mSMA Volume 21, Number 2, September 2016 6}

Software Measurement News

Journal of the Software Metrics Community

Measurement

Validation

Modelling

Improvement

Editors:

Alain Abran, Manfred Seufert, Reiner Dumke, Christof Ebert, Cornelius Wille

Université du Québec |
W Ecole de technologie supérieure / \/"

COSMIC

CONTENTS

ANNOUNCEMENTS ...ttt e et et e et e e e et e e e e e e een e e e eaneaeenns 3
POSITION PaP ...t 9
Christof Ebert

Cyclomatic Complexity - 40 YEars LAtercooo ittt 9
Capers Jones

The Origins of FUNCtion POINt MEICSoviiiiiiiiiiiee e 12
Andreas Schmietendorf

Web APIs als Enabler einer erfolgreichen Digitalisierungsstrategieccccoeeeennnnns 15
Capers Jones

Exceeding 99% in Defect Removal Efficiency (DRE) for Softwareccccccviiiiinees 19
New Books on Software Measurementcccooeeevveiiiiiieeeeeiiiineeeeeeiinn e eenneens 45
Conferences Addressing Measurement ISSUEScccccevevviieeeveeiiiineeeeeniienn, 49
Metrics in the World-Wide WeD ... 51

Editors:
Alain Abran
Professor and Director of the Research Lab. in Software Engineering Management
Ecole de Technologie Supérieure - ETS, 1100 Notre-Dame Quest,Montréal, Quebec, H3C 1K3,
Canada, Tel.: +1-514-396-8632, Fax: +1-514-396-8684
alain.abran@etsmtl.ca

Manfred Seufert
Chair of the DASMA, MediaanABS Deutschland GmbH

Franz-Rennefeld-Weg 2, D-40472 Disseldorf, Tel.: +49 211 250 510 0
manfred.seufert@mediaan.com

Reiner Dumke
Professor on Software Engineering, University of Magdeburg, FIN/IKS

Postfach 4120, D-39016 Magdeburg, Germany, Tel.: +49-391-67-52812
dumkeQivs.cs.uni-magdeburg.de, http://www.smlab.de

Christof Ebert
Dr.-Ing. in Computer Science, Vector Consulting Services GmbH

Ingersheimer Str. 20, D-70499 Stuttgart, Germany, Tel.: +49-711-80670-1525
christof.ebert@vector.com

Cornelius Wille

Professor on Software Engineering, University of Applied Sciences Bingen
Berlinstr. 109, D-55411 Bingen am Rhein, Germany,

Tel.: +49-6721-409-257, Fax: +49-6721-409-158
wille@fh-bingen.de

Editorial Office: Otto-von-Guericke-University of Magdeburg, FIN/IKS, Postfach 4120, 39016
Magdeburg, Germany
Technical Editor: Dagmar Dérge

The journal is published in one volume per year consisting of two numbers. All rights reserved
(including those of translation into foreign languages). No part of this issues may be reproduced in
any form, by photoprint, microfilm or any other means, nor transmitted or translated into a machine
language, without written permission from the publisher.

© 2016 by Otto-von-Guericke-University of Magdeburg. Printed in Germany

___|
Software Measurement News 21(2016)2

Announcements

4 Keynotes
31 Presentations
2 Seminars
5 Workshops

e

7, 2(')1‘6 4 Berlin,

Program

IWSM Mensura is the premier international conference on
measurement and data analytics. Each year practitioners and
researchers from all over the world meet to discuss practical

®

challenges and solutions in the field of software and IT measurement
and data analytics.

On October 5-7, 2016 the IWSM Mensura conference will be held in Berlin, Germany. The
conference venue will be at the Berlin School of Economics, Campus Lichtenberg. More information
on the conference can be found on the website: http://www.iwsm-mensura.org.

Theme & scope

Software and IT measurement are keys for successfully managing and controlling software
development projects. Data analytics and measurement are essential for both business and
engineering. They enrich scientific and technical knowledge regarding both the practice of software
development and empirical research in software technology. The conference focuses on all aspects
of software measurement and data analytics.

This year focus is the Value of Data, i.e. how to maximize the value for an organization from making
use of data from their software applications and systems. The trend towards digitization also
dramatically increases the amount of data that becomes available. The value of a company is
increasingly hidden in its data and can only be exploited fully if these are used efficiently along the
entire value chain. Big data becomes an important keyword to deal with. The conference also focuses
on novel approaches and innovative ideas on how to optimize existing products and processes
making use of data as well as using Big Data as an enabler for new application cases.

Topics of interest
We encourage submissions in any field of software measurement, including, but not limited to:

Practical measurement applications

Data analytics in practice, e.g. Enterprise embedded solutions
Usage of big data analytics for improving products and processes
Quantitative and qualitative methods for software measurement
Measurement processes and resources, e.g. agile or model-driven
Empirical case studies

System and software engineering measurement

IT and project cost and effort estimation, e.g., cost, effort, defects
Functional size measurement

Data analytics and measurement in novel areas, e.g. ECU’s or web services
Measures for Cognitive Computing

Conference language
The language for the conference, workshops and special sessions is English.

|
Software Measurement News 21(2016)2

http://www.iwsm-mensura.org/

Announcements

CONFERENCE PROGRAM

WEDNESDAY, OCTOBER 5, 2016 (DAY 1)

Time Track A Titles
08:30-13:30 Conference Registration

09:00-11:30 Event 1 Benchmarking, Measurement, Data Analytics — Trends and Practice
(Seminar)
10:30-12:00 Event 2 Big Data Technologies (Seminar)

13:30-14:00 _ Welcome and Introduction

14:00-15:00 Keynote 1 Data-Driven Innovation Study (Christian Reimsbach-Kounatze, Internet
economist and policy analyst, OECD 5TI)

) I

15:30-17:30 Session 1A Software Evolution

15:30-16:10 Analyzing Data on Software Evolution Processes (Harry Sneed and Wolfgang
Prentner)

16:10-16:50 |1A.2 Towards a Benchmark for the Maintainability Evolution of Industrial Software
Systems (Till Déhmen, Magiel Bruntink, Joost Visser and Davide Ceolin)

16:50-17:30 |1A.3 Eveolution of Process and Product Metrics Based On Information Needs
(Cenkler Yakin)

17:30-19.00 Event 4 Open COSMIC Meeting (Internal Group Meeting)

19:00-21:00 Welcome Reception

Time Track B Titles

09:00-12:00 Event 3 PiFs for Projects 2016 (Workshop)

15:30-17:30 Session 1B Functional Size Measurement

15:30-16:10 (1B.1 Functional Size Measurement Patterns: A Proposed Approach (Sylvie
Trudel, Jean-Marc Desharnais and Jimmy Cloutier)

16:10-16:50 |1B.2 Towards Component-Aware Function Point Measurement (Luigi
Lavazza, Valentina Lenarduzzi and Davide Taibi)

16:50-17:30 (1B.3 On the Seven Misconceptions about Functional Size Measurement
(Baris Ozkan and Onur Demirors)

Color Code
Keynote Session

Co-located Event (Seminars, Workshops, or Group Meetings
Presentation Session (Full and Short Papers, Industrial Presentations)
|Grey Break / Social Event

Software Measurement News 21(2016)2

Announcements

THURSDAY, OCTOBER 6, 2016 (DAY 2)

Time

Track A

08:00-08:30

Conference Registration

08:30-09:30 Keynote 2 Big Data Management and Scalable Data Science (Volker Markl, Director,

Berlin Big Data Center)

Pl forewes

10:00-12:00 Session ZA COSMIC

16:10-17:10

10:00-10-:40 |2A1 Earned Scope Management: A Case of Study of Scope Performance using
COSMIC {150 19761) with a Real Project (Francisco Valdes-Souto)

10:40-11:20 |2A2 An Empirical Evaluation of two COSMIC Early Estimation Methods (Luigi
Lavazza and Sandro Morasca)

11:20-12:00 |2A.3 Measurement of software size: Advances made by the COSMIC community
{Charles Symons, Christof Ebert, Alain Abran and Frank Vogelezang)

12:00-13:00 Lunch break

13:00-14:20 Session 3A Big Data & Analytics

13:00-13:40 |3A1 Big Data benefits for the Software Measurement Community (Jan Hentschel,
Reiner Dumke and Andreas Schmietendorf)

13:40-14:00 |3A.2 Quality Evaluation for Big Data: A Scalable Assessment Approach and First
Evaluation Results (Michael Klaes, Wolfgang Putz and Tobias Lutz)

14:00-14:20 [3A3 Process Mining for Healthcare Process Analytics (Tugba Gurgen and Ayga
Tarhan)

14:20-14:50 Coffee break

14:50-16:10 Session 4A Process Improvement

14:50-15:30 |4A1 Risk Management: Achieving Higher Maturity & Capability Levels through the
LEGO approach (Luigi Buglione, Alain Abran, Christiane Gresse von
Wangenheim, Fergal McCaffery and lean Carlo Rossa Hauck)

15:30-16:10 |4A.2 Post-Deployment Data: A Recipe for Satisfying Knowledge Needs in Software
Development? (Sampo Suonsyrjd, Laura Hokkanen, Henri Terho, Kari Systa and
Tommi Mikkonen)

Event &

Data Manipulation Measurement (Waorkshop)

Conference Banquet

__|
Software Measurement News

21(2016)2

Announcements

Time Track B

10:00-12:00 Session 2B Management

10:00-10:40 |2B.1 Quality Measurement of ITIL Processes in Cloud-5ystems (Anja Fiegler,
Andre Zwanziger, Sebastian Herden and Reiner Dumke)

10:40-11:20 |2B.2 Measurement-Based Optimization of Server License Balancing (Robert
Meumann, Anja Figler, Marcus P&hld and Reiner Dumke)

11:20-12:00 |2B.3 Value of Quantitative Engagement Management - Realizing business
objectives by guantitatively managing cost, time and quality dimensions
of an engagement [Niteen Kumar and Cornelly Spier)

13:00-14:20 Ewvent5 Software Measurement in the Context of Industry 4.0 (Workshop)

14:50-16:10 Session 48 Metrics

14:50-15:30 |4B6.1 A Complexity Measure for Textual Requirements (Vard Antinyan and
Miroslaw Staron)

15:30-15:50 (4B.2 One Metric to Combine Them All. An Experimental Comparison of
Metric Aggregation Approaches (Bartosz Walter, Marcin Wolski, Patryk
Prominski and Szymon Kupinski)

15:50-16:10 (48.3 Measuring the accessability based of WCAG 2.0 Guidelines (Kathrin
Wille, Cornelius Wille and Reiner Dumke)

16:10-17:10 Event 7 Estimating Packaged Software (Workshop)

Software Measurement News 21(2016)2

Announcements

FRIDAY, OCTOBER 7, 2016 (DAY 3)

Time Track A Titles

0B:00-08:30 Conference Registration

08:30-09:30 Keynote 3 . Always On” — Essential Capability for the Big Data Value Chain [Wolfgang
Beek, CTO DACH, Software AG)

09-30-10:00 - Coffee break

10:00-12:00 Session 5A Software Quality

10-00-10:40 |5A1 A Key Performance Indicator Quality Model and Its Industrial Evaluation
(Miroslaw Staron, Wilhelm Meding, Kent Niesel and Alain Abran)

10-40-11:20 |5A.2 Defect Analysis in Large Scale Agile Development (Bernard Doherty, Andrew
Jelfs, Aveek Dasgupta and Patrick Holden)

11:20-12:00 |5A.3 Managing Large Application Portfolic with Technical Debt Related Measures
(Jean-Louis Letouzey)
12:00-13:00 Lunch break

13:00-15:00 Session 6A Estimation

13:00-13:40 |6A.1 Approximation of COSMIC functional size of scenario-based requirements to
support effort estimation in Agile - a replication study [Mirostaw Ochodek)

13:40-14:20 |6A.2 The Missing Links in Software Estimation: Work, Team Loading and Team
Power (Cigdem Gencel, Luigi Buglione)

14:20-14:40 |6A3 On Applicability of Fixed-5Size Moving Windows for AMN-based Effort
Estimation (Sousuke Amasakiand Chris Lokan)

14:40-15:00 |6A.4 Effort Estimation in Co-located and Globally Distributed Agile Software
Development: A Comparative Study (Muhammad Usman and Ricardo Britto)

15:00-15:30 Coffee break

15:30-16:30 Keynote 4 Solution-based Estimation (Eric van der Vliet, Director, CGl Global Estimation

Center)
16:30-17:00 Awards and Caonference Closing

10:00-12:00 Session 58 Size Measurement

10:00-10:40 |58.1 Evaluating Security in Web Application Designs Using Functional and
Structural Size Measurements (Hela Hakim, Asma Sellami and Hanene
Ben Abdallah)

10:40-11-00 |58.2 Towards semi-automatic size measurement of user interfaces in web
applications with IFPUG SNAP (Hassan Mansoor and Mirostaw
Ochodek)

11:00-11:20 |5B8.3 A Proposal on Requirements for COSMIC FSM Automation from Source
Code [&yga Tarhan, Bans Ozkan and Genca Canan Igdz)

13:00-15:00 Ewvent 8 Metrics in Contracts (Workshop)

|
Software Measurement News 21(2016)2

8 Announcements

() DASMA ASQF d

BSAO/BCloud 2016

(Qualitative und quantitative Bewertung)

03.11.2016, Gastgeber Zalando, Berlin

Der diesjdhrige BSOA/BCloud-Workshop findet am 03.11.2016 in Berlin (Gastgeber
Zalando) statt. Im Mittelpunkt der Vortrage, Diskussionsrunden und des World Cafes stehen
doménenspezifische und wirtschaftliche Bewertungsfragen von Service APIs. Im Einzelnen
geht es um die lIdentifikation, Gestaltung, Bewertung sowie das Management von Service
APIs im Diskurs verschiedener Branchen (z.B. Banken, Versicherungen, Pharmazie)
auseinander.

Beispiele fur Themenbereiche:

» Welchen Einfluss haben Service APIs auf die Industrialisierung unternehmerische
Prozessabl&ufe?

» Bewertung der mit Service APIs einhergehenden Mdglichkeiten, im Sinne innovativer
Produkte und Dienstleistungen?

» Bewertungsansatze im Zusammenhang mit der Identifikation, Spezifikation,
Bewertung und Qualitatssicherung von Serviceangeboten.

» Gestaltung von Architekturen zur serviceorientierten Verzahnung von
unternehmensinternen Losungen mit Service APIs.

» Herausforderungen der Serviceorientierung im Kontext eines kollaborativen und
interoperablen IT-Service-Managements.

» Gewaéhrleistung von Sicherheits- und Compliance-Aspekten in interoperablen
Architekturansatzen.

Ein besonderes Highlight erwartet die Teilnehmer mit dem eingeladenen Keynote-Sprecher
Herrn Michael Binzen (Chefarchitekt DB Systel GmbH).

Web-Adresse zum Workshop:

http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/2016/

__|
Software Measurement News 21(2016)2

http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/2016/

Position Paper 9

Cyclomatic Complexity - 40 Years Later

Christof Ebert
Vector Consulting Services, Stuttgart
September 2016

The criticality and risk of software is defined by its complexity. Forty years ago, McCabe introduced his famous
cyclomatic complexity (CC) metric. Today, it is still one of the most popular and meaningful measurements for
analyzing code. Read this blog about the measurement and its value for improving code quality and
maintainability...

It is of great benefit for projects to be able to predict software components likely to have a high defect rate or
which might be difficult to test and maintain. It is of even more value having an indicator which can provide
constructive guidance on how to improve the quality of code. This is what the cyclomatic complexity (CC) metric
gives us.

The CC metric is simple to calculate and intuitive to understand. It can be taught quickly. Control flows in code
are analyzed by counting the decisions, i.e., the number of linear independent paths through the code under
scrutiny. Too many nested decisions make the code more difficult to understand due to the many potential
flows and possibilities of passing through it.

In addition, the CC value of a module correlates directly with the number of test cases necessary for path
coverage, so even a rough indication given by the CC metric is of high value to a developer or project manager.

A high CC thus implies high criticality and the code will have a higher defect density (vis-a-vis code with a
relatively lower CC); test effort is higher and maintainability severely reduced. These relationships are intuitive
for students as well as experts and managers and this is another appealing feature of the CC metric.

