a decline in the number of units produced, the cost per unit will go up .” For over 50 years the
cost per defect metric has distorted reality and concealed the true economic value of high quality software.
Some researchers have suggested leaving out the fixed costs of writing and running test cases and only
considering the variable costs of actual defect repairs. This violates both economic measurement principles and
also and good sense. Would you want a contractor to give you an estimate for building a house that only
showed foundation and framing costs but not the more variable costs of plumbing, electrical wiring, and
internal finishing? Software Cost of Quality (COQ) needs to include ALL of the cost elements of finding and
fixing bugs and not just a small subset of those costs.

The author has read over 100 refereed software articles in major journals such as IEEE Transactions, IBM
Systems Journal, Cutter Journal, and others that parroted the stock phrase “It costs 100 times more to fix a bug
after release than it does early in development.” Not even one of these 100 articles identified the specific
activities that were included in the cost per defect data. Did the authors include test case design, test case
development, test execution, defect logging, defect analysis, inspections, desk checking, correctness proofs,
static analysis, all forms of testing, post-release defects, abeyant defects, invalid defects, duplicate defects, bad
fix injections, error-prone modules or any of the other topics that actually have a quantified impact on defect
repairs?

Not even one of the 100 journal articles included such basic information on the work elements that comprised
the “cost per defect” claims by the authors. In medical journals this kind of parroting of a stock phrase without
defining any of its elements would be viewed as professional malpractice. But the software literature is so lax
and so used to bad data, bad metrics, and bad measures that none of the referees probably even noticed that
the cost per defect claims were unsupported by any facts at all. The omission of fixed costs also explains why
“lines of code” metrics are invalid and penalize high-level languages. In the case of LOC metrics requirements,
design, architecture, and other kinds of non-code work are fixed costs, so when there is a switch from a low-
level language such as assembly to a higher level language such as Objective C the “cost per line of code” goes
up.

Table 21 shows 15 programming languages with cost per function point and cost per line of code in side by side
columns, to illustrate that LOC penalizes high-level programming languages, distorts reality, and reverses the
true economic value of high-level programming languages:

Table 21: Productivity Expressed Using both LOC and Function Points

Languages Size in Coding Total Total $ per $ per

LOC Work hrs Work hrs Costs FP LOC

 1 Application Generators 7,111 1,293 4,293 $325,222 $325.22 $45.73

2 Mathematica10 9,143 1,662 4,662 $353,207 $353.21 $38.63

38 Position Paper

Software Measurement News 21(2016)2

3 Smalltalk 21,333 3,879 6,879 $521,120 $521.12 $24.43

4 Objective C 26,667 4,848 7,848 $594,582 $594.58 $22.30

5 Visual Basic 26,667 4,848 7,848 $594,582 $594.58 $22.30

6 APL 32,000 5,818 8,818 $668,044 $668.04 $20.88

7 Oracle 40,000 7,273 10,273 $778,237 $778.24 $19.46

8 Ruby 45,714 8,312 11,312 $856,946 $856.95 $18.75

9 Simula 45,714 8,312 11,312 $856,946 $856.95 $18.75

10 C# 51,200 9,309 12,309 $932,507 $932.51 $18.21

11 ABAP 80,000 14,545 17,545 $1,329,201 $1,329.20 $16.62

12 PL/I 80,000 14,545 17,545 $1,329,201 $1,329.20 $16.62

13 COBOL 106,667 19,394 22,394 $1,696,511 $1,696.51 $15.90

14 C 128,000 23,273 26,273 $1,990,358 $1,990.36 $15.55

15 Macro Assembly 213,333 38,788 41,788 $3,165,748 $3,165.75 $14.84

Recall that the standard economic definition for productivity for more than 200 years has been “Goods or
services produced per unit of labor or expense.” If a line of code is selected as a unit of expense then moving
to a high-level programming language will drive up the cost per LOC because of the fixed costs of non-code
work.

Function point metrics, on the other hand, do not distort reality and are a good match to manufacturing
economics and also to standard economics because they correctly show that the least expensive version has
the highest economic productivity. LOC metrics make the most expensive version seem to have higher
productivity than the cheapest, which of course violates standard economics. Also, software has a total of 126
occupation groups. The only occupation that can be measured at with “lines of code” is that of programming.
Function point metrics, on the other hand, can measure the productivity of non-code occupations such as
business analysts, architects, data base designers, technical writers, project management and everybody else.
The author is often asked questions such as “If cost per defect and lines of code are such bad metrics why do so
many companies still use them?” The questioners are assuming, falsely, that if large numbers of people do
something it must be beneficial. There is no real correlation between usage and benefits. Usually it is only
necessary to pose a few counter questions:

“If obesity is harmful why are so many people overweight?”

“If tobacco is harmful why do so many people smoke?”

As will be shown later in this report the number of users of the very harmful anti-pattern development
methodology outnumber the users of the very beneficial pattern-based development methodology. There is
very poor correlation between value and numbers of users. Many harmful things have thousands of users.
The reason for continued usage of bad metrics is “cognitive dissonance” which is a psychological topic studied
by Dr. Leon Festinger and first published in 1962. Today there is an extensive literature on cognitive
dissonance. Dr. Festinger studied opinion formation and found that once an idea is accepted by the human
mind, it is locked in place and won’t change until evidence against the idea is overwhelming. Then there will be
an abrupt change to a new idea. Cognitive dissonance has been a key factor for resistance to many new
innovations and new scientific theories including:

 Resistance to the theories of Copernicus and Galileo.

 Resistance to Lister’s and Semmelweis’s proposals for sterile surgical procedures.

 Resistance to Alfred Wegener’s theory of continental drift.

 Resistance to Charles Darwin’s theory of evolution.

 British naval resistance to self-leveling shipboard naval cannons.

 Union and Confederate Army resistance to replacing muskets with rifles.

Position Paper 39

Software Measurement News 21(2016)2

 Naval resistance to John Ericsson’s inventions of screw propellers and iron-clad ships.

 Army resistance to Christie’s invention of military tank treads.

 Military and police resistance to Samuel Colt’s revolvers (he went bankrupt.)

 Military resistance and the court martial of Gen. Billy Mitchell for endorsing air power.

Cognitive dissonance is a powerful force that has slowed down acceptance of many useful technologies. Table
22 illustrates the use of function points for 40 software development activities. It is obvious that serious
software economic analysis needs to use activity-based costs and not just use single-point measures or phase-
based measures neither of which can be validated.

Table 22: Function Points for Activity-Based Cost Analysis for 10,000 Function Points