It is small wonder therefore that CC, unlike many other metrics which have been proposed over the past
decades is still going strong and is used in almost all tools for criticality prediction and static code analysis.

___|
Software Measurement News 21(2016)2

10 Position Paper

Source code
a: switch
case b

b: e ‘a'
do e while ...
C: R "'
case d

e: if ... ‘!’
jump a
case ¢ \\\\\\\‘

f: end

Cyclomatic complexity
v(iG)=e-n+2p
=9-6+2=5

= Number of different sections of the control flow graph
= Number of binary decisions + 1

Figure: Calculation of Cyclomatic Complexity by counting linear independent
paths through a control flow.

CC, together with change history, past defects and a selection of design metrics (e.g., level of uninitialized data,
method overriding and God classes) can be used to build a prediction model. Based on a ranked list of module
criticality used in a build, different mechanisms namely refactoring, re-design, thorough static analysis and unit
testing with different coverage schemes can then be applied. The CC metric therefore gives us a starting point
for remedial maintenance effort.

Instead of predicting the number of defects or changes (i.e., algorithmic relationships) we consider assignments
to classes (e.g., “defect-prone”). While the first goal can be achieved more or less successfully with regression
models or neural networks mainly in finished projects, the latter goal seems to be adequate for predicting
potential outliers in running projects, where precision is too expensive and not really necessary for decision
support. Christof — | am not sure | follow the point being made in these last two sentences — can you possibly
clarify/elaborate please?

While the benefits of CC are clear, it does need clear counting rules. These days for instance, we do not count
simple “switch” or “case” statements as multiplicities of “if, then, else” decisions. Moreover, the initial proposal
to limit CC to seven plus/minus two per entity is no longer taken as a hard rule, because boundaries for defect-
prone components are rather fuzzy and multi-factorial.

Having identified such overly critical modules, risk management must be applied. The most critical and most
complex of the analyzed modules, for instance, the top 5, are candidates for redesign. For cost reasons
mitigation is not only achieved with redesign. The top 20% should have a thorough static code analysis, and the
top 80% should be at least unit tested with CO coverage of 100%. By concentrating on these critical components
the productivity of quality assurance is increased.

Critical modules should at least undergo a flash review and subsequent refactoring, redesign or rewriting —
depending on their complexity, age and reuse in other projects. Refactoring includes reducing size, improving
modularity, balancing cohesion and coupling, and so on. For instance, apply thorough unit testing with 100
percent CO coverage (statement coverage) to those modules ranked most critical. Investigate the details of the
selected modules’ complexity measurements to determine the redesign approach. Typically, the different
complexity measurements will indicate the approach to follow. Static control flow analysis tools incorporating
CC can also find security vulnerabilities such as dead code, often used as backdoors for hijacking software.

__
Software Measurement News 21(2016)2

Position Paper 11

Our own data but also many published empirical studies demonstrate that a high decision-to-decision path
coverage or C1 coverage will find over 50% of defects, thus yielding a strong business case in favor of using CC.
On the basis of the results from many of our client projects and taking a conservative ratio of only 40 percent
defects in critical components, criticality prediction can yield at least a 20 percent cost reduction for defect
correction.

The additional costs for the criticality analysis and corrections are in the range of few person days per module.
The necessary tools such as Coverity, Klocwork, Lattix, Structure 101, SonarX, SourceMeter, are off the shelf and
account for even less per project. These criticality analyses provide numerous other benefits, such as the
removal of specific code-related risks and defects that otherwise are hard to identify (for example, security
flaws).

CC clearly has its value for critically predictions and thus improving code quality and reducing technical debt.
Four decades of validity and usage is a tremendous time in software, and | congratulate McCabe for such a
ground-breaking contribution.

Literature and media:

McCabe, T.J.: A Complexity Measure. IEEE Transactions on Software Engineering, Vol. SE-2, NO.4, Dec. 1976.
http://www.literateprogramming.com/mccabe.pdf

Selected white papers on quality practices from our media-center:
http://consulting.vector.com/vc_download en.html?product=quality

Full article on static code analysis technologies in IEEE Software:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4814967

Author:

Christof Ebert is the managing director of Vector Consulting Services. He is on the IEEE
Software editorial board and teaches at the University of Stuttgart and the Sorbonne in
Paris.

Contact him at christof.ebert@vector.com

i-h

Software Measurement News 21(2016)2

http://www.literateprogramming.com/mccabe.pdf
http://www.literateprogramming.com/mccabe.pdf
http://consulting.vector.com/vc_download_en.html?product=quality
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4814967
mailto:christof.ebert@vector.com

12 Position Paper

The Origins of Function Point Metrics

Capers Jones

(IFPUG publication 05/17/2016, permitted by the author)
Version 3.0
VP and CTO, Namcook Analytics LLC
Email: Capers.Jones3@gmail.com

Introduction

The author was working at IBM in the 1960’s and 1970’s and was able to observe the origins of several IBM
technologies such as inspections, parametric estimation tools, and function point metrics. This short paper
discusses the origins and evolution of function point metrics.

In the 1960’s and 1970’s IBM was developing new programming languages such as APL, PL/I, PL/S etc. IBM
executives wanted to attract customers to these new languages by showing clients higher productivity rates.

As it happens the compilers for various languages were identical in scope and had the same features. Some
older compilers were coded in assembly language while newer compilers were coded in PL/S, which was a new
IBM language for systems software.

When we measured the productivity of assembly-language compilers versus PL/S compilers using “lines of
code” (LOC) we found that even though PL/S took less effort, the LOC metric of LOC per month favored
assembly language.

This problem is easiest to see when comparing products that are almost identical but merely coded in different
languages. Compilers, of course, are very similar. Other products besides compilers that are close enough in
feature sets to have their productivity negatively impacted by LOC metrics are PBX switches, ATM banking
controls, insurance claims handling, and sorts.

To show the value of higher-level languages the first IBM approach was to convert high-level languages into
“equivalent assembly language.” In other words we measured productivity against a synthetic size based on
assembly language instead of against true LOC size in the actual higher level languages. This method was used
by IBM from around 1968 through 1972.

An IBM vice president, Ted Climis, said that IBM was investing a lot of money into new and better programming
languages. Neither he nor clients could understand why we had to use the old assembly language as the metric
to show productivity gains for new languages. This was counter-productive to the IBM strategy of moving
customers to better programming languages. He wanted a better metric that was language independent and
could be used to show the value of all IBM high-level languages.

This led to the IBM investment in function point metrics and to the creation of a function-point development
team under Al Albrecht at IBM White Plains. Function Point metrics were developed by the IBM team by around
1975 and used internally and successfully. In 1978 IBM placed function point metrics in the public domain and
announced them via a technical paper given by Al Albrecht at a joint IBM/SHARE/Guide conference in
Monterey, California.

Table 1 shows the underlying reason for the IBM function point invention based on the early comparison of
assembly language and PL/S for IBM compilers.
Table 1 shows productivity in four separate flavors:

1. Actuallines of code in the true languages.

2. Productivity based on “equivalent assembly code.”

3. Productivity based on “function points per month.”

4. Productivity based on “work hours per function point.”

___|
Software Measurement News 21(2016)2

mailto:Capers.Jones3@gmail.com

Position Paper 13

Note: table 1 uses simple round numbers to clarify the issues noted with LOC metrics.
Table 1: IBM Function Point Evolution Circa 1968-1975
(Results for two IBM compilers)

Assembly PL/S

Language Language
Lines of code (LOC) 17,500.00 5,000.00
Months of effort 30.00 12.50
Hours of effort 3,960.00 1,650.00
LOC per month 583.33 400.00
Equivalent assembly 17,500.00 17,500.00
Equiv. Assembly MO 583.33 1,400.00
Function points 100.00 100.00
Function Points/month 3.33 8.00
Work hours per FP 39.60 16.50

The three rows highlighted in blue show the crux of the issue. LOC metrics tend to penalize high-level
languages and make low-level languages such as assembly look better than they really are. Function
points metrics, on the other hand, show tangible benefits from higher-level programming languages and
this matches the actual expenditure of effort and standard economic analysis. Productivity of course is
defined as “goods or services produced per unit of labor or expense.” The creation and evolution of
function point metrics was based on a need to show IBM clients the value of IBM’s emerging family of
high-level programming languages such as PL/I, APL, and others. This is still a valuable use of function
points since there are more than 3,000 programming languages in 2016 and new languages are being
created at a rate of more than one per month. Another advantage of function point metrics vis a vis LOC
metrics is that function points can measure the productivity of non-coding tasks such as creation of
requirements and design documents. In fact function points can measure all software activities, while
LOC can only measure coding.Up until the explosion of higher-level programming languages occurred,
assembly language was the only language used for systems software (the author programmed in
assembly for several years when starting out as a young programmer).

With only one programming language LOC metrics worked reasonably well. It was only when higher-
level programming languages appeared that the LOC problems became apparent. It was soon realized
that the essential problem with the LOC metric is really nothing more than a basic issue of manufacturing
economics that had been understood by other industries for over 200 years.

This is a fundamental law of manufacturing economics: “When a manufacturing process has a high
percentage of fixed costs and there is a decline in the number of units produced, the cost per unit will

goup.”

The software non-coding work of requirements, design, and documentation act like fixed costs. When
there is a move from a low-level language such as assembly to a higher-level language such as PL/S, the
cost per unit will

___|
Software Measurement News 21(2016)2

14 Position Paper

go up, assuming that LOC is the “unit” selected for measuring the product. This is because of the fixed costs of
the non-code work and the reduction of code “units” for higher-level programming languages. Function point
metrics are not based on code at all, but are an abstract metric that defines the essence of the features that the
software provides to users. This means that applications with the same feature sets will be the same size in
terms of function points no matter what languages they are coded in. Productivity and quality can go up and
down, of course, but they change in response to team skills. Once function points were released by IBM in 1978
other companies began to use them, and soon the International Function Point User’s Group (IFPUG) was
formed in Canada. Today in 2016 there are hundreds of thousands of function point users and hundreds of
thousands of benchmarks based on function points. There are also several other varieties of function points
such as COSMIC, FISMA, NESMA, etc.

Overall function points have proven to be a successful metric and are now widely used for productivity studies,
quality studies, and economic analysis of software trends. Function point metrics are supported by parametric
estimation tools and also by benchmark studies. There are also several flavors of automatic function point
tools. There are also function point associations in most industrialized countries. There are also ISO standards
for functional size measurement. (There was never an ISO standard for code counting and counting methods
vary widely from company to company and project to project. In a benchmark study performed for a “LOC”
shop we found four sets of counting rules for LOC that varied by over 500%.). Table 2 shows countries with
increasing function point usage circa 2016, and it also shows the countries where function point metrics are
now required for government software projects.

Table 2: Countries Expanding Use of Function Points 2016

1 Argentina

2 Australia

3 Belgium

4 Brazil Required for government contracts 2008
5 Canada

6 China

7 Finland

8 France

9 Germany

10 India

11 Italy Required for government contracts
12 Japan Required for government contracts
13 Malaysia Required for government contracts
14 Mexico

15 Norway

16 Peru

17 Poland

18 Singapore

19 South Korea Required for government contracts
20 Spain

21 Switzerland

22 Taiwan

23 The Netherlands

24 United Kingdom

25 United States
Several other countries will probably also mandate function points for government software contracts by 2017.
Eventually most countries will do this. In retrospect function point metrics have proven to be a powerful tool for
software economic and quality analysis.

___|
Software Measurement News 21(2016)2

Position Paper 15

Web APIs als Enabler einer erfolgreichen
Digitalisierungsstrategie

Andreas Schmietendorf

Hochschule fiir Wirtschaft und Recht Berlin
Email: andreas.schmietendorf@hwr-berlin.de

1. Motivation

Klassische Unternehmen, wie z.B. in der Automobil- und Maschinenbaubranche, Banken, Versicherungen,
Versorger oder Speditionen, waren durch eine massive Ressourcenbindung (z.B. Rohstoffe, Anlagen, Fuhrpark,
Personal) und Fertigungstiefe gekennzeichnet. Fir die Wettbewerbsfahigkeit moderner Unternehmen spielen
aktuelle und konsistente Kenntnisse der Kundenbediirfnisse, die Innovationsfahigkeit, die bedarfsgerechte und
agile Akquise von Ressourcen sowie vor allem die Moglichkeiten zur Abdeckung von globalen Markten eine
entscheidende Rolle. Aufgrund der Omniprasenz von Software konnen diese Einfliisse bzw. Anforderungen nur
Uber einfach integrierbare IT-L6sungen, die an den Unternehmensgrenzen keinen Halt machen beherrscht
werden. Web-APIs kdnnen entsprechend [Spencer 2015] das strategische, fachliche und technologische Riickrad
dieser unternehmensubergreifend wirkenden Integrationsanforderungen bilden.

»Application Programming Interfaces (API's) have gone from a something that only developers
and architects once discussed to emerge as a capability that is central to many successful
companies business strategies and a key focus of many of their senior leadership teams.”

Werden Web-APIs im Sinne eines zusatzlichen Vertriebskanals fir Drittanbieter bereitgestellt, wird hdufig auch
von einer APl economy gesprochen. Neben der 6konomischen Perspektive sieht [Tang 2015] darin ein
Gestaltungsprinzip fiir kompositorisch orientierte Softwarearchitekturen, welches die Moglichkeiten moderner
Web-APIs mit korrespondierenden Geschaftsmodellen kombiniert. Ohne einen Anspruch auf Vollstandigkeit zu
erheben, finden sich die Ursachen in den folgenden Aspekten:

- Web-APIs als Riickgrad mobiler Applikationen.

- Web-APIs als ,,Enabler = im Diskurs des loT.

- Web-APIs als zusatzlicher Vertriebskanal.

- Web-APIs als Datenquelle fiir Big Data.

- Web-APIs als Kollaborationsplattform fiir soziale Medien.

Neben den primar wirtschaftlich und fachlich gepragten Einfllissen existieren auch technologische Treiber, wie
z.B. das Cloud-Computing, Agilitatsanforderungen im Software-Engineering oder aber die konkret eingesetzte
Schnittstellentechnologie. Diesbezlglich findet sich der Einsatz von RESTful-, XML/SOAP-, JSON- oder auch
programmiersprachspezifische Web-APls, welche zumeist HTTP als Ubertragungsprotokoll im Internet
benutzen.

2. Digitalisierung — Industrialisierung der IT

Moderne Unternehmen mit einer agilen Sourcingstrategie profitieren von den Moglichkeiten einer
umfanglichen Digitalisierung, da die fir das Geschaft bendétigten Daten, Funktionen und Algorithmen Gber
fachlich spezialisierte Service APls aus dem Internet ,ad hoc“ bezogen werden. Damit wird die
unternehmerische IT selbst zum Gegenstand der Industrialisierung. Fir den Fall, dass diese nicht als
Kernkompetenz wahrgenommen wird, kommt es zu einer dramatischen Reduktion der Fertigungstiefe im
gesamten Lebenszyklus bendtigter Softwarelésungen. Damit einher gehen Konsolidierungen der betroffenen

___|
Software Measurement News 21(2016)2

16 Position Paper

Prozesse und Organisationen. Aus diesen resultieren verdnderte Kompetenzbediirfnisse, aber auch
soziologische und gesellschaftliche Implikationen.

Im Diskurs der Digitalisierung stellt sich fiir alle Unternehmen die Frage, welchen Wertbeitrag
unternehmensinterne Daten darstellen und ob diese via Web APIs (Online) oder auch als Dateien (Offline) im
Internet zur Verfiigung gestellt werden sollten. Die Bereitstellung unternehmensintern akquirierter
Informationen via Service APIs wird aktuell zumeist als ein Risiko, denn als Change zur Bewaltigung der
Herausforderungen einer zunehmend digitalisierten Welt bewertet. In Abhangigkeit der aktuellen Marktprasenz
konnen Innovationen so kurzzeitig behindert bzw. zurlick gehalten werden. Allerdings entsagt sich das
betroffene Unternehmen so auch der Maoglichkeiten von entsprechenden Interessengruppen und
Partnerschaften zu profitieren, einen zwingend bendtigten Lernprozess in Gang zu setzen und nicht zuletzt die
Wiinsche der Kunden analytisch bewerten und damit aktiv mit gestalten zu kénnen. Ein derartiges Umfeld birgt
die Gefahr, sich vom digitalen Fortschritt abzukoppeln.