Work Burdened

Hours per Cost per Project % of

Development Activities Funct. Pt. Funct. Pt. Cost Total

 1 Business analysis 0.01 $0.42 $4,200 0.02%

2 Risk analysis/sizing 0.00 $0.14 $1,400 0.01%

3 Risk solution planning 0.00 $0.21 $2,100 0.01%

4 Requirements 0.29 $23.33 $233,333 1.36%

5 Requirement. Inspection 0.24 $19.09 $190,909 1.11%

6 Prototyping 0.38 $30.00 $30,000 0.17%

7 Architecture 0.05 $4.20 $42,000 0.24%

8 Architecture. Inspection 0.04 $3.00 $30,000 0.17%

9 Project plans/estimates 0.04 $3.00 $30,000 0.17%

10 Initial Design 0.66 $52.50 $525,000 3.06%

11 Detail Design 0.88 $70.00 $700,000 4.08%

12 Design inspections 0.53 $42.00 $420,000 2.45%

13 Coding 6.60 $525.00 $5,250,000 30.58%

14 Code inspections 3.30 $262.50 $2,625,000 15.29%

15 Reuse acquisition 0.00 $0.14 $1,400 0.01%

16 Static analysis 0.01 $0.70 $7,000 0.04%

17 COTS Package purchase 0.01 $0.42 $4,200 0.02%

18 Open-source acquisition. 0.00 $0.21 $2,100 0.01%

19 Code security audit. 0.07 $5.25 $52,500 0.31%

20 Ind. Verif. & Valid. (IV&V) 0.01 $1.05 $10,500 0.06%

21 Configuration control. 0.03 $2.10 $21,000 0.12%

22 Integration 0.02 $1.75 $17,500 0.10%

23 User documentation 0.26 $21.00 $210,000 1.22%

24 Unit testing 1.06 $84.00 $840,000 4.89%

25 Function testing 0.94 $75.00 $750,000 4.37%

26 Regression testing 1.47 $116.67 $1,166,667 6.80%

27 Integration testing 1.06 $84.00 $840,000 4.89%

28 Performance testing 0.26 $21.00 $210,000 1.22%

29 Security testing 0.38 $30.00 $300,000 1.75%

30 Usability testing 0.22 $17.50 $175,000 1.02%

31 System testing 0.75 $60.00 $600,000 3.49%

32 Cloud testing 0.06 $4.38 $43,750 0.25%

33 Field (Beta) testing 0.03 $2.63 $26,250 0.12%

40 Position Paper

Software Measurement News 21(2016)2

34 Acceptance testing 0.03 $2.10 $21,000 0.12%

35 Independent testing 0.02 $1.75 $17,500 0.10%

36 Quality assurance 0.18 $14.00 $140,000 0.82%

37 Installation/training 0.03 $2.63 $26,250 0.15%

38 Project measurement 0.01 $1.11 $11,053 0.06%

39 Project office 0.24 $19.09 $190,909 1.11%

40 Project management 1.76 $140.00 $1,400,000 8.15%

Cumulative Results 21.91 $1,743.08 $17,168,521 100.00%

In table 22 the activities that are related to software quality are highlighted in blue. Out of a total of 40
activities 26 of them are directly related to quality and defect removal. These 26 quality-related activities sum
to 50.50% of software development costs while actual coding is only 30.58% of development costs. The
accumulated costs for defect-related activities were $8,670,476. The author is not aware of any other industry
where defect-related costs sum to more than half of total development costs. This is due to the high error
content of custom designs and manual coding, rather than construction of software from certified reusable
components.

So long as software is built using custom designs and manual coding defect detection and defect removal must
be the major cost drivers of all software applications. Construction of software from certified reusable
components would greatly increase software productivity and benefit the economics of not only software itself
but of all industries that depend on software, which essentially means every industry in the world. Table 22
shows the level of granularity needed to understand the cost structures of large software applications where
coding is just over 30% of the total effort. Software management and C-level executives such as Chief Financial
Officers (CFO) and Chief Information Officers (CIO) need to understand the complete set of activity-based costs
and also costs by occupation group such as business analysts and architects over and above programmers.

When you build a house you need to know the costs of everything: foundations, framing, electrical systems,
roofing, plumbing etc. You also need to know the separate costs of architects, carpenters, plumbers,
electricians, and all of the other occupations that work on the house. Here too for large systems in the 10,000
function point size range a proper understanding of software economics needs measurements of ALL activities
and all occupation groups and not just coding programmers, whose effort is often less than 30% of the total
effort for large systems.

Both LOC metrics and cost per defect metrics should probably be viewed as professional malpractice for
software economic studies because they both distort reality and make bad results look better than good
results. It is no wonder that software progress resembles and drunkard’s walk when hardly anybody knows how
to measure either quality or productivity with metrics that make sense and match standard economics.

Software’s Lack of Accurate Data and Poor Education on Quality and Cost of Quality (COQ)

One would think that software manufacturing economics would be taught in colleges and universities as part of
computer science and software engineering curricula, but universities are essentially silent on the topic of fixed
costs probably because the software faculty does not understand software manufacturing economics either.
There are a few exceptions such as the University of Montreal however. The private software education
companies and the professional associations are also silent on the topic of software economics and the hazards
of cost per defect and lines of code. It is doubtful if either of these sectors understands software economics well
enough to teach it. They certainly don’t seem to understand either function points or quality metrics such as
defect removal efficiency (DRE). Even more surprising some of the major software consulting groups with
offices and clients all over the world are also silent on software economics and the hazards of both cost per
defect and lines of code. Gartner Group uses function points but apparently has not dealt with the impact of
fixed costs and the distortions caused by the LOC and cost per defect metrics.

Position Paper 41

Software Measurement News 21(2016)2

You would think that major software quality tool vendors such as those selling automated test tools, static
analysis tools, defect tracking tools, automated correctness proofs, or test-case design methods based on
cause-effect graphs or design of experiments would measure defect potentials and DRE because these metrics
could help to demonstrate the value of their products. Recall that IBM used defect potentials and DRE metrics
to prove the value of formal inspections back in 1973.

But the quality companies are just as clueless as their clients when it comes to defect potentials and defect
removal efficiency (DRE) and the economic value of high quality. They make vast claims of quality
improvements but provide zero quantitative data. For example only CAST Software that sells static analysis
uses function points on a regular basis from among the major quality tool companies. But even CAST does not
use defect potentials and DRE although some of their clients do. You would also think that project management
tool companies that market tools for progress and cost accumulation reporting and project dashboards would
support function points and show useful economic metrics such as work hours per function point and cost per
function point. You would also think they would support activity-based costs. However most project
management tools do not support either function point metrics or activity-based costs, although a few do
support earned value and some forms of activity-based cost analysis. This means that standard project
management tools are not useful for software benchmarks since function points are the major benchmark
metric.