Es gilt zu kldren, inwieweit die Innovations- und Wettbewerbsfahigkeit der Unternehmen unter dieser
»Abschottungspolitik” leidet, da der kreative Umgang mit existierenden Informationen an den
Unternehmensgrenzen halt macht.

LInnovationen entstehen erst durch Assoziationen und das Ubersetzen von Vorhandenem in neue
1
Kontexte.”

Um das mit der Digitalisierung einhergehende Potential fiir den deutschen bzw. europdischen Standort
wirtschaftlich nutzen zu kénnen, bedarf es regulatorischer MaBnahmen von Seiten des Gesetzgebers. Nur so
kann flr kleinere und junge Unternehmen der Zugang zum ,Rohstoff des 21. Jahrhunderts — den Daten”
gewdhrleistet werden, so dass kreative Losungsansatze nicht an der Behabigkeit und Geschlossenheit
marktbeherrschender Unternehmen und ihrer Lobbyisten scheitern. Noch haben singulér betrachtete Web APIs
einen geringen Einfluss auf existierende Unternehmensprozesse. Die globale APl Economy besitzt allerdings das
Potential, virtualisierte Wertschopfungsketten agil zu etablieren und damit unternehmerische Aktivitdten zu
revolutionieren. Bei immer kiirzer werdenden Innovationszyklen und Produkten, die liber Software definiert
werden, wird die Geschwindigkeit, mit der Lésungen am Markt platziert werden kénnen, zum entscheidenden
Wettbewerbsfaktor.

3. Qualitative Anforderungen an Web-APIs

Wer von angebotenen Web-APIs profitieren mochte und eine Einbindung in die eigenen Geschaftsprozesse
vorsieht, um diese mit Informationen und Funktionen anzureichern bzw. zu optimieren, der muss von Anfang an
groRen Wert auf die Service-Qualitat legen [Schmietendorf 2016].

Es gilt, Web-APIs langfristig und stabil in bestehende Strukturen integrieren zu koénnen, ohne dass im
Zweifelsfall schwerwiegende Konsequenzen drohen. Gleichzeitig muss es fur den Entwickler moglich sein, den
externen Service mit geringem Aufwand einzubinden. Da die hinter einer Web-APl liegenden
Implementierungen im Sinne einer Black-Box zumeist verborgen bleiben, bedarf es fir die Integration einer
einfachen, sicheren, aber dennoch komfortabel zu handhabenden Schnittstelle [apigee 2012]. Die in Anlehnung
an [Musser 2014] erstellte Grafik zeigt ausgewahlte Problembereiche von Web-APIs und mogliche Ansatze zur
Losung.

' Quelle: Thomas Sattelberger: Wir brauchen Biotope fiir die Entwicklung von Neuem
http://goodimpact.org, 31. Marz 2016

___|
Software Measurement News 21(2016)2

Position Paper 17

—{ Potentielle Problembereiche }7 —{ LOésungsansatze }—

Konsistente Hypermedia Dokumente sowie
Ressourcen Spezifikation z.B. Swagger/RAML

Eindeutige Semantik, Lésungsmuster,
Quellcodefragmente und Test-GUI,

Monitoring des Betriebsverhaltenes tber
z.B. ein webbasiertes Dashboard

Reduktion der Granularitat (Objektanzahl)
sowie Einsatz von REST und JSON/XML

Exakte Aussagen zu Lizenzen, Dienstgiitever-
einbarungen (SLA), Gerichtsstand und Kosten

Roadmap zum Service, Entwicklerforen und
explizite Versionierung

Roadmap zum Service, Entwicklerforen und
explizite Versionierung

Abbildung 1: Qualitdtsaspeke einer Web-API [Schmietendorf 2016]

Die zunehmende Bedeutung von Web-APIs im Bereich zur Verfligung gestellter Methoden des maschinellen
Lernens (Machine Learning) oder auch der natirlich sprachlichen Programmierung (Natural Language
Programing) impliziert ein notwendiges Vertrauen in die Richtigkeit der verwendeten Algorithmen.
Entsprechende Beispiele finden sich mit IBM Bluemix” und den Watson Service APIs, dem Azure ML Studio® von
Microsoft oder auch dem Marktplatz AIgorithmia4.

In diesem Zusammenhang empfiehlt sich eine Plausibilisierung mit Hilfe von Zertifikaten, die durch
,vertrauenswirdige Dritte” bereitgestellt werden. Ggf. bietet sich auch eine quelloffene Implementierung der
Web-API selbst an. Je nach Art der verwendeten Open-Source-Lizenzen sind dabei Risiken in Bezug auf
Compliance-Anforderunen zu priifen.

4. Veranstaltungshinweis

AbschlieRend sei noch auf den diesjahrigen BSOA/BCloud-Workshop am 03.11.2016 in Berlin (Gastgeber
Zalando) verwiesen. Im Mittelpunkt der Vortrdge, Diskussionsrunden und des World Cafes stehen
domaénenspezifische und wirtschaftliche Bewertungsfragen von Service APls. Im Einzelnen geht es um die
Identifikation, Gestaltung, Bewertung sowie das Management von Service APIs im Diskurs verschiedener
Branchen (z.B. Banken, Versicherungen, Pharmazie) auseinander.

Beispiele fir Themenbereiche:
— Welchen Einfluss haben Service APIs auf die Industrialisierung unternehmerische Prozessabldufe?

— Bewertung der mit Service APIs einhergehenden Mdoglichkeiten, im Sinne innovativer Produkte und
Dienstleistungen?

— Bewertungsansatze im Zusammenhang mit der Identifikation, Spezifikation, Bewertung und
Qualitatssicherung von Serviceangeboten.

2 https://console.ng.bluemix.net/catalog/

® https://studio.azureml.net/

* https://algorithmia.com
-
Software Measurement News 21(2016)2

18 Position Paper

— Gestaltung von Architekturen zur serviceorientierten Verzahnung von unternehmensinternen
Lésungen mit Service APIs.

— Herausforderungen der Serviceorientierung im Kontext eines kollaborativen und interoperablen IT-
Service-Managements.

— Gewidbhrleistung von Sicherheits- und Compliance-Aspekten in interoperablen Architekturansatzen.

Ein besonderes Highlight erwartet die Teilnehmer mit dem eingeladenen Keynote-Sprecher Herrn Michael
Binzen (Chefarchitekt DB Systel GmbH).

Web-Adresse zum Workshop:

http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/2016/

5. Quellenverzeichnis

[apigee 2012] apigee, "Web API Design," apigee, 1 March 2012, [Online]. Available:
https://pages.apigee.com/rs/apigee/images/api-design-ebook-2012-03.pdf. [Accessed 2 July 2016].

[Musser 2014] Musser, J.: Ten Reasons Developers Hate Your API (and what to do about it), GlueCon 2014.
[Online]. Available: http://www.programmableweb.com/news/10-reasons-why-developers-hate-your-
api/2014/05/23. [Accessed 4 July 2016].

[Schmietendorf 2016] Schmietendorf, A.; Nadobny, K.; Hentschel, J.: Design Guidelines zur konstruktiven
Qualitatssicherung von Web-APls, SQ Magazin: Ausgabe 40, ASQF, S. 18-19, September 2016

[Spencer 2015] Spencer, S.: The Service Oriented Business and how API's power the Service Oriented Startup,
APldays Sydney/Australia, February 2015, [Online]. Available:
http://syd.apidays.io/APldays_program.pdf [Accessed 2 July 2016].

[Tang 2014] Tang, L.: APl Governance and Management, Service Technology Magazine, September/October
2014

Software Measurement News 21(2016)2

http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/2016/

Position Paper 19

Exceeding 99% in Defect Removal Efficiency (DRE)
for Software

Capers Jones

Draft 12.0 September 8, 2016
VP and CTO, Namcook Analytics LLC

AA

NAMCOOK ANALYTICS

Abstract

Software quality depends upon two important variables. The first variable is that of “defect potentials” or the
sum total of bugs likely to occur in requirements, architecture, design, code, documents, and “bad fixes” or new
bugs in bug repairs. Defect potentials are measured using function point metrics, since “lines of code” cannot
deal with requirements and design defects. (This paper uses IFPUG function points version 4.3. The newer
SNAP metrics are only shown experimentally due to insufficient empirical quality data with SNAP as of 2016.
However an experimental tool is included for calculating SNAP defects.) The second important measure is
“defect removal efficiency (DRE)” or the percentage of bugs found and eliminated before release of software to
clients. The metrics of Defect Potentials and Defect Removal Efficiency (DRE) were developed by IBM circa 1973
and are widely used by technology companies and also by insurance companies, banks, and other companies
with large software organizations. The author’s Software Risk Master (SRM) estimating tool predicts defect
potentials and defect removal efficiency (DRE) as standard quality outputs for all software projects.

Web: www.Namcook.com

Email: Capers.Jones3@gmail.com

Introduction

Defect potentials and defect removal efficiency (DRE) are useful quality metrics developed by IBM circa 1973
and widely used by technology companies as well as by banks, insurance companies, and other organizations
with large software staffs.

This combination of defect potentials using function points and defect removal efficiency (DRE) are the only
accurate and effective measures for software quality. The “Cost per defect metric” penalizes quality and makes
buggy software look better than high-quality software. The “Lines of code (LOC)” metric penalizes modern high-
level languages. The LOC metric can’t measure or predict bugs in requirements and design. The new technical
debt metric only covers about 17% of the true costs of poor quality.

Knowledge of effective software quality control has major economic importance because for over 50 years the
#1 cost driver for the software industry has been the costs of finding and fixing bugs. Table 1 shows the 15
major cost drivers for software projects in 2016. The cost drivers highlighted in red are attributable to poor
software quality:

___|
Software Measurement News 21(2016)2

http://www.namcook.com/
mailto:Capers.Jones3@gmail.com

20 Position Paper

Table 1: U.S. Software Costs in Rank Order:

1) The cost of finding and fixing bugs

2) The cost of cancelled projects

3) The cost of producing English words

4) The cost of programming or code development
5) The cost of requirements changes

6) The cost of successful cyber-attacks

7) The cost of customer support

8) The cost of meetings and communication

9) The cost of project management

10) The cost of renovation and migration

11) The cost of innovation and new kinds of software
12) The cost of litigation for failures and disasters
13) The cost of training and learning

14) The cost of avoiding security flaws

15) The cost of assembling reusable components

Table 1 illustrates an important but poorly understood economic fact about the software industry. Four of the
15 major cost drivers can be attributed specifically to poor quality. The poor quality of software is a professional
embarrassment and a major drag on the economy of the software industry and for that matter a drag on the
entire U.S. and global economies. Poor quality is also a key reason for cost driver #2. A common reason for
cancelled software projects is because quality is so bad that schedule slippage and cost overruns turned the
project return on investment (ROI) from positive to negative. Note the alarming location of successful cyber-
attacks in 6" place (and rising) on the cost-driver list. Since security flaws are another form of poor quality it is
obvious that high quality is needed to deter successful cyber-attacks. Poor quality is also a key factor in cost
driver #12 or litigation for breach of contract. (The author has worked as an expert witness in 15 lawsuits. Poor
software quality is an endemic problem with breach of contract litigation. In one case against a major ERP
company, the litigation was filed by the company’s own shareholders who asserted that the ERP package
quality was so bad that it was lowering stock values!) A chronic weakness of the software industry for over 50
years has been poor measurement practices and bad metrics for both quality and productivity. For example
many companies don’t even start quality measures until late testing, so early bugs found by inspections, static
analysis, desk checking, and unit testing are unmeasured and invisible.

If you can’t measure a problem then you can’t fix the problem either. Software quality has been essentially
unmeasured and therefore unfixed for 50 years. This paper shows how quality can be measured with high
precision, and also how quality levels can be improved by raising defect removal efficiency (DRE) up above 99%,
which is where it should be for all critical software projects. Software defect potentials are the sum total of bugs
found in requirements, architecture, design, code, and other sources of error. The approximate U.S. average for
defect potentials is shown in table 2 using IFPUG function points version 4.3:.

Table 2: Average Software Defect Potentials circa 2016 for the United States

e Requirements 0.70 defects per function point
e Architecture 0.10 defects per function point
e Design 0.95 defects per function point
e Code 1.15 defects per function point
e Security code flaws 0.25 defects per function point
e Documents 0.45 defects per function point
e Bad fixes 0.65 defects per function point
e Totals 4.25 defects per function point

___|
Software Measurement News 21(2016)2

Position Paper 21

Note that the phrase “bad fix” refers to new bugs accidentally introduced in bug repairs for older bugs. The
current U.S. average for bad-fix injections is about 7%; i.e. 7% of all bug repairs contain new bugs. For modules
that are high in cyclomatic complexity and for “error prone modules” bad fix injections can top 75%. For
applications with low cyclomatic complexity bad fixes can drop below 0.5%. Defect potentials are of necessity
measured using function point metrics. The older “lines of code” metric cannot show requirements,
architecture, and design defects not any other defect outside the code itself. (As of 2016 function points are
the most widely used software metric in the world. There are more benchmarks using function point metrics
than all other metrics put together.) Because of the effectiveness of function point measures compared to older
LOC measures an increasing number of national governments are now mandating function point metrics for all
software contracts. The governments of Brazil, Italy, Japan, Malaysia and South Korea now require function
points for government software. Table 3 shows the countries with rapid expansions in function point use:

Table 3 Countries Expanding Use of Function Points 2016

1 Argentina
2 Australia
3 Belgium
4 Brazil Required for government contracts
5 Canada
6 China
7 Finland
8 France
9 Germany
10 India
11 Italy Required for government contracts
12 Japan Required for government contracts
13 Malaysia Required for government contracts
14 Mexico
15 Norway
16 Peru
17 Poland
18 Singapore
19 South Korea Required for government contracts
20 Spain
21 Switzerland
22 Taiwan
23 The Netherlands
24 United Kingdom
25 United States

To be blunt, any company or government agency in the world that does not use function point metrics does not
have accurate benchmark data on either quality or productivity. The software industry has had poor quality for
over 50 years and a key reason for this problem is that the software industry has not measured quality well
enough make effective improvements. Cost per defect and lines of code both distort reality and conceal
progress. They are harmful rather than helpful in improving either quality or productivity. Lines of code
reverses true economic productivity and makes assembly language seem more productive than Objective C.
Cost per defect reverses true quality economics and makes buggy software look cheaper than high quality
software. These distortions of economic reality have slowed software progress for over 50 years.

The U.S. industries that tend to use function point metrics and therefore understand software economics fairly
well include automotive manufacturing, banks, commercial software, insurance, telecommunications, and some

___|
Software Measurement News 21(2016)2

22 Position Paper

public utilities. For example Bank of Montreal was one of the world’s first users of function points after IBM
placed the metric in the public domain; Ford has used function point metrics for fuel injection and navigation
packages; Motorola has used function points for smart phone applications; AT&T has used function points for
switching software; IBM has used function points for both commercial software and also operating systems.
The U.S. industries that do not use function points widely and hence have no accurate data on either software
quality or productivity include the Department of Defense, most state governments, the U.S. Federal
government, and most universities (which should understand software economics but don’t seem to.)

Although the Department of Defense was proactive in endorsing the Software Engineering Institute (SEIl)
capability maturity model integrated (CMMI), it lags the civilian sector in software metrics and measurements.
For that matter the SEl itself has not yet supported function point metrics nor pointed out to clients that both
lines of code and cost per defect distort reality and reverse the true economic value of high quality and high-
level programming languages. It is interesting that the author had a contract from the U.S. Air Force to examine
the benefits of ascending to the higher CMMI levels because the SEl itself had no quantitative data available. In
fact the findings from this study are shown later in this report in Table 12. Although the Department of Defense
itself lags in function point use some of the military services have used function points for important projects.
For example the U.S. Navy has used function points for shipboard gun controls and cruise missile navigation. If a
company or government agency wants to get serous in improving quality then the best and only effective
metrics for achieving this are the combination of defect potentials in function points and defect removal
efficiency (DRE).

Defect removal efficiency (DRE) is calculated by keeping accurate counts of all defects found during
development. After release all customer-reported bugs are included in the total. After 90 days of customer
usage DRE is calculated. If developers found 900 bugs and customer reported 50 bugs in the first three months
then DRE is 95%. Obviously bug reports don’t stop cold after 90 days, but the fixed 90-day interval provides an
excellent basis for statistical quality reports. The overall range in defect potentials runs from about 2.00 per
function point to more than 7.00 per function point. Factors that influence defect potentials include team skills,
development methodologies, CMMI levels, programming languages, and defect prevention techniques such as
joint application design (JAD) and quality function deployment (QFD). Some methodologies such as team
software process (TSP) are “quality strong” and have low defect potentials.) Agile is average for defect
potentials. Waterfall is worse than average for defect potentials. Table 4 shows the U.S. ranges for defect
potentials circa 2016:

Table 4: U.S Average Ranges of Defect Potentials Circa 2016
(Defects per IFPUG 4.3 function point)

Defect Origins Best Average Worst
Requirements 0.34 0.70 1.35
Architecture 0.04 0.10 0.20
Design 0.63 0.95 1.58
Code 0.44 1.15 2.63
Security flaws 0.18 0.25 0.40
Documents 0.20 0.45 0.54
Bad fixes 0.39 0.65 1.26
TOTAL 2.21 4.25 7.95

NOTE: the author’s Software Risk Master (SRM) estimating tool predicts defect potentials as a standard output
for every project estimated. Defect potentials obviously vary by size, with small projects typically having low
defect potentials. Defect potentials rise faster than size increases, with large systems above 10,000 function
points having alarmingly high defect potentials.

___|
Software Measurement News 21(2016)2

Position Paper 23

Table 5 shows U.S. ranges in defect potentials from small projects of 1 function point up to massive systems of
100,000 function points:

Table 5: Software Defect Potentials per Function Point by Size
(Defects per IFPUG 4.3 function point)

Function
Points Best Average Worst
1 0.60 1.50 2.55
10 1.25 2.50 4.25
100 1.75 3.25 6.13
1000 2.14 4.75 8.55
10000 3.38 6.50 12.03
100000 4.13 8.25 14.19
Average 2.21 4.25 7.95

As can be seen defect potentials go up rapidly with application size. This is one of the key reasons why large
systems fail so often and also run late and over budget. Table 6 shows the overall U.S. ranges in defect removal
efficiency (DRE) by applications size from a size of 1 function point up to 100,000 function points. As can be
seen DRE goes down as size goes up:

Table 6: U.S. Software Average DRE Ranges by Application Size

Function
Points Best Average Worst
1 99.90% 97.00% 94.00%
10 99.00% 96.50% 92.50%
100 98.50% 95.00% 90.00%
1000 96.50% 94.50% 87.00%
10000 94.00% 89.50% 83.50%
100000 91.00% 86.00% 78.00%
Average 95.80% 92.20% 86.20%

Table 7 is a somewhat complicated table that combines the results of tables 5 and 6; i.e. both defect potentials
and defect removal efficiency (DRE) ranges are now shown together on the same table. Note that as size
increases defect potentials also increase, but defect removal efficiency (DRE) comes down:

Table 7: Software Defect Potentials and DRE Ranges by Size

Function
Points Best Average Worst
1 Defect Potential 0.60 1.50 2.55
DRE 99.90% 97.00% 94.00%
Delivered defects 0.00 0.05 0.15
10 Defect Potential 1.25 2.50 4.25

___|
Software Measurement News 21(2016)2

24 Position Paper

DRE 99.00% 96.00% 92.50%
Delivered defects 0.01 0.10 0.32

100 Defect Potential 1.75 3.50 6.13
DRE 98.50% 95.00% 90.00%
Delivered defects 0.03 0.18 0.61

1000 Defect Potential 2.14 4.75 8.55
DRE 96.50% 94.50% 87.00%
Delivered defects 0.07 0.26 1.11

10000 Defect Potential 3.38 6.50 12.03
DRE 94.00% 89.50% 83.50%
Delivered defects 0.20 0.68 1.98

100000 Defect Potential 4.13 8.25 14.19
DRE 91.00% 86.00% 78.00%
Delivered defects 0.37 1.16 3.12

Best-case results are usually found for software controlling medical devices or complex physical equipment such
as aircraft navigation packages, weapons systems, operating systems, or telecommunication switching systems.
These applications are usually large and range from about 1000 to over 100,000 function points in size. Large
complex applications require very high DRE levels in order for the physical equipment to operate safely. They
normally use pre-test inspections and static analysis and usually at least 10 test stages. Average-case results are
usually found among banks, insurance companies, manufacturing, and commercial software. These applications
are also on the large size and range from 1000 to more than 10,000 function points. Here too high levels of DRE
are important since these applications contain and deal with confidential data. These applications normally use
pre-test static analysis and at least 8 test stages.

Worst-case results tend to show up in litigation for cancelled projects or for lawsuits for poor quality. State,
municipal, and civilian Federal government software projects, and especially large systems such a taxation, child
support, and motor vehicles are often in the worst-case class. It is an interesting point that every lawsuit where
the author has worked as an expert witness has been for large systems > 10,000 function points in size. These
applications seldom use either pre-test inspections or static analysis and sometimes use only 6 test stages.
While function point metrics are the best choice for normalization, it is also important to know the actual
numbers of defects that are likely to be present when software applications are delivered to customers. Table 8
shows data from table 7 only expanded to show total numbers of delivered defects:

Table 8: U.S. Average Delivered Defects by Application Size

Function
Points Best Average Worst
1 0 0 1
10 0 1 3
100 3 18 61
1000 75 261 1,112
10000 2,028 6,825 19,841
100000 3,713 11,550 31,218
Average 970 3,109 8,706

___|
Software Measurement News 21(2016)2

Position Paper 25

Here too it is painfully obvious that defect volumes go up with application size. However table 8 shows all
severity levels of delivered defects. Only about 1% of delivered defects will be in the high-severity class of 1 and
only about 14% in severity class 2. Severity class 3 usually has about 55% while severity 4 has about 30%.

Defect potentials have also varied by decade. Table 9 shows approximate values starting in 1960 and ending
with projected values for 2019. The reason for the gradual improvement in defect potentials include the advent
of newer programming languages, the average increase in organizations with higher CMMI levels, a gradual
decrease in application size, and a gradual increase on reusable materials from older applications.

Table 9: Defect Potentials by Decade

Best Average Worst
1960-1969 2.85 5.50 10.29
1970-1979 2.72 5.25 9.82
1980-1989 2.59 5.00 9.35
1990-1999 2.46 4.75 8.88
2000-2009 2.33 4.50 8.42
2010-2019 2.20 4.25 7.95

These severity levels are normally assigned by software quality assurance personnel. Because companies fix
high severity bugs faster than low severity bugs, clients often report bugs as being severity 2 that are really only
severity 3 or severity 4. While the IBM average for severity 2 bugs was about 14%, clients tend to exaggerate
and rank over 50% of bug reports as severity 2!

This classification of defect severity levels was developed by IBM circa 1960: It has been used for over 50 years
by thousands of companies for hundreds of thousands of software applications.

Table 10: IBM Defect Severity Scale (1960 — 2016)

Severity 1 Software does not work at all

Severity 2 Major features disabled and inoperative

Severity 3 Minor bug that does not prevent normal use

Severity 4 Cosmetic errors that do not affect operation

Invalid Defects not correctly reported; i.e. hardware problems reported as software
Duplicate Multiple reports of the same bug

Abeyant Unique defects found by only 1 client that cannot be duplicated

It is obvious that valid high-severity defects of severities 1 and 2 are the most troublesome for software
projects. Defect removal efficiency (DRE) is a powerful and useful metric. Every important project should
measure DRE and every important project should top 99% in DRE, but few do. As defined by IBM circa 1973 DRE
is measured by keeping track of all bugs found internally during development, and comparing these to
customer-reported bugs during the first 90 days of usage. If internal bugs found during development total 95
and customers report 5 bugs in the first three months of use then DRE is 95%.

Another important quality topic is that of “error-prone modules” (EPM) also discovered by IBM circa 1970. IBM
did a frequency analysis of defect distributions and was surprised to find that bugs are not randomly distributed,
but clump in a small number of modules. For example in the IBM IMS data base application there were 425

___|
Software Measurement News 21(2016)2

26 Position Paper

modules. About 300 of these were zero-defect modules with no customer-reported bugs. About 57% of all
customer reported bugs were noted in only 31 modules out of 425. These tended to be high in cyclomatic

complexity, and also had failed to use pre-test inspections. Table 11 shows approximate results for EPM in
software by application size:

Table 11: Distribution of "Error Prone Modules" (EPM) in Software

Function
Points Best Average Worst
1 0 0 0
10 0 0 0
100 0 0 0
1000 0 2 4
10000 0 18 49
100000 0 20 120
Average 0 7 29

EPM were discovered by IBM but unequal distribution of bugs was also noted by many other companies whose
defect tracking tools can highlight bug reports by modules. For example EPM were confirmed by AT&T, ITT,
Motorola, Boeing, Raytheon, and other technology companies with detailed defect tracking systems. EPM tend
to resist testing, but are fairly easy to find using pre-test static analysis, pre-test inspections, or both. EPM are
treatable, avoidable conditions and should not be allowed to occur in modern software circa 2016. The

presence of EPM is a sign of inadequate defect quality measurements and inadequate pre-test defect removal
activities.

The author had a contract from the U.S. Air Force to examine the value of ascending to the higher levels of the

capability maturity model integrated (CMMI). Table 12 shows the approximate quality results for all five levels
of the CMMI:

Table 12: Software Quality and the SEI Capability Maturity
Model Integrated (CMMI) for 2,500 function points

CMMI Level Defect Defect Delivered Delivered
Potential per Removal Defects per Defects
Function Point Efficiency = Function Point

SEICMMI 1 4.50 87.00% 0.585 1,463
SEI CMMI 2 3.85 90.00% 0.385 963
SEI CMMI 3 3.00 96.00% 0.120 300
SEI CMMI 4 2.50 97.50% 0.063 156
SEI CMMI 5 2.25 99.00% 0.023 56

Table 12 was based on study by the author commissioned by the U.S. Air Force. Usage of the CMMI is
essentially limited to military and defense software. Few civilian companies use the CMMI and the author has
met several CIO’s from large companies and state governments that have never even heard of SEl or the CMMI.
Software defect potentials and DRE also vary by industry. Table 13 shows a sample of 15 industries with higher
than average quality levels out of a total of 75 industries where the author has data:

Software Measurement News 21(2016)2

Position Paper 27

Table 13: Software Quality Results by Industry

Defect Defect Delivered
Potentials Removal Defects

per Function
Point Efficiency per Function Pt
Industry 2016 2016 2016

Best Quality

1 Manufacturing - medical devices 4.60 99.50% 0.02
2 Manufacturing - aircraft 4.70 99.00% 0.05
3 Government - military 4.70 99.00% 0.05
4 Smartphone/tablet applications 3.30 98.50% 0.05
5 Government - intelligence 4.90 98.50% 0.07
6 Software (commercial) 3.50 97.50% 0.09
7 Telecommunications operations 4.35 97.50% 0.11
8 Manufacturing - defense 4.65 97.50% 0.12
9 Manufacturing - telecommunications 4.80 97.50% 0.12
10 Process control and embedded 4.90 97.50% 0.12
11 Manufacturing - pharmaceuticals 4.55 97.00% 0.14
12 Professional support - medicine 4.80 97.00% 0.14
13 Transportation - airlines 5.87 97.50% 0.15
14 Manufacturing - electronics 4.90 97.00% 0.15
15 Banks - commercial 4.15 96.25% 0.16

There are also significant differences by country. Table 14 shows a sample of 15 countries with better than
average quality out of a total of 70 countries where the author has data:

Table 14: Samples of Software Quality by Country

Defect Defect Delivered
Potential Removal Defects
Countries per FP Efficiency (DRE) per Function Pt
2016 2016 2016

Best Quality
1 Japan 4.25 96.00% 0.17
2 India 4.90 95.50% 0.22
3 Finland 4.40 94.50% 0.24
4 Switzerland 4.40 94.50% 0.24
5 Denmark 4.25 94.00% 0.26
6 Israel 5.00 94.80% 0.26
7 Sweden 4.45 94.00% 0.27
8 Netherlands 4.40 93.50% 0.29
9 Hong Kong 4.45 93.50% 0.29
10 Brazil 4.50 93.00% 0.32
11 Singapore 4.80 93.40% 0.32
12 United Kingdom 4.55 93.00% 0.32
13 Malaysia 4.60 93.00% 0.32
14 Norway 4.65 93.00% 0.33
15 Taiwan 4.90 93.30% 0.33

___|
Software Measurement News 21(2016)2

28 Position Paper

Countries such as Japan and India tend to be more effective in pre-test defect removal operations and to use
more certified test personnel than those lower down the table. Although not shown in table 14 the U.S. ranks
as country #19 out of the 70 countries from which the author has data. Table 15 shows quality comparison of
15 software development methodologies (this table is cut down from a larger table of 80 methodologies that
will be published in the author’s next book.)

Tablel5: Comparisons of 15 Software Methodologies

Defect Defect Delivered
Methodologies Potential Removal Defects
per FP Efficiency per FP
2016 2016 2016

Best Quality
1 Reuse-oriented (85% reusable materials) 1.30 99.50% 0.007
2 Pattern-based development 1.80 99.50% 0.009
3 Animated, 3D, full color design development 1.98 99.20% 0.016
4 Team software process (TSP) + PSP 2.35 98.50% 0.035
5 Container development (65% reuse) 2.90 98.50% 0.044
6 Microservice development 2.50 98.00% 0.050
7 Model-driven development 2.60 98.00% 0.052
8 Microsoft SharePoint development 2.70 97.00% 0.081
9 Mashup development 2.20 96.00% 0.088
10 Product Line engineering 2.50 96.00% 0.100
11 DevOps development 3.00 94.00% 0.180
12 Pair programming development 3.10 94.00% 0.186
13 Agile + scrum 3.20 92.50% 0.240
14 Open-source development 3.35 92.00% 0.268
15 Waterfall development 4.60 87.00% 0.598

Table 16 shows the details of how defect removal efficiency (DRE) operates. Table 16 must of course use fixed
values but there are ranges for every row and column for both pre-test and test methods.

There are also variations in the numbers of pre-test removal and test stages used. Table 16 illustrates the
maximum number observed.

The data in table 16 is originally derived from IBM”s software quality data collection which is more complete
than most companies. Other companies have been studied as well. Note that requirements defects are among
the most difficult to remove since they are resistant to testing.

To consistently top 99% in DRE the minimum set of methods needed include most of the following:

Pre-Test Removal
1. Formal Inspections (requirements, design, code, etc.)

2. Code Static analysis
3. Automated Requirements modeling
4. Automated correctness proofs

Test Removal
1. Unit test (manual/automated)

2. Function test
3. Regression test
4. Integration test

___|
Software Measurement News 21(2016)2

Position Paper 29

Performance test
Usability test
Security test
System test

L XN Ww

Field or acceptance test

In other words a series of about 13 kinds of defect removal activities are generally needed to top 99% in DRE
consistently. Testing by itself without inspections or static analysis usually is below 90% in DRE.

Of course some critical applications such as medical devices and weapons systems use many more kinds of
testing. As many as 18 kinds of testing have been observed by the author. This paper uses 12 kinds of testing
since these are fairly common on large systems > 10,000 function points in size which is where quality is a
critical factor.

Note that DRE includes bugs that originate in architecture, requirements, design, code, documents, and “bad
fixes” or new bugs in bug repairs themselves. All bug origins should be included since requirements and design
bugs often outnumber code bugs.

Note that the defect potential for next table 16 is somewhat lower than the 4.25 value shown in tables 1, 2, and
3. This is because those tables includes all programming languages and some have higher defect potentials
than Java, which is used for table 16.

Code defect potentials vary by language with low-level languages such as assembly and C having a higher defect
potential than high-level languages such as Java, Objective C, C#, Ruby, Python, etc.

Table16: Software Quality and Defect Removal Efficiency (DRE)
Note 1: The table represents high quality defect removal operations.