The only companies and organizations that seem to know how to measure quality and economic productivity
are the function point associations such as COSMIC, FISMA, IFPUG, and NESMA; the software benchmark
organizations such as ISBSG, David’s Consulting, Namcook Analytics, TIMetricas, Q/P Management Group, and
several others; and some of the companies that sell parametric estimation tools such as KnowledgePlan, SEER,
SLIM, and the author’s Software Risk Master (SRM). In fact the author’s SRM tool predicts software application
size in a total of 23 metrics including all forms of function points plus story points, use-case points, physical and
logical code, and a number of others. It even predicts bad metrics such as cost per defect and lines of code
primarily to demonstrate to clients why those metrics distort reality. Probably not one reader out of 1000 of this
paper has quality and cost measures that are accurate enough to confirm or challenge the data in tables 19, 20,
and 21 because software measures and metrics have been fundamentally incompetent for over 50 years. This
kind of analysis can’t be done with “cost per defect” or “lines of code” because they both distort reality and
conceal the economic value of software quality.

However the comparatively few companies and fewer government organizations that do measure software
costs and quality well using function points and DRE can confirm the results. The quality pioneers of Joseph
Juran, W. Edwards Deming, and Phil Crosby showed that for manufactured products quality is not only free it
also saves time and money. The same findings are true for software, only software has lagged all other
industries in discovering the economic value of high software quality because software metrics and measures
have been so bad that they distorted reality and concealed progress. The combination of function point metrics
and defect removal efficiency (DRE) measures can finally prove that high software quality, like the quality of
manufactured products, lowers development costs and shortens development schedules. High quality also
lowers maintenance costs, reduces the odds of successful cyber-attacks, and improves customer satisfaction
levels.

Summary and Conclusions

The combination of defect potentials and defect removal efficiency (DRE) measures provide software
engineering and quality personnel with powerful tools for predicting and measuring all forms of defect
prevention and all forms of defect removal.

Function points are the best metric for normalizing software defect potentials because function points are the
only metrics that can handle requirements, design, architecture, and other sources of non-code defects. This
paper uses IFPUG 4.3 function points. Other forms of function point metric such as COSMIC, FISMA, NESMA,
etc. would be similar but not identical to the values shown here.

42 Position Paper

Software Measurement News 21(2016)2

As of 2016 there is insufficient data on SNAP metrics to show defect potentials and defect removal efficiency.
However it is suspected that non-functional requirements contribute to defect potentials in a significant
fashion. There is insufficient data in 2016 to judge DRE values against non-functional defects. Note that the
author’s Software Risk Master (SRM) tool predicts defect potentials and defect removal efficiency (DRE) as
standard outputs for all projects estimated.

For additional information on 25 methods of pre-test defect removal and 25 forms of testing, see The
Economics of Software Quality, Addison Wesley, 2012 by Capers Jones and Olivier Bonsignour.

References and Readings on Software Quality

Beck, Kent; Test-Driven Development; Addison Wesley, Boston, MA; 2002; ISBN 10: 0321146530; 240 pages.

Black, Rex; Managing the Testing Process: Practical Tools and Techniques for Managing Hardware and Software

Testing; Wiley; 2009; ISBN-10 0470404159; 672 pages.

Chelf, Ben and Jetley, Raoul; “Diagnosing Medical Device Software Defects Using Static Analysis”; Coverity

Technical Report, San Francisco, CA; 2008.

Chess, Brian and West, Jacob; Secure Programming with Static Analysis; Addison Wesley, Boston, MA; 20007;

ISBN 13: 978-0321424778; 624 pages.

Cohen, Lou; Quality Function Deployment – How to Make QFD Work for You; Prentice Hall, Upper Saddle River,

NJ; 1995; ISBN 10: 0201633302; 368 pages.

Crosby, Philip B.; Quality is Free; New American Library, Mentor Books, New York, NY; 1979; 270 pages.

Everett, Gerald D. And McLeod, Raymond; Software Testing; John Wiley & Sons, Hoboken, NJ; 2007; ISBN 978-0-

471-79371-7; 261 pages.

Festinger, Dr. Leon; A Theory of Cognitive Dissonance; Stanford University Press, 1962.