Application size in function points 1,000

Application language Java

Source lines per FP 53.33

Source lines of code 53,330
Pre-Test Defect Architect. Require. Design Code Document TOTALS

Defects Defects Defects

Removal Methods Defects per per per per Defects per

Function Function Function Function Function

Point Point Point Point Point

Defect Potentials per

Function Point 0.25 1.00 1.15 1.30 0.45 4.15
Defect potentials 250 1,000 1,150 1,300 450 4,150
1 Requirement inspection 5.00% 87.00% 10.00% 5.00% 8.50% 26.52%
Defects discovered 13 870 115 65 38 1,101
Bad-fix injection 0 26 3 2 1 33
Defects remaining 237 104 1,032 1,233 411 3,016
2 Architecture inspection 85.00% 10.00% 10.00% 2.50% 12.00% 13.10%
Defects discovered 202 10 103 31 49 395
Bad-fix injection 6 0 3 1 1 12
Defects remaining 30 93 925 1,201 360 2,609
3 Design inspection 10.00% 14.00% 87.00% 7.00% 16.00% 36.90%
Defects discovered 3 13 805 84 58 963

___|
Software Measurement News 21(2016)2

30 Position Paper

Bad-fix injection 0 0 24 3 2 48
Defects remaining 26 80 96 1,115 301 1,618

4 Code inspection 12.50% 15.00% 20.00% 85.00% 10.00% 62.56%
Defects discovered 3 12 19 947 30 1,012
Bad-fix injection 0 0 1 28 1 30
Defects remaining 23 67 76 139 270 575

5 Code Static Analysis 2.00% 2.00% 7.00% 55.00% 3.00% 15.92%
Defects discovered 0 1 5 76 8 92
Bad-fix injection 0 0 0 2 0 3
Defects remaining 23 66 71 60 261 481

6 V&V 10.00% 12.00% 23.00% 7.00% 18.00% 16.16%
Defects discovered 2 8 16 4 47 78
Bad-fix injection 0 0 0 0 1 2
Defects remaining 20 58 54 56 213 401

7 SQA review 10.00% 17.00% 17.00% 12.00% 12.50% 30.06%
Defects discovered 2 10 9 7 27 54
Bad-fix injection 0 0 0 0 1 3
Defects remaining 18 48 45 49 185 344
Pre-test defects removed 232 952 1,105 1,251 265 3,805
Pre-test efficiency % 92.73% 95.23% 96.12% 96.24% 58.79% 91.69%

Test Defect Removal
Stages

Architect. Require. Design Code Document Total

1 Unit testing (Manual) 2.50% 4.00% 7.00% 35.00% 10.00% 11.97%
Defects discovered 0 2 3 17 19 41
Bad-fix injection 0 0 0 1 1 1
Defects remaining 18 46 41 31 166 301

2 Function testing 7.50% 5.00% 22.00% 37.50% 10.00% 13.63%
Defects discovered 1 2 9 12 17 41
Bad-fix injection 0 0 0 0 0 1
Defects remaining 16 43 32 19 149 259

3 Regression testing 2.00% 2.00% 5.00% 33.00% 7.50% 7.84%
Defects discovered 0 1 2 6 11 20
Bad-fix injection 0 0 0 0 0 1
Defects remaining 16 43 30 13 138 238

4 Integration testing 6.00% 20.00% 22.00% 33.00% 15.00% 17.21%
Defects discovered 1 9 7 4 21 41
Bad-fix injection 0 0 0 0 1 1
Defects remaining 15 34 23 8 116 196

5 Performance testing 14.00% 2.00% 20.00% 18.00% 2.50% 6.07%
Defects discovered 2 1 5 2 3 12
Bad-fix injection 0 0 0 0 0 0
Defects remaining 13 33 19 7 113 184

___|
Software Measurement News 21(2016)2

Position Paper 31

6 Security testing 12.00% 15.00% 23.00% 8.00% 2.50% 7.71%
Defects discovered 2 5 4 1 3 14
Bad-fix injection 0 0 0 0 0 0
Defects remaining 11 28 14 6 110 169

7 Usability testing 12.00% 17.00% 15.00% 5.00% 48.00% 36.42%
Defects discovered 1 5 2 0 53 62
Bad-fix injection 0 0 0 0 2 2
Defects remaining 10 23 12 6 56 106

8 System testing 16.00% 12.00% 18.00% 12.00% 34.00% 24.81%
Defects discovered 2 3 2 1 19 26
Bad-fix injection 0 0 0 0 1 1
Defects remaining 8 20 10 5 36 79

9 Cloud testing 10.00% 5.00% 13.00% 10.00% 20.00% 13.84%
Defects discovered 1 1 1 1 7 11
Bad-fix injection 0 0 0 0 0 0
Defects remaining 7 19 8 5 29 69

10 Independent testing 12.00% 10.00% 11.00% 10.00% 23.00% 15.81%
Defects discovered 1 2 1 0 7 11
Bad-fix injection 0 0 0 0 0 0
Defects remaining 6 17 8 4 22 57

11 Field (Beta) testing 14.00% 12.00% 14.00% 12.00% 34.00% 20.92%
Defects discovered 1 2 1 1 7 12
Bad-fix injection 0 0 0 0 0 0
Defects remaining 6 15 6 4 14 45

12 Acceptance testing 13.00% 14.00% 15.00% 12.00% 24.00% 20.16%
Defects discovered 1 2 1 0 6 10
Bad-fix injection 0 0 0 0 0 0
Defects remaining 5 13 6 3 8 35
Test Defects Removed 13 35 39 46 177 309
Testing Efficiency % 73.96% 72.26% 87.63% 93.44% 95.45% 89.78%
Total Defects Removed 245 987 1,144 1,297 442 4,114
Total Bad-fix injection 7 30 34 39 13 123
Cumulative Removal % 98.11% 98.68% 99.52% 99.75% 98.13% 99.13%
Remaining Defects 5 13 6 3 8 36
High-severity Defects 1 2 1 1 1 5
Security Defects 0 0 0 0 0 1
Remaining Defects 0.0036 0.0102 0.0042 0.0025 0.0065 0.0278

per Function Point

Remaining Defects 3.63 10.17 4.23 2.46 6.48 27.81
per K Function Points

Remaining Defects 0.09 0.25 0.10 0.06 0.16 0.68
per KLOC

___|
Software Measurement News 21(2016)2

32 Position Paper

Note: The letters “IV&V” in table 16 stand for “independent verification and validation.” This is a method used
by defense software projects but it seldom occurs in the civilian sector. The efficiency of IV&V is fairly low and
the costs are fairly high. DRE measures can be applied to any combination of pre-test and testing stages. Table
16 shows seven pre-test DRE activities and 12 kinds of testing: 19 forms of defect removal in total. This
combination would only be used on large defense systems and also on critical medical devices. It might also be
used on aircraft navigation and avionics packages. In other words software that might cause injury or death to
humans if quality lags are the most likely to use both DRE measures and sophisticated combinations of pre-test
and test removal methods.

As of 2016 the U.S. average for DRE is only about 92.50%. This is close to the average for Agile projects. The
U.S. norm is to use only static analysis before testing and six kinds of testing: unit test, function test, regression
test, performance test, system test, and acceptance test. This combination usually results in about 92.50% DRE.
If static analysis is omitted and only six test stages are used, DRE is normally below 85%. In this situation quality
problems are numerous. Note that when a full suite of pre-test defect removal and test stages are used, the
final number of defects released to customers often has more bugs originating in requirements and design than
in code. Due to static analysis and formal testing by certified test personnel, DRE for code defects can top
99.75%. It is harder to top 99% for requirements and design bugs since both resist testing and can only be
found via inspections, or by text static analysis.

Software Quality and Software Security

Software quality and software security have a tight relationship. Security flaws are just another kind of defect
potential. As defect potentials go up so do security flaws, as DRE declines more and more security flaws will be
released.

Of course security has some special methods that are not part of traditional quality assurance. One of these is
the use of ethical hackers and another is the use of penetration teams that deliberately try to penetrate the
security defenses of critical software applications.

Security also includes social and physical topics that are not part of ordinary software operations. For example
security requires careful vetting of personnel. Security for really critical applications may also require Faraday
cages around computers to ensure that remote sensors are blocked and can’t steal information from a distance
or though building walls.

To provide an approximate set of values for high-severity defects and security flaws table 16 shows what
happens when defect potentials increase and DRE declines. To add realism to this example table 17 uses a fixed
size of 1000 function points. Delivered defects, high-severity defects, and security flaws are shown in whole
numbers rather than defects per function point:

Table 17: Quality and Security Flaws for 1000 Function Points

Defect DRE Delivered Delivered High Security
Potentials Defects Defects Severity Flaw
per FP per FP Defects Defects
2.50 99.50% 0.01 13 0
3.00 99.00% 0.03 30 0
3.50 97.00% 0.11 105 10 1
4.00 95.00% 0.20 200 21 3
4.25 92.50% 0.32 319 35 4
450 92.00% 0.36 360 42 6
5.00 87.00% 0.65 650 84 12
5.50 83.00% 0.94 935 133 20
6.00 78.00% 1.32 1,320 206 34

___|
Software Measurement News 21(2016)2

Position Paper 33

The central row in the middle of this table highlighted in blue show approximate 2016 U.S. averages in terms of
delivered defects, high-severity defects, and latent security flaws for 1000 function points. The odds of a
successful cyber-attack would probably be around 15%. At the safe end of the spectrum where defect
potentials are low and DRE tops 99% the number of latent security flaws is 0. The odds of a successful cyber-
attack are very low at the safe end of the spectrum: probably below 1%. At the dangerous end of the spectrum
with high defect potentials and low DRE, latent security flaws top 20 for 1000 function points. This raises the
odds of a successful cyber-attack to over 50%.

Software Quality and Technical Debt

Ward Cunningham introduced an interesting metaphor called “technical debt” which concerns latent defects
present in software applications after deployment. The idea of technical debt is appealing but unfortunately
technical debt is somewhat ambiguous and every company tends to accumulate data using different methods
so it is hard to get accurate benchmarks. In general technical debt deals with the direct costs of fixing latent
defects as they are reported by users or uncovered by maintenance personnel. However there are other and
larger costs associated with legacy software and also new software that are not included in technical debt:

1. Litigation against software outsource contractors or commercial software vendors by disgruntled
users who sue for excessive defects.

2. Consequential damages or financial harm to users of defective software. For example if the
computerized brake system of an automobile fails and causes a serious accident, neither the cost of
repairing the auto nor any medical bills for injured passengers are included in technical debt.

3. Latent security flaws that are detected by unscrupulous organizations and lead to data theft, denial
of service, or other forms of cyber-attack are not included in technical debt either.

Technical debt is an appealing metaphor but until consistent counting rules become available it is not a
satisfactory quality metric. The author suggests that the really high cost topics of consequential damages,
cyber-attacks, and litigation for poor quality should be included in technical debt or at least not ignored as they
are in 2016.

Assume a software outsource vendor builds a 10,000 function point application for a client for a cost of
$30,000,000 and it has enough bugs to make the client unhappy. True technical debt or the costs of repairing
latent defects found and reported by clients over several years after deployment might cost about $5,000,000.
However depending upon what the application does, consequential damages to the client could top
$25,000,000; litigation by the unhappy client might cost $5,000,000; severe cyber-attacks and data theft might
cost $30,000,000: a total cost of $60,000,000 over and above the nominal amount for technical debt.

Of these problems cyber-attacks are the most obvious candidates to be added to technical debt because they
are the direct result of latent security flaws present in the software when it was deployed. The main difference
between normal bugs and security flaws is that cyber criminals can exploit security flaws to do very expensive
damages to software (and even hardware) or to steal valuable and sometimes classified information.

In other words possible post-release costs due to poor quality control might approach or exceed twice the
initial costs of development; and 12 times the costs of “technical debt” as it is normally calculated.

SNAP Metrics for Non-Functional Size

In 2011 the IFPUG organization developed a new metric for non-functional requirements. This metric is called
“SNAP” which is sort of an acronym for “software non-functional assessment process.” (No doubt future
sociologists will puzzle over software naming conventions.) Unfortunately the SNAP metric was not created to
be equivalent to standard IFPUG function points. That means if you have 100 function points and 15 SNAP
points you cannot add them together to create 115 total “points.” This makes both productivity and quality
studies more difficult because function point and SNAP work needs to be calculated separately. Since one of the

___|
Software Measurement News 21(2016)2

34 Position Paper

most useful purposes for function point metrics has been for predicting and measuring quality, the addition of
SNAP metrics to the mix has raised the complexity of quality calculations. Pasted below are the results of an
experimental quality calculation tool developed by the author that can combine defect potentials and defect
removal efficiency (DRE) for both function point metrics and the newer SNAP metrics.

Table 18: SNAP Software Defect Calculator

6/9/2016
|

Size in Function Points 1,000

Size in SNAP Points 152

Defect Defects Defects SNAP
Origins Per FP per SNAP Percent
Requirements 0.70 0.14 19.50%
Architecture 0.10 0.02 15.50%
Design 0.95 0.18 18.50%
Source code 1.15 0.13 11.50%
Security flaws 0.25 0.05 20.50%
Documents 0.45 0.02 3.50%
Bad Fixes 0.65 0.12 18.50%
TOTALS 4.25 0.65 15.23%
Defect Defect Defects

Origins Potential Potential

Requirements 700 21

Architecture 100 2

Design 950 27

Source code 1,150 20

Security flaws 250 8

Documents 450

Bad Fixes 650 18

TOTALS 4,250 99

Defect Removal Removal

Origins Percent Percent

Requirements 75.00% 75.00%

Architecture 70.00% 70.00%

Design 96.00% 96.00%

___|
Software Measurement News 21(2016)2

Position Paper 35

Source code 98.00% 98.00%
Security flaws 87.00% 87.00%
Documents 95.00% 95.00%
Bad Fixes 78.00% 78.00%
Average 85.57% 85.57%
Defect Delivered Delivered
Origins Defects Defects
Requirements 175 5
Architecture 30 1
Design 38 1
Source code 23 0
Security flaws 33 1
Documents 23 0
Bad Fixes 143 4
Total 464 13
Defect Delivered Delivered SNAP
Origins Per FP per SNAP Percent
Requirements 0.175 0.034 19.50%
Architecture 0.030 0.005 15.50%
Design 0.038 0.007 18.50%
Source code 0.023 0.003 11.50%
Security flaws 0.023 0.007 29.61%
Documents 0.143 0.026 18.50%
Bad Fixes 0.464 0.082 17.75%
Total 0.896 0.164 18.31%

In real life defect potentials go up with application size and defect removal efficiency (DRE) comes down with
application size. This experimental tool holds defect potentials and DRE as constant values. The purpose is
primarily to experiment with the ratios of SNAP defects and with DRE against SNAP bugs.

A great deal more study and more empirical data is needed before SNAP can actually become useful for
software quality analysis. Right now there is hardly any empirical data available on SNAP and software quality.

Economic Value of High Software Quality

One of the major economic weaknesses of the software industry due to bad metrics and poor measurements is
a total lack understanding of the economic value of high software quality. If achieving high quality levels added
substantially to development schedules and development costs it might not be worthwhile to achieve it. But
the good news is that high software quality levels comes with shorter schedules and lower costs than average
or poor quality! These reductions in schedules and costs, or course, are due to the fact that finding and fixing
bugs has been the #1 software cost driver for over 50 years. When defect potentials are reduced and DRE is
increased due to pre-test defect removal such as static analysis, then testing time and testing costs shrink
dramatically.

___|
Software Measurement News 21(2016)2

36 Position Paper

Table 19 shows the approximate schedules in calendar months, the approximate effort in work hours per
function point, and the approximate $ cost per function point that results from various combinations of
software defect potentials and defect removal efficiency.

The good news for the software industry is that low defect potentials and high DRE levels are the fastest and
cheapest way to build software applications!

Table 19: Schedules, Effort, Costs for 1000 Function Points
(Monthly costs = $10,000)

Defect DRE Delivered Delivered Schedule Work Development S per
Potentials Defects Defects Months Hours per Cost per Defect
per FP per FP Function Function (Caution!)
Point Point

2.50 99.50% 0.01 13 13.34 12.00 $909.09 $4,550.00
3.00 99.00% 0.03 30 13.80 12.50 $946.97 $3,913.00
3.50 97.00% 0.11 105 14.79 13.30 $1,007.58 $3,365.18
4.00 95.00% 0.20 200 15.85 13.65 $1,034.09 $2,894.05
4.25 92.50% 0.32 319 16.00 13.85 $1,050.00 $2,488.89
450 92.00% 0.36 360 16.98 14.00 $1,060.61 $2,140.44
5.00 87.00% 0.65 650 18.20 15.00 $1,136.36 $1,840.78
5.50 83.00% 0.94 935 19.50 16.50 $1,250.00 $1,583.07
6.00 78.00% 1.32 1,320 20.89 17.00 $1,287.88 $1,361.44

The central row highlighted in blue shows approximate U.S. average values for 2016. This table also shows the
“cost per defect” metric primarily to caution readers that this metric is inaccurate and distorts reality since it
make buggy applications look cheaper than high-quality applications.

A Primer on Manufacturing Economics and the Impact of Fixed Costs

The reason for the distortion of the cost per defect metric is because cost per defect ignores the fixed costs of
writing test cases, running test cases, and for maintenance the fact that the change team must be ready
whether or not bugs are reported.

To illustrate the problems with the cost per defect metric, assume you have data on four identical applications
of 1000 function points in size. Assume for all four that writing test cases costs $10,000 and running test cases
costs $10,000 so fixed costs are $20,000 for all four cases.

Now assume that fixing bugs costs exactly $500 each for all four cases. Assume Case 1 found 100 bugs, Case 2
found 10 bugs, Case 3 found 1 bug, and Case 4 had zero defects with no bugs found by testing. Table 20
illustrates both cost per defect and cost per function point for these four cases:

Table 20: Comparison of $ per defect and $ per function point

Casel Case 2 Case 3 Case 4
Fixed costs $20,000 $20,000 $20,000 $20,000
Bug repairs $50,000 $5,000 $500 SO
Total costs $70,000 $25,000 $20,500 $20,000

Software Measurement News

21(2016)2

Position Paper 37

Bugs found 100 10 1 0
S per defect $700 $2,500 $20,500 Infinite
S per FP $70.00 $25.00 $20.50 $20.00

As can be seen the “cost per defect” metric penalizes quality and gets more expensive as defect volumes
decline. This is why hundreds of refereed papers all claim that cost per defect goes up later in development.
The real reason that cost per defect goes up is not that the actual cost of defect repairs goes up, but rather fixed
costs make it look that way. Cost per function point shows the true economic value of high quality and this
goes down as defects decline.

Recall a basic law of manufacturing economics that “If a manufacturing process has a high percentage of fixed
costs and there is a decline in the number of units produced, the cost per unit will go up.” For over 50 years the
cost per defect metric has distorted reality and concealed the true economic value of high quality software.
Some researchers have suggested leaving out the fixed costs of writing and running test cases and only
considering the variable costs of actual defect repairs. This violates both economic measurement principles and
also and good sense. Would you want a contractor to give you an estimate for building a house that only
showed foundation and framing costs but not the more variable costs of plumbing, electrical wiring, and
internal finishing? Software Cost of Quality (COQ) needs to include ALL of the cost elements of finding and
fixing bugs and not just a small subset of those costs.

The author has read over 100 refereed software articles in major journals such as IEEE Transactions, IBM
Systems Journal, Cutter Journal, and others that parroted the stock phrase “It costs 100 times more to fix a bug
after release than it does early in development.” Not even one of these 100 articles identified the specific
activities that were included in the cost per defect data. Did the authors include test case design, test case
development, test execution, defect logging, defect analysis, inspections, desk checking, correctness proofs,
static analysis, all forms of testing, post-release defects, abeyant defects, invalid defects, duplicate defects, bad
fix injections, error-prone modules or any of the other topics that actually have a quantified impact on defect
repairs?

Not even one of the 100 journal articles included such basic information on the work elements that comprised
the “cost per defect” claims by the authors. In medical journals this kind of parroting of a stock phrase without
defining any of its elements would be viewed as professional malpractice. But the software literature is so lax
and so used to bad data, bad metrics, and bad measures that none of the referees probably even noticed that
the cost per defect claims were unsupported by any facts at all. The omission of fixed costs also explains why
“lines of code” metrics are invalid and penalize high-level languages. In the case of LOC metrics requirements,
design, architecture, and other kinds of non-code work are fixed costs, so when there is a switch from a low-
level language such as assembly to a higher level language such as Objective C the “cost per line of code” goes
up.

Table 21 shows 15 programming languages with cost per function point and cost per line of code in side by side

columns, to illustrate that LOC penalizes high-level programming languages, distorts reality, and reverses the
true economic value of high-level programming languages:

Table 21: Productivity Expressed Using both LOC and Function Points

Languages Size in Coding Total Total S per S per

LOC Work hrs Work hrs Costs FP LOC

1 Application Generators 7,111 1,293 4,293 $325,222 $325.22 $45.73
2 Mathematical0 9,143 1,662 4,662 $353,207 $353.21 $38.63

___|
Software Measurement News 21(2016)2

38 Position Paper
3 Smalltalk 21,333 3,879 6,879 $521,120 $521.12 $24.43
4 Objective C 26,667 4,848 7,848 $594,582 $594.58 $22.30
5 Visual Basic 26,667 4,848 7,848 $594,582 $594.58 $22.30
6 APL 32,000 5,818 8,818 $668,044 $668.04 $20.88
7 Oracle 40,000 7,273 10,273 $778,237 $778.24 $19.46
8 Ruby 45,714 8,312 11,312 $856,946 $856.95 $18.75
9 Simula 45,714 8,312 11,312 $856,946 $856.95 $18.75
10 C# 51,200 9,309 12,309 $932,507 $932.51 $18.21
11 ABAP 80,000 14,545 17,545 $1,329,201 $1,329.20 $16.62
12 P/ 80,000 14,545 17,545 $1,329,201 $1,329.20 $16.62
13 COBOL 106,667 19,394 22,394 $1,696,511 $1,696.51 $15.90
14 C 128,000 23,273 26,273 $1,990,358 $1,990.36 $15.55
15 Macro Assembly 213,333 38,788 41,788 $3,165,748 $3,165.75 $14.84

Recall that the standard economic definition for productivity for more than 200 years has been “Goods or
services produced per unit of labor or expense.” If a line of code is selected as a unit of expense then moving
to a high-level programming language will drive up the cost per LOC because of the fixed costs of non-code
work.

Function point metrics, on the other hand, do not distort reality and are a good match to manufacturing
economics and also to standard economics because they correctly show that the least expensive version has
the highest economic productivity. LOC metrics make the most expensive version seem to have higher
productivity than the cheapest, which of course violates standard economics. Also, software has a total of 126
occupation groups. The only occupation that can be measured at with “lines of code” is that of programming.
Function point metrics, on the other hand, can measure the productivity of non-code occupations such as
business analysts, architects, data base designers, technical writers, project management and everybody else.
The author is often asked questions such as “If cost per defect and lines of code are such bad metrics why do so
many companies still use them?” The questioners are assuming, falsely, that if large numbers of people do
something it must be beneficial. There is no real correlation between usage and benefits. Usually it is only
necessary to pose a few counter questions:

“If obesity is harmful why are so many people overweight?”
“If tobacco is harmful why do so many people smoke?”

As will be shown later in this report the number of users of the very harmful anti-pattern development
methodology outnumber the users of the very beneficial pattern-based development methodology. There is
very poor correlation between value and numbers of users. Many harmful things have thousands of users.

The reason for continued usage of bad metrics is “cognitive dissonance” which is a psychological topic studied
by Dr. Leon Festinger and first published in 1962. Today there is an extensive literature on cognitive
dissonance. Dr. Festinger studied opinion formation and found that once an idea is accepted by the human
mind, it is locked in place and won’t change until evidence against the idea is overwhelming. Then there will be
an abrupt change to a new idea. Cognitive dissonance has been a key factor for resistance to many new
innovations and new scientific theories including:

e Resistance to the theories of Copernicus and Galileo.

e Resistance to Lister’s and Semmelweis’s proposals for sterile surgical procedures.
e Resistance to Alfred Wegener’s theory of continental drift.

e Resistance to Charles Darwin’s theory of evolution.

e British naval resistance to self-leveling shipboard naval cannons.

e Union and Confederate Army resistance to replacing muskets with rifles.

___|
Software Measurement News 21(2016)2

Position Paper 39

e Naval resistance to John Ericsson’s inventions of screw propellers and iron-clad ships.
e Army resistance to Christie’s invention of military tank treads.

e Military and police resistance to Samuel Colt’s revolvers (he went bankrupt.)

e Military resistance and the court martial of Gen. Billy Mitchell for endorsing air power.

Cognitive dissonance is a powerful force that has slowed down acceptance of many useful technologies. Table
22 illustrates the use of function points for 40 software development activities. It is obvious that serious
software economic analysis needs to use activity-based costs and not just use single-point measures or phase-
based measures neither of which can be validated.

Table 22: Function Points for Activity-Based Cost Analysis for 10,000 Function Points

Work Burdened

Hours per Cost per Project % of

Development Activities Funct. Pt. Funct. Pt. Cost Total

1 Business analysis 0.01 $0.42 $4,200 0.02%
2 Risk analysis/sizing 0.00 $0.14 $1,400 0.01%
3 Risk solution planning 0.00 $0.21 $2,100 0.01%
4 Requirements 0.29 $23.33 $233,333 1.36%
5 Requirement. Inspection 0.24 $19.09 $190,909 1.11%
6 Prototyping 0.38 $30.00 $30,000 0.17%
7 Architecture 0.05 $4.20 $42,000 0.24%
8 Architecture. Inspection 0.04 $3.00 $30,000 0.17%
9 Project plans/estimates 0.04 $3.00 $30,000 0.17%
10 Initial Design 0.66 $52.50 $525,000 3.06%
11 Detail Design 0.88 $70.00 $700,000 4.08%
12 Design inspections 0.53 $42.00 $420,000 2.45%
13 Coding 6.60 $525.00 $5,250,000 30.58%
14 Code inspections 3.30 $262.50 $2,625,000 15.29%
15 Reuse acquisition 0.00 $0.14 $1,400 0.01%
16 Static analysis 0.01 $0.70 $7,000 0.04%
17 COTS Package purchase 0.01 $0.42 $4,200 0.02%
18 Open-source acquisition. 0.00 $0.21 $2,100 0.01%
19 Code security audit. 0.07 $5.25 $52,500 0.31%
20 Ind. Verif. & Valid. (IV&V) 0.01 $1.05 $10,500 0.06%
21 Configuration control. 0.03 $2.10 $21,000 0.12%
22 Integration 0.02 $1.75 $17,500 0.10%
23 User documentation 0.26 $21.00 $210,000 1.22%
24 Unit testing 1.06 $84.00 $840,000 4.89%
25 Function testing 0.94 $75.00 $750,000 4.37%
26 Regression testing 1.47 $116.67 $1,166,667 6.80%
27 Integration testing 1.06 $84.00 $840,000 4.89%
28 Performance testing 0.26 $21.00 $210,000 1.22%
29 Security testing 0.38 $30.00 $300,000 1.75%
30 Usability testing 0.22 $17.50 $175,000 1.02%
31 System testing 0.75 $60.00 $600,000 3.49%
32 Cloud testing 0.06 $4.38 $43,750 0.25%
33 Field (Beta) testing 0.03 $2.63 $26,250 0.12%

___|
Software Measurement News 21(2016)2

40 Position Paper

34 Acceptance testing 0.03 $2.10 $21,000 0.12%
35 Independent testing 0.02 $1.75 $17,500 0.10%
36 Quality assurance 0.18 $14.00 $140,000 0.82%
37 Installation/training 0.03 $2.63 $26,250 0.15%
38 Project measurement 0.01 $1.11 $11,053 0.06%
39 Project office 0.24 $19.09 $190,909 1.11%
40 Project management 1.76 $140.00 $1,400,000 8.15%

Cumulative Results 21.91 $1,743.08 $17,168,521 100.00%

In table 22 the activities that are related to software quality are highlighted in blue. Out of a total of 40
activities 26 of them are directly related to quality and defect removal. These 26 quality-related activities sum
to 50.50% of software development costs while actual coding is only 30.58% of development costs. The
accumulated costs for defect-related activities were $8,670,476. The author is not aware of any other industry
where defect-related costs sum to more than half of total development costs. This is due to the high error
content of custom designs and manual coding, rather than construction of software from certified reusable
components.

So long as software is built using custom designs and manual coding defect detection and defect removal must
be the major cost drivers of all software applications. Construction of software from certified reusable
components would greatly increase software productivity and benefit the economics of not only software itself
but of all industries that depend on software, which essentially means every industry in the world. Table 22
shows the level of granularity needed to understand the cost structures of large software applications where
coding is just over 30% of the total effort. Software management and C-level executives such as Chief Financial
Officers (CFO) and Chief Information Officers (ClO) need to understand the complete set of activity-based costs
and also costs by occupation group such as business analysts and architects over and above programmers.

When you build a house you need to know the costs of everything: foundations, framing, electrical systems,
roofing, plumbing etc. You also need to know the separate costs of architects, carpenters, plumbers,
electricians, and all of the other occupations that work on the house. Here too for large systems in the 10,000
function point size range a proper understanding of software economics needs measurements of ALL activities
and all occupation groups and not just coding programmers, whose effort is often less than 30% of the total
effort for large systems.

Both LOC metrics and cost per defect metrics should probably be viewed as professional malpractice for
software economic studies because they both distort reality and make bad results look better than good
results. It is no wonder that software progress resembles and drunkard’s walk when hardly anybody knows how
to measure either quality or productivity with metrics that make sense and match standard economics.

Software’s Lack of Accurate Data and Poor Education on Quality and Cost of Quality (COQ)

One would think that software manufacturing economics would be taught in colleges and universities as part of
computer science and software engineering curricula, but universities are essentially silent on the topic of fixed
costs probably because the software faculty does not understand software manufacturing economics either.
There are a few exceptions such as the University of Montreal however. The private software education
companies and the professional associations are also silent on the topic of software economics and the hazards
of cost per defect and lines of code. It is doubtful if either of these sectors understands software economics well
enough to teach it. They certainly don’t seem to understand either function points or quality metrics such as
defect removal efficiency (DRE). Even more surprising some of the major software consulting groups with
offices and clients all over the world are also silent on software economics and the hazards of both cost per
defect and lines of code. Gartner Group uses function points but apparently has not dealt with the impact of
fixed costs and the distortions caused by the LOC and cost per defect metrics.

___|
Software Measurement News 21(2016)2

Position Paper 41

You would think that major software quality tool vendors such as those selling automated test tools, static
analysis tools, defect tracking tools, automated correctness proofs, or test-case design methods based on
cause-effect graphs or design of experiments would measure defect potentials and DRE because these metrics
could help to demonstrate the value of their products. Recall that IBM used defect potentials and DRE metrics
to prove the value of formal inspections back in 1973.

But the quality companies are just as clueless as their clients when it comes to defect potentials and defect
removal efficiency (DRE) and the economic value of high quality. They make vast claims of quality
improvements but provide zero quantitative data. For example only CAST Software that sells static analysis
uses function points on a regular basis from among the major quality tool companies. But even CAST does not
use defect potentials and DRE although some of their clients do. You would also think that project management
tool companies that market tools for progress and cost accumulation reporting and project dashboards would
support function points and show useful economic metrics such as work hours per function point and cost per
function point. You would also think they would support activity-based costs. However most project
management tools do not support either function point metrics or activity-based costs, although a few do
support earned value and some forms of activity-based cost analysis. This means that standard project
management tools are not useful for software benchmarks since function points are the major benchmark
metric.

The only companies and organizations that seem to know how to measure quality and economic productivity
are the function point associations such as COSMIC, FISMA, IFPUG, and NESMA; the software benchmark
organizations such as ISBSG, David’s Consulting, Namcook Analytics, TIMetricas, Q/P Management Group, and
several others; and some of the companies that sell parametric estimation tools such as KnowledgePlan, SEER,
SLIM, and the author’s Software Risk Master (SRM). In fact the author’s SRM tool predicts software application
size in a total of 23 metrics including all forms of function points plus story points, use-case points, physical and
logical code, and a number of others. It even predicts bad metrics such as cost per defect and lines of code
primarily to demonstrate to clients why those metrics distort reality. Probably not one reader out of 1000 of this
paper has quality and cost measures that are accurate enough to confirm or challenge the data in tables 19, 20,
and 21 because software measures and metrics have been fundamentally incompetent for over 50 years. This
kind of analysis can’t be done with “cost per defect” or “lines of code” because they both distort reality and
conceal the economic value of software quality.