Gack, Gary; Managing the Black Hole: The Executives Guide to Software Project Risk; Business Expert

Publishing, Thomson, GA; 2010; ISBN10: 1-935602-01-9.

Gack, Gary; Applying Six Sigma to Software Implementation Projects;

http://software.isixsigma.com/library/content/c040915b.asp.

Gilb, Tom and Graham, Dorothy; Software Inspections; Addison Wesley, Reading, MA; 1993; ISBN 10:

0201631814.

Hallowell, David L.; Six Sigma Software Metrics, Part 1.;

http://software.isixsigma.com/library/content/03910a.asp.

International Organization for Standards; ISO 9000 / ISO 14000; http://www.iso.org/iso/en/iso9000-

14000/index.html.

Jones, Capers: Software Risk Master (SRM) tutorial; Namcook Analytics LLC, Narragansett RI, 2015.

Jones, Capers: Software Defect Origins and Removal Methods; Namcook Analytics LLC; Narragansett RI, 2015.

Jones, Capers: The Mess of Software Metrics; Namcook Analytics LLC, Narragansett RI; 2015.

Jones, Capers; The Technical and Social History of Software Engineering; Addison Wesley, 2014.

http://software.isixsigma.com/library/content/c040915b.asp
http://software.isixsigma.com/library/content/03910a.asp
http://www.iso.org/iso/en/iso9000-14000/index.html
http://www.iso.org/iso/en/iso9000-14000/index.html

Position Paper 43

Software Measurement News 21(2016)2

Jones, Capers and Bonsignour, Olivier; The Economics of Software Quality;
 Addison Wesley, Boston, MA; 2011; ISBN 978-0-13-258220-9; 587 pages.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York; 2010; ISBN 978-0-07-162161-8;660

pages.

Jones, Capers; Applied Software Measurement; McGraw Hill, 3rd edition 2008; ISBN 978=0-07-150244-3; 662

pages.

Jones, Capers; Critical Problems in Software Measurement; Information Systems Management Group, 1993;

ISBN 1-56909-000-9; 195 pages.

Jones, Capers; Software Productivity and Quality Today -- The Worldwide Perspective; Information Systems

Management Group, 1993; ISBN -156909-001-7; 200 pages.

Jones, Capers; Assessment and Control of Software Risks; Prentice Hall, 1994; ISBN 0-13-741406-4; 711 pages.

Jones, Capers; New Directions in Software Management; Information Systems Management Group; ISBN 1-

56909-009-2; 150 pages.

Jones, Capers; Patterns of Software System Failure and Success; International Thomson Computer Press,

Boston, MA; December 1995; 250 pages; ISBN 1-850-32804-8; 292 pages.

Jones, Capers; Software Quality – Analysis and Guidelines for Success; International Thomson Computer Press,

Boston, MA; ISBN 1-85032-876-6; 1997; 492 pages.

Jones, Capers; Estimating Software Costs; 2nd edition; McGraw Hill, New York; 2007; 700 pages..

Jones, Capers; “The Economics of Object-Oriented Software”; SPR Technical Report; Software Productivity

Research, Burlington, MA; April 1997; 22 pages.

Jones, Capers; “Software Project Management Practices: Failure Versus Success”;

Crosstalk, October 2004.

Jones, Capers; “Software Estimating Methods for Large Projects”; Crosstalk, April 2005.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd edition; Addison Wesley Longman,

Boston, MA; ISBN 0-201-72915-6; 2003; 528 pages.

Land, Susan K; Smith, Douglas B; Walz, John Z; Practical Support for Lean Six Sigma Software Process Definition:

Using IEEE Software Engineering Standards; WileyBlackwell; 2008; ISBN 10: 0470170808; 312 pages.

Mosley, Daniel J.; The Handbook of MIS Application Software Testing; Yourdon Press, Prentice Hall; Englewood

Cliffs, NJ; 1993; ISBN 0-13-907007-9; 354 pages.

Myers, Glenford; The Art of Software Testing; John Wiley & Sons, New York; 1979; ISBN 0-471-04328-1; 177

pages.

Nandyal; Raghav; Making Sense of Software Quality Assurance; Tata McGraw Hill Publishing, New Delhi, India;

2007; ISBN 0-07-063378-9; 350 pages.