However the comparatively few companies and fewer government organizations that do measure software
costs and quality well using function points and DRE can confirm the results. The quality pioneers of Joseph
Juran, W. Edwards Deming, and Phil Crosby showed that for manufactured products quality is not only free it
also saves time and money. The same findings are true for software, only software has lagged all other
industries in discovering the economic value of high software quality because software metrics and measures
have been so bad that they distorted reality and concealed progress. The combination of function point metrics
and defect removal efficiency (DRE) measures can finally prove that high software quality, like the quality of
manufactured products, lowers development costs and shortens development schedules. High quality also
lowers maintenance costs, reduces the odds of successful cyber-attacks, and improves customer satisfaction
levels.

Summary and Conclusions

The combination of defect potentials and defect removal efficiency (DRE) measures provide software
engineering and quality personnel with powerful tools for predicting and measuring all forms of defect
prevention and all forms of defect removal.

Function points are the best metric for normalizing software defect potentials because function points are the
only metrics that can handle requirements, design, architecture, and other sources of non-code defects. This
paper uses IFPUG 4.3 function points. Other forms of function point metric such as COSMIC, FISMA, NESMA,
etc. would be similar but not identical to the values shown here.

___|
Software Measurement News 21(2016)2

42 Position Paper

As of 2016 there is insufficient data on SNAP metrics to show defect potentials and defect removal efficiency.
However it is suspected that non-functional requirements contribute to defect potentials in a significant
fashion. There is insufficient data in 2016 to judge DRE values against non-functional defects. Note that the
author’s Software Risk Master (SRM) tool predicts defect potentials and defect removal efficiency (DRE) as
standard outputs for all projects estimated.

For additional information on 25 methods of pre-test defect removal and 25 forms of testing, see The
Economics of Software Quality, Addison Wesley, 2012 by Capers Jones and Olivier Bonsignour.

References and Readings on Software Quality

Beck, Kent; Test-Driven Development; Addison Wesley, Boston, MA; 2002; ISBN 10: 0321146530; 240 pages.

Black, Rex; Managing the Testing Process: Practical Tools and Technigues for Managing Hardware and Software
Testing; Wiley; 2009; ISBN-10 0470404159; 672 pages.

Chelf, Ben and Jetley, Raoul; “Diagnosing Medical Device Software Defects Using Static Analysis”; Coverity
Technical Report, San Francisco, CA; 2008.

Chess, Brian and West, Jacob; Secure Programming with Static Analysis; Addison Wesley, Boston, MA; 20007;
ISBN 13: 978-0321424778; 624 pages.

Cohen, Lou; Quality Function Deployment — How to Make QFD Work for You; Prentice Hall, Upper Saddle River,
NJ; 1995; ISBN 10: 0201633302; 368 pages.

Crosby, Philip B.; Quality is Free; New American Library, Mentor Books, New York, NY; 1979; 270 pages.

Everett, Gerald D. And MclLeod, Raymond; Software Testing; John Wiley & Sons, Hoboken, NJ; 2007; ISBN 978-0-
471-79371-7; 261 pages.

Festinger, Dr. Leon; A Theory of Cognitive Dissonance; Stanford University Press, 1962.

Gack, Gary; Managing the Black Hole: The Executives Guide to Software Project Risk; Business Expert
Publishing, Thomson, GA; 2010; ISBN10: 1-935602-01-9.

Gack, Gary; Applying Six Sigma to Software Implementation Projects;
http://software.isixsigma.com/library/content/c040915b.asp.

Gilb, Tom and Graham, Dorothy; Software Inspections; Addison Wesley, Reading, MA; 1993; ISBN 10:
0201631814.

Hallowell, David L.; Six Sigma Software Metrics, Part 1.;
http://software.isixsigma.com/library/content/03910a.asp.

International Organization for Standards; 1SO 9000 / ISO 14000; http://www.iso.org/iso/en/iso9000-
14000/index.html.

Jones, Capers: Software Risk Master (SRM) tutorial; Namcook Analytics LLC, Narragansett RI, 2015.

Jones, Capers: Software Defect Origins and Removal Methods; Namcook Analytics LLC; Narragansett RI, 2015.

Jones, Capers: The Mess of Software Metrics; Namcook Analytics LLC, Narragansett RI; 2015.

Jones, Capers; The Technical and Social History of Software Engineering; Addison Wesley, 2014.
|
Software Measurement News 21(2016)2

http://software.isixsigma.com/library/content/c040915b.asp
http://software.isixsigma.com/library/content/03910a.asp
http://www.iso.org/iso/en/iso9000-14000/index.html
http://www.iso.org/iso/en/iso9000-14000/index.html

Position Paper 43

Jones, Capers and Bonsignour, Olivier; The Economics of Software Quality;
Addison Wesley, Boston, MA; 2011; ISBN 978-0-13-258220-9; 587 pages.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York; 2010; ISBN 978-0-07-162161-8;660
pages.

Jones, Capers; Applied Software Measurement; McGraw Hill, 3rd edition 2008; ISBN 978=0-07-150244-3; 662
pages.

Jones, Capers; Critical Problems in Software Measurement; Information Systems Management Group, 1993;
ISBN 1-56909-000-9; 195 pages.

Jones, Capers; Software Productivity and Quality Today -- The Worldwide Perspective; Information Systems
Management Group, 1993; ISBN -156909-001-7; 200 pages.

Jones, Capers; Assessment and Control of Software Risks; Prentice Hall, 1994; ISBN 0-13-741406-4; 711 pages.

Jones, Capers; New Directions in Software Management; Information Systems Management Group; ISBN 1-
56909-009-2; 150 pages.

Jones, Capers; Patterns of Software System Failure and Success; International Thomson Computer Press,
Boston, MA; December 1995; 250 pages; ISBN 1-850-32804-8; 292 pages.

Jones, Capers; Software Quality — Analysis and Guidelines for Success; International Thomson Computer Press,
Boston, MA; ISBN 1-85032-876-6; 1997; 492 pages.

Jones, Capers; Estimating Software Costs; 2" edition; McGraw Hill, New York; 2007; 700 pages..

Jones, Capers; “The Economics of Object-Oriented Software”; SPR Technical Report; Software Productivity
Research, Burlington, MA; April 1997; 22 pages.

Jones, Capers; “Software Project Management Practices: Failure Versus Success”;
Crosstalk, October 2004.

Jones, Capers; “Software Estimating Methods for Large Projects”; Crosstalk, April 2005.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2™ edition; Addison Wesley Longman,
Boston, MA; ISBN 0-201-72915-6; 2003; 528 pages.

Land, Susan K; Smith, Douglas B; Walz, John Z; Practical Support for Lean Six Sigma Software Process Definition:
Using IEEE Software Engineering Standards; WileyBlackwell; 2008; ISBN 10: 0470170808; 312 pages.

Mosley, Daniel J.; The Handbook of MIS Application Software Testing; Yourdon Press, Prentice Hall; Englewood
Cliffs, NJ; 1993; ISBN 0-13-907007-9; 354 pages.

Myers, Glenford; The Art of Software Testing; John Wiley & Sons, New York; 1979; ISBN 0-471-04328-1; 177
pages.

Nandyal; Raghav; Making Sense of Software Quality Assurance; Tata McGraw Hill Publishing, New Delhi, India;
2007; ISBN 0-07-063378-9; 350 pages.

___|
Software Measurement News 21(2016)2

44 Position Paper

Radice, Ronald A.; High Qualitiy Low Cost Software Inspections; Paradoxicon Publishingl Andover, MA; ISBN 0-
9645913-1-6; 2002; 479 pages.

Royce, Walker E.; Software Project Management: A Unified Framework; Addison Wesley Longman, Reading,
MA; 1998; ISBN 0-201-30958-0.

Wiegers, Karl E.; Peer Reviews in Software — A Practical Guide; Addison Wesley Longman, Boston, MA; ISBN 0-
201-73485-0; 2002; 232 pages.

___|
Software Measurement News 21(2016)2

New Books on Software Measurement 45

Abran, A.:
Software Project Estimation: The Fundamentals for Providing

High Quality Information to Decision Makers
Wiley IEEE Computer Society Press, 2015 (288 pages), ISBN 978-1-118-95408-9

Software Project
Estimation

7
)

QIEEE & oty WILEY

This book introduces theoretical concepts to explain the fundamentals of the design and evaluation of
software estimation models. It provides software professionals with vital information on the best
software management software out there.

e End-of-chapter exercises
e Over 100 figures illustrating the concepts presented throughout the book

e Examples incorporated with industry data

Seufert, M.; Ebert, C, Fehlmann, T.; Pechlivanidis, S.; Dumke, R. R.:

MetriKon 2015 - Praxis der Softwaremessung
Tagungsband des DASMA Software Metrik Kongresses
5.-6. November 2015, IBM, KdéIn

Shaker Verlag, Aachen, 2015 (272 Seiten)

The book includes the proceedings of the MetriKon 2015 held in Cologne in November 2015, which
constitute a collection of theoretical studies in the field of software measurement and case reports on
the application of software metrics in companies and universities.

|
Software Measurement News 21(2016)2

46 New Books on Software Measurement
|

zum Emp

Hrsg: Manfred Scufert, MediaasABS Deutschland GmbH, D
Dr. Christof Ebert, Vector Consulting, Stuttgast
Dr. Thomas Fehlmann, Euro Project Office, Zirich
Stavros Pechlivanidis, IBM, Koln
Prof. Dr. Reiner R Dumke, Universivit Magdeburg
OTTO-VON-GUERICKE-UNIVERSITAT MAGDEBURG
Fakuleit for Informatik CNIVER
Institut fiir Verteilte Systeme
Arbeitsgruppe Softwaretechnik

MetriKon 2015

Praxis der Software-Messung

Tagungsband des DASMA Software Metrik
5.-6. November 2015
IBM, Kéln

n Deutscdspeachige Anmeadergruppe fur
Software-Metrik und Aufwandsschitrsng

Gi-Fachgroppe 2.1.10
P Somume Messung snd Bewernang

6 Otto-von-Gaerick-Univeritit Magdebury
Software Measarcment Labormtory (SM1 ab)

Schmietendorf, A.; Simon, F.:

BSOA/BCloud 2015
10. Workshop Bewertungsaspekte serviceorientierter Architekturen
3. November 2015, Leipzig

Shaker Verlag, Aachen, 2015 (112 Seiten), ISBN 978-3-8440-2108-0

The book includes the proceedings of the BSOA/BCloud 2015 held in Leipzig in November 2015,
which constitute a collection of theoretical studies in the field of measurement and evaluation of
service oriented and cloud architectures.

Hochschule far
Wirtschaft und Recht Berlin
Bertin School of Economics and Luw

= Berliner Schriften zu B

& Hrsp: Andreas Schmictendorf, HWR Berlin

= Maithias Kunisch, forcont GmbH

:5: Hochschule filr Wirtschaft und Recht Berlin

3 Fachbercich Il

2 L i -8

g

2

Z
BSOA/BCloud 2015
10. Workshop Bewertungsaspekte service-
und cloudbasierter Architekturen
03. November 2015, Leipzig

3

.3

2

=

T

3

i

£

&

.|
Software Measurement News 21(2016)2

New Books on Software Measurement

a7

Software
Measurement

25th International Workshop on Software Measurement
and 10th International Conference on Software Process
and Product Measurement, IWSM-Mensura 2015
Krakow, Poland, October 5-7, 2015

Andrzej Kobylinski - Beata Czamacka-Chrobot Proceedings
Jarostaw Swierczek (Eds.) ’

LNBIP 230

25th

and 10th Intemational Conference on Software Pracess
and Product Measurement, INSM-Mensura 2015
Krakow, Poland, October 5-7, 2015, Proceedings

@ Springer

Konstantina Richter, Reiner Dumke:

Modeling, Evaluating and Predicting
IT Human Resource Performance

CRC Press, Boca Raton, Florida, 2015 (275 pages)

Modeling,
Evaluating,

and Predicting |
IT Human
Resource
Performance

Software Measurement News

21(2016)2

48 New Books on Software Measurement
|

Schmietendorf, A. (Hrsg.):

Eine praxisorientierte Bewertung von Architekturen
und Techniken fur Big Data

(110 Seiten) Shaker-Verlag Aachen, Méarz 2015 ISBN 978-3-8440-2939-0

% Bertin Schoot of Econemecs and Law

Berliner Schriften zu modernes Integras
Hlrag. Prof. D, habel. Asdrens Schasictendonf

Hochschule for Wirtschaft und Recht Berfie
Fachibomnich It
Wit haflurdormaath - S ersentu kg

Eine praxisorientierte Bewertung von
Architekturen und Techniken fiir Big

Dumke, R., Schmietendorf, A., Seufert, M., Wille, C.:
Handbuch der Softwareumfangsmessung und Aufwandschéatzung
Logos Verlag, Berlin, 2014 (570 Seiten), ISBN 978-3-8325-3784-5

Handbuch der Softwarcumfangsmessung
und Aufwandschatzung

Fursrdr Db, g, e hemriracion], MLsnied S sfien, Commiien il

N
EFFORT A A

LY

Software Measurement News 21(2016)2

Conferences Addressing Metrics Issues 49

Software Measurement & Data Analysis Addressed
Conferences

August 2016:

ICGSE 2016: 11" International Conference on Global Software Engineering
August 2 - 5, 2016, Orange Country, California, USA
see: http://www.ics.uci.edu/~icgse2016/2_Ocfp.html

10™ International Conference on Software Engineering
Advances

|CSEA 2016: August 21 - 25, 2016, Brussels, Belgium

see: http://www.iaria.org/conferences2016/ICSEA16.html

13™ International Conference on Quantitative Evaluation of
QEST 2016:

Systems
August 23 - 25, 2016, Quebec City, Canada
see: http://www.qest.org/

International Conference on Data Science and Engineering
ICDSE 2016: August 23 - 25, Kerala, India
See: http://icdse.cusat.ac.in/

Software Engineering & Advanced Application Conference
August 31 - September 2, 2016, Limassol, Cypros
see: http://dsd-seaa2016.cs.ucy.ac.cy/

Euromicro DSD/
SEAA 2016:

September 2016:

10™ International Symposium on Empirical Software Engineering

ESEM 2016: & Measurement
September 8 - 9, 2016, Ciudad Real, Spain
see: http://alarcos.esi.uclm.es/eseiw2016/esem/
RE 2016: 24" |EEE International Requirement Engineering Conference

September 12 - 16, 2016, Beijing, China

see: http://rel6.org/

23" European Systems & Software Process Improvement and
Innovation Conference,

September 14 - 16, 2016, Graz, Austria
see: http://www.eurospi.net/

Arbeitskonferenz Softwarequalitat, Test und Innovation
September 21 - 23, 2016, Klagenfurt, Austria

EuroAsiaSP1? 2016:

ASQT 2016:

. __|
Software Measurement News 21(2016)2

http://www.qest.org/qest2013/
http://www.re13.org/
http://2013.eurospi.net/

50

Conferences Addressing Metrics Issues

]
see: http://www.asat.org/

Big Data Analysis and Data Mining
Big Data 2016: September 26 - 27, 2016, London, UK
See: http://datamining.conferenceseries.com/

October 2016:

'WS'_V"MENSURA Common International Conference on Software Measurement
2016: October 5 - 7, 2016, Berlin, Germany
see:_http://www.iwsm-mensura.org/

27™ International IEEE Symposium on Software Reliability
Engineering

October 23 - 27, 2016, Ottawa, Canada

see: http://issre.net/

ISSRE 2016:

November 2016:

BSOA/BCloud 11. Workshop Bewertungsaspekte service-orientierte und Cloud-
2016: Architekturen

November , 2016, Berlin, Germany

see: http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/

IEEE International Conference on Data Mining
ICDM 2016: November 28 - 30, 2016, Barcelona, Spain
See: http://icdm2016.eurecat.org/

December 2016:

_16th International Conference on Product Focused Software Process
PROFES 2015: Improvement

December 2 - 4, 2015, Bolzano, Italy
see: http://profes2015.inf.unibz.it/ (not in 2016)

see also: Conferences Link of Luigi Buglione (http://www.semg.eu/leng/eveprospi.htm)