44 Position Paper

Software Measurement News 21(2016)2

Radice, Ronald A.; High Qualitiy Low Cost Software Inspections; Paradoxicon Publishingl Andover, MA; ISBN 0-
9645913-1-6; 2002; 479 pages.

Royce, Walker E.; Software Project Management: A Unified Framework; Addison Wesley Longman, Reading,

MA; 1998; ISBN 0-201-30958-0.

Wiegers, Karl E.; Peer Reviews in Software – A Practical Guide; Addison Wesley Longman, Boston, MA; ISBN 0-

201-73485-0; 2002; 232 pages.

 New Books on Software Measurement 45

Software Measurement News 21(2016)2

Abran, A.:

Software Project Estimation: The Fundamentals for Providing

High Quality Information to Decision Makers

 Wiley IEEE Computer Society Press, 2015 (288 pages), ISBN 978-1-118-95408-9

This book introduces theoretical concepts to explain the fundamentals of the design and evaluation of

software estimation models. It provides software professionals with vital information on the best

software management software out there.

 End-of-chapter exercises

 Over 100 figures illustrating the concepts presented throughout the book

 Examples incorporated with industry data

Seufert, M.; Ebert, C, Fehlmann, T.; Pechlivanidis, S.; Dumke, R. R.:

MetriKon 2015 - Praxis der Softwaremessung
Tagungsband des DASMA Software Metrik Kongresses

 5. - 6. November 2015, IBM, Köln

Shaker Verlag, Aachen, 2015 (272 Seiten)

The book includes the proceedings of the MetriKon 2015 held in Cologne in November 2015, which

constitute a collection of theoretical studies in the field of software measurement and case reports on

the application of software metrics in companies and universities.

46 New Books on Software Measurement

Software Measurement News 21(2016)2

Schmietendorf, A.; Simon, F.:

BSOA/BCloud 2015
10. Workshop Bewertungsaspekte serviceorientierter Architekturen

3. November 2015, Leipzig

Shaker Verlag, Aachen, 2015 (112 Seiten), ISBN 978-3-8440-2108-0

The book includes the proceedings of the BSOA/BCloud 2015 held in Leipzig in November 2015,

which constitute a collection of theoretical studies in the field of measurement and evaluation of

service oriented and cloud architectures.

 New Books on Software Measurement 47

Software Measurement News 21(2016)2

Konstantina Richter, Reiner Dumke:

Modeling, Evaluating and Predicting
IT Human Resource Performance

CRC Press, Boca Raton, Florida, 2015 (275 pages)

48 New Books on Software Measurement

Software Measurement News 21(2016)2

Schmietendorf, A. (Hrsg.):

Eine praxisorientierte Bewertung von Architekturen
und Techniken für Big Data

(110 Seiten) Shaker-Verlag Aachen, März 2015 ISBN 978-3-8440-2939-0

Dumke, R., Schmietendorf, A., Seufert, M., Wille, C.:

Handbuch der Softwareumfangsmessung und Aufwandschätzung

Logos Verlag, Berlin, 2014 (570 Seiten), ISBN 978-3-8325-3784-5

 Conferences Addressing Metrics Issues

Software Measurement News 21(2016)2

49

Software Measurement & Data Analysis Addressed

Conferences

August 2016:

ICGSE 2016:

11
th

 International Conference on Global Software Engineering

August 2 - 5, 2016, Orange Country, California, USA

see: http://www.ics.uci.edu/~icgse2016/2_0cfp.html

ICSEA 2016:

10
th

 International Conference on Software Engineering

Advances

August 21 - 25, 2016, Brussels, Belgium

see: http://www.iaria.org/conferences2016/ICSEA16.html

QEST 2016:

13
th

 International Conference on Quantitative Evaluation of

Systems

August 23 - 25, 2016, Quebec City, Canada

see: http://www.qest.org/

ICDSE 2016:

International Conference on Data Science and Engineering

August 23 - 25, Kerala, India

See: http://icdse.cusat.ac.in/

Euromicro DSD/

SEAA 2016:

Software Engineering & Advanced Application Conference

August 31 - September 2, 2016, Limassol, Cypros

see: http://dsd-seaa2016.cs.ucy.ac.cy/

September 2016:

ESEM 2016:

10
th

 International Symposium on Empirical Software Engineering

& Measurement

September 8 - 9, 2016, Ciudad Real, Spain

see: http://alarcos.esi.uclm.es/eseiw2016/esem/

RE 2016:

24
th

 IEEE International Requirement Engineering Conference

September 12 - 16, 2016, Beijing, China

see: http://re16.org/

EuroAsiaSPI
2
 2016:

23
th

 European Systems & Software Process Improvement and

Innovation Conference,

September 14 - 16, 2016, Graz, Austria

see: http://www.eurospi.net/

ASQT 2016:
Arbeitskonferenz Softwarequalität, Test und Innovation

September 21 - 23, 2016, Klagenfurt, Austria

http://www.qest.org/qest2013/
http://www.re13.org/
http://2013.eurospi.net/

 Conferences Addressing Metrics Issues

Software Measurement News 21(2016)2

50

 see: http://www.asqt.org/

Big Data 2016:

Big Data Analysis and Data Mining

September 26 - 27, 2016, London, UK

See: http://datamining.conferenceseries.com/

October 2016:

IWSM-MENSURA

2016:

Common International Conference on Software Measurement

October 5 - 7, 2016, Berlin, Germany

see: http://www.iwsm-mensura.org/

ISSRE 2016:

27
th

International IEEE Symposium on Software Reliability

Engineering

October 23 - 27, 2016, Ottawa, Canada

see: http://issre.net/

November 2016:

BSOA/BCloud

2016:

11. Workshop Bewertungsaspekte service-orientierte und Cloud-

Architekturen

November , 2016, Berlin, Germany

 see: http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/

ICDM 2016:

IEEE International Conference on Data Mining

November 28 - 30, 2016, Barcelona, Spain

See: http://icdm2016.eurecat.org/

December 2016:

PROFES 2015:

16
th

 International Conference on Product Focused Software Process

Improvement

December 2 - 4, 2015, Bolzano, Italy

see: http://profes2015.inf.unibz.it/ (not in 2016)

see also: Conferences Link of Luigi Buglione (http://www.semq.eu/leng/eveprospi.htm)

http://www.asqt.org/
http://iwsm2013.wordpress.com/
http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/
http://www.semq.eu/leng/eveprospi.htm
http://www.semq.eu/leng/eveprospi.htm

 Metrics in the World-Wide Web

Software Measurement News 21(2016)2

51

See the GI-Web site http://fg-metriken.gi.de/ for the digital contents of the Software Measurement

News:

Help to qualify the software measurement knowledge and intentions in the world wide web:

 Metrics in the World-Wide Web

Software Measurement News 21(2016)2

52

 cosmic-sizing.org:

See our overview about software metrics and measurement in the Bibliografie at http://fg-

metriken.gi.de/bibliografie.html including any hundreds of books and papers:

 Metrics in the World-Wide Web

Software Measurement News 21(2016)2

53

 Metrics in the World-Wide Web

Software Measurement News 21(2016)2

54

See our further software measurement and related communities:

 www.dasma.org:

 www.isbsg.org:

 www.cecmg.de:

 Metrics in the World-Wide Web

Software Measurement News 21(2016)2

55

 www.mai-net.org:

 www.swebok.org:

 isern.iese.de:

 Metrics in the World-Wide Web

Software Measurement News 21(2016)2

56

 www.smlab.de:

 www.psmsc.com/:

 Metrics in the World-Wide Web

Software Measurement News 21(2016)2

57

 sebokwiki.org/wiki/Measurement:

 www.fisma.fi/in-english/:

 Metrics in the World-Wide Web

Software Measurement News 21(2016)2

58

 http://nesma.org/:

 www.sei.cmu.edu/measurement/:

 http://www.omg.org/news/releases/pr2013/02-07-13.htm:

SOFTWARE MEASUREMENT NEWS

VOLUME 21 2016 NUMBER 2

CONTENTS

Announcements .. 3

Position Paper .. 9

Christof Ebert
 Cyclomatic Complexity - 40 Years Later .. 9

Capers Jones
 The Origins of Function Point Metrics ... 12

Andreas Schmietendorf
 Web APIs als Enabler einer erfolgreichen Digitalisierungsstrategie15

Capers Jones
 Exceeding 99% in Defect Removal Efficiency (DRE) for Software19

New Books on Software Measurement .. 45

Conferences Addressing Measurement Issues 49

Metrics in the World-Wide Web ... 51

ISSN 1867-9196

	01-Deckblatt.pdf
	02-Editors
	03-Announcements
	06-PositionPaper
	07-New-Books
	08-Conferences
	09-World-Wide-Web
	10-Inhaltsverzeichnis