. __|
Software Measurement News 21(2016)2

http://www.asqt.org/
http://iwsm2013.wordpress.com/
http://www-ivs.cs.uni-magdeburg.de/~gi-bsoa/
http://www.semq.eu/leng/eveprospi.htm
http://www.semq.eu/leng/eveprospi.htm

Metrics in the World-Wide Web 51
|

See the GI-Web site http://fg-metriken.gi.de/ for the digital contents of the Software Measurement
News:

itseite - Fachgruppe Soltwate Mersung und -Bewetung - Windows Intesnet Explocer

! ,,O- £ i /Agmetiken g de/ v 4 X » o
Google v 1 Suche + Me» Aemeiden %, -
- G- | EJoe EDTansiates (0 Windowstioier aktu Qcames (@ Bee-, B- B
0 -[a- BT - 8 Qv ows - & Video Tuonls (58] Bidde) Kicherde - (5 YouTube] Facebook - [@, Ogtionen +
WG Statsets - Fachguppe Soltware Mestung und Bewet PR s B s e rSes (JEba~ ot
~
q‘: Gesellschaft
w4~ fir Informatik
Fachgruppe Software-Messung und -Bewertung >
Stantseite K es | Verdffentlichungen Arbeitskreise Software Measurement News

m Willkommen bei der Gl-
Fachgruppe "Software Measurement"
3 Die Fachoruppe 2,1,10 (Software-Messung und -Bewertung) st ene
Einnchtung des Fachausschusses 2.1 (Softwaretechnik) der Geselischaft
2 h fur Informatik e.V.. Dve Fachgruppe fur Software-Messung und - v

i (4] Aticle Tak Read E& Vaw history
‘'u
2 Software measurement
WiKIPEDIA

The Free Eacyclopedia From WHgedia, B 194 00000432

Softeire MIatUrE e 15 3 Quarthed AMNrdute (See als0. maasusement) of 3 chanciensts of 3 softwive product of the seltware gro
Han 0290 is 2 desciphne withn sotware engneenng The content of soware measutement is defined and govemed by IS0 Standand IS0 1581

Conterts ($CREID MABTUINTDL ORI
Faatures cond

Curact esents Further reading
Random »
Donale b= AULeSs o Homan Fenton. Shan L Pleeger: Sofuare mefncs a mgovoos and practcs’ approach @ PIWS Pudlishng Co. Boston, MA. USA
SAN (834656009
v lolerach 5 2
> o Chestof Exen and Rener Oumie: Software Msazuremend @ Spanger, Haw Yode 2007, 5581 978350011
He -
About Wiioed) & Thca soldegro erovegrnospipled gicie 13 9 atuh You cg= hels Wikoedy by svogedng o

Ao Tl Fawd D8 Ve Rsbary

Softwars matric

Frpe Awpads e gy

A pularare mmairis & § magees of oma propast, of B s it @iy sl mars Beod gesrti e e seeaeiy g astasien ol s gy aes g g c ey aliod i

oA et ey e e Tha pousl b podBreng popsctis e e e et datis TR whan T
R e o T L B R T e g e
Fas i

i i

- Lerpatgn a

Software Measurement News 21(2016)2

52 Metrics in the World-Wide Web

cosmic-sizing.org:

4

COSMIC

Home News COSMIC Downloads Forum Events Certification

)

THE POWER OF A VOLUNTARY GROUP

A community of professionals

|C started in1998.an Informally t bal
commnity of thousands ofprofessionals.

A
e &
TELL ME MORE
3) ¥
| _ad

o
=

See our overview about software metrics and measurement in the Bibliografie at http://fg-
metriken.gi.de/bibliografie.html including any hundreds of books and papers:

q Gesellschaft
fiir Informatik

Fachgruppe Software-Messung und -Bewertung

Aktuelles Bibliografie Arbeitskreise Software Measurement Nej

Sie befinden sich hier: Startseite/Bibliografie

Software Measurement Bibliography

Basisliteratur finden Sie hier

1 Software Measurement Foundations

¢ Measurement Overview

s Measurement Principles & Foundations
* Measurement Standards

+ Basic (5et of) Measures

¢ Measurement Validation

¢ Measurement & Statistics

2 Software Process & Product Measurement
2.1 Software Product Measurement

¢ Requirements Measurement

* Review/Inspection/Audits Measurements
» Specification Measurement

« Architecture Measurement

e Product Line Measurement

s Reliability Measurement

* Secunity Measurement

e Performance Measurement

2.2 Software Process & Resources Measurement

« Process Management & Measurements
s Risk Management & Measurements

» Process Improvement Measurements
* Quality Assurance Measurements

¢ Software Test Measurements

¢ Maintenance Measurements

* Personal Measurements

« SPC (Statistical Process Control)

2.3 Software Process Maturity Models and Measurement

» General Maturity Quantifications

* CMMI/SPICE/ITIL Measures

* Maintenance Maturity Measures (S3M)
« Agile Process Measures (AMMI)

|
Software Measurement News 21(2016)2

Metrics in the World-Wide Web 53

2.4 Software Size Measurement & Cost/Effort Estimation

* Size Measurement

» Cost/Effort Estimation

* COCOMO (Constructive Cost Model)
» (Empirical-based) Function Points

* Use Case Points

» Object/Data/Feature Points

2.5 Software Metrics Tools and Infrastructures

* Program (Source Code) Measurement Tools

« Metric Analysis Tools

» Process Management & Measurement Tools

= SQA (Software Quality Assurance) Tools

» Metrics Data Bases & Experience Factories

» Software Benchmarks & ISBSG (International Software Benchmark Standard Group)
» Cockpits/Dashboards & Measurement Infrastructures

+ Measurement Services, eMeasurement & WEB Tomography

3 Measurement of Software Paradigms and Technologies

3.1 Procedural-Based Software Engineering (PBSE)

* Spurce Code Measurements (Halstead, McCabe etc.)
» Control/Data Flow Measures
* Module/Procedure Measures

3.2 Object-Oriented Software Engineering (OOSE)

» Object Oriented Design Measures

+ Object Oriented Programming Measures
» Object Oriented Test Measures

» Aspect-Oriented Measures

3.3 Applicative & Declarative Approaches (Calculus)

» Functional Programming Measurement
+ Logical Programming Measurement
« Formal Specification Measurement

3.4 Component-Based Software Engineering (CBSE)

« Components (COTS) Measurements
* EAI Measurements

* Reusability Measurement

* Feature-Oriented Measurement

3.5 Service-Oriented Software Engineering (SOSE)

* Web (Service) Measurement

* SOA (Service-Oriented Architecture) Measurement
+ Cloud Measurement

» Big Data Measurement

3.6 Agent-Oriented Software Engineering (AOSE)

+ Software Agents Measurement

* MAS (Multi Agent System) Measurement
* MAS Development Measurement

« Self Management & Measurement

4 Measurement Frameworks

4.1 General Measurement Approaches

« General Frameworks

s GOM (Goal Question Metric)

« PDCA (Plan, Do Check, Act)

« E4 (Establish, Extract, Evaluate, Execute)

* CAME (Choice, Adjust, Migration, Efficiency)

* DMIAC (Define, Measure, Analyze, Improve, Control)

4.2 Modern Measurement Frameworks

» Adaptive Measurement Frameworks

» Proactive Measurement Frameworks

* Ontology-Based Measurement Frameworks
« Categorical Theory Based Approaches

« Ubiguitous Measurement Frameworks

4.3 Measurement Process Evaluations

« Measurement Evidence & Evaluation

& Mameriraman b Nrammne Claecifieabinn

___|
Software Measurement News 21(2016)2

54 Metrics in the World-Wide Web

See our further software measurement and related communities:

www.dasma.org:

Deutschsprachige Anwendergruppe fiir Software-Metrik und

Aufwandschéatzung e.V. m m

BRI >> welcome to DASMA 1 << B

AKTUELLES

© MetriKon 2015 - Praxis der
Softwaremessung
Die yon cer Desma und Gl organiziee una i
Dewpscnisns sinzigemige Facagung MetriKan Sncet
22 TBM In Kein am 5. + 6. Novembar s2stz.
Iomrmationen zum Call for Paperunz 2u cen
Keynotes uze- www.metrikon.de

© DASMA Zukunftspreis 2015
Beres zum 13. Mal wind der mit 1000 € cos

ame
za

DazMA vemsenen. Mehr Informa!
Tramanganeten ung e Srazens

© IWSM-MENSURA 2015 CFP.

g Viawe wira vom 5. D 2
= anarze-

LNEN Manzuts

-
T Smzes2miioe
Hazananar

, uneer andaram cle berlmten
inren weitverTweigtan Hoten. Krakau

Groaze 2es g
s0iten o zum 3. Mal 2015

© Der 10. BSOA-Workshop in Leipzig am
03. November 2015
Bewerty

ermagigan Tainanmegesin-. Mehr

DASMA - Ihre erste Adresse rund um Software-Metriken und

” ISBSG The global and independent source
' mrverng T Conbumna of data and analysis for the IT industry
| Wi =z0

\ Purchae 185G
‘ Use industry history data %0 improve your {T management preduct ’
Cex an your area of inberest beow N SS—
1 Subscribe and receive >
Software Schware
Devenpmon § Enhancement Mamtenance & Support exchuive beoefits
roitwe [T pedarmance Brough ealmason IS0V MINICETIN DedETIANCE of SRR DTURO
TANCUTATING. Droec planrerg & Mantenance and wpoon Sign up ot our free
’ el T tewalotior
Satwars Deveicomert & Solware Wartenance

(W PR [FYS— . R—)

| “Fior many yiars 150 Mck OF AMacy Svaiadie SeCAMMK (AL DRSO SO SRR 90 MEAIONS 1) 1% el

CCONOMACE OF 300w Now INar (SBST 1 makng Jute 00 TOLSENTE O OO Svadedie 1 e sofware nausty £4

| COCOMING POBTOM 1 MAKE S0MT DUAEET GRCISONS SO0 J0MNDY GRVCOMENT IYaCECAT 875 e RS 1 Nt of

| POty anc GuaNy ISESO St & & VUL 43300 B 19 SORea NOLEYY AN £ B COMOAnS I roduce
2ofwew " Cagers Jorms

A News
Case Studes
Howw Repon Pedoonance ty County
Latze Bare NePwrancs 3 4on 20
The ISDSG Aats haped Tus SIOINEINCA 13 SXREAIle B Sropctin 5 akate Usieg e 6,000 projects s B
WO HRSn] THem YOM & huge tihare Veew CRRe Sy > SepasRory we Lake 3 ook 3t e
w250 of soleare

www.cecmg.de:

w. —

I e g e Vartrige rur Jahrestagung 2013 in

Gelsenkirchen

In waserem Downboad Dereich finden Se sine Chericht ther de

Vortrige, de ad dor Jabowstageng 9943 In Celwiicden starfinden

9 werdden. Darthuer Ninuses stullons wie cssmere Somaber berz v
Sty | " X
4 Uinladung zam Workshop Performance
Progs ™ Bt

Ao Tem mmegertes Togee. povamen
Ponuton o P rmssarrcbongon wed Larbe Mitghader o2 trtwressestya dor oG
mtnmaban Podrviges e

T P S

Agrond vioer bessodervs sl commibgen Celepraber Mnaen wie
Dinen dhewes Jubr i Voreld dev Jubrwiageng 2wy s s NastStride

Software Measurement News 21(2016)2

55

Metrics in the World-Wide Web
|

www.mai-net.org:

MAIN
So © N N S 6 W
L e Lo s e | e B Pt o

MAR & & FEETEEONY MERON of JTINOMOGt DRARE T MEOOROTL.

fmetren Sy Merted BRodihn

R Objectives

L e e i e I S R
Fean 03 (I COTEN PBNTH I WA PR

» Butange of epwence St SRIRton, Pavdat. s Kader.
Prowte v T st ot

« Pomoton of Mt
o MImOaSIton of TesreTet Eet. 4.5, how LD meare I Cetan
Mema, Anouncements aod Ismaton AT, Dewnbady, wrrones, Seesicp Carthed memITETerE Spet CucAm
Sacmmon Forume, Wedinurs, Liks £ Sther Sesrim * Dowaing 3 Common inowiedpebane of Socuments ch =

FEACE pape, G Puder, g e i fandiedy, et
Btven Senchrart Satibune. colecton of Sest racton

News from MAIN Assoclations

asermmes T

www.swebok.org:

@ computer society

Covtmmmns = Ougleibonrs v b bt = o danmng Conps «

SWEBOK

Coming soon: a new SWEBOK Guide

Vaturaenrs are 1 Tha process o reveshing SWEBOKnews

e Gusde to P Sotwere Lrgemermg Oody . VOLUNIE[R o R K & BAOK %0 Open
1 e

o Krawiedin (SWEROK) - addng few

brewiadon arems (CAs) and Wamrg ey for Pablic
L T p— e Softmare Engneenng
v 0wl 08 Guadebnas Ier renmang, Coonamas, Solware
Vet e VT ROK V) Pubihe Earview site Fegmemanty, and Softw are
Testng Krowiedge weas for
Twehm Kas have cierpleted bubde reves SWEDOK V) are now avalable for
P Tenew,
o Software U sgmenring {comemmes
o Software Regeiremaents - Read mocw y
ISERN
Nergaten '
e Sl Engi a R N
¢ Couenas
b e . General intermation
B T
FAAT Ve P s
rAS Ueecay o e
oo
ey,
e v
oo x5t _—gra
Sn mewy
Contaet
ot ISERN Commuracaton
Oata Masacaon
The purpace o us pages i 1 Koot
CoEa b
N LA A (AT 9 R S St T Ta | Be ks b praetn] et w T
VM (el
atr; un
e
Wemter Fages whe 500t what Wi waomT)
DAV 180w P 19 Nt A e eAn)
S R 1)
ISERN Mestngs

Lm0 ant 03 LAse CHER Meetngs
0 2014 S SORN rweing was Sesporied by Lnersty of Caigary Canacs

2012 W NI e atng W 54 SLE0oed By Lund Linkarsiy Swwden f
1 201) P RN meetns il de 1ue0oied by Frauntote Conter Mardiandt

Software Measurement News 21(2016)2

56 Metrics in the World-Wide Web

www.smlab.de:

Software Meoassurament
Laboratory SMLOK
Curvem Dvarne
Qe ' A COCMNG 158G e

Canerw Lotsimatans

" ane m——
ralpprcen = Vet s HNamo s wmmmed Mo
Appormnas & Voaie

SE

www.psmsc.com/:

Practical Software
Systems Measurement

Objective Information for Decision Makers

Welcome to the Official PSM Web Site!

WE P5M MANAGER

EE ABOUT PEM PSM Users' Group
Additional Information

WE 1500EC 15339

EE PSM MEMBERS
Practical Software and Systems Measurement (P5M) was developed to

W E PARTICIPATION meet today's software and system technicol and management challenges.
It is an information-driven measurement process that addresses the
unigue technical and business goals of an organization. The guidance in
FP5M represents the best practices used by measurement professionals
within the software and system acquisition and engineering communities.
P5M:

EE PSM ANARDS

* |5 sponsored by the Department of Defense and the US Army
* Provides Project Managers with objective infermation needed to

sirreccfilly meet roct erhediile and terhndral nbhioriivoec

|
Software Measurement News 21(2016)2

Metrics in the World-Wide Web

57

sebokwiki.org/wiki/Measurement:

Gude © Pe Sysens [ng neenng Body of Kaon edye

Quiciinks
Man Page
Letter from the Edtor
BKCASE Governance and Edeorial Board
A d and Release History
How 10 Read the SEBoK
Download SEBoK POF
Copyright Information
Cee the SEBOK
About the SEBeK
Sandbox
Outine
Tabie of Contents
Part 1: SEBoK ntroduction
& Part2: Systems
Part 3: SE and Management
@ Life Cycle Modeis
& Concept Defintion

®

m

Ml seBok ..o e —

Measurement

Measurerent

Measurement and the accompanying analysis ace fundamental
eloments of systems engineering (SE) and technical management
SE measurement provides information relating to the products
developed, sevces prowded, and processes implemented 10 suppont
effective management of the processes and to objectively evaluate
product or serice quality. Measurement supports realistic planning,
prowdes insight into actual pedformance, and faciltates assessment of
suitable actions (Roedler and Jones 2005, 1-65; Frenz et al. 2010)

Appropriate measures and indicators are essential inputs to tradeoff
analyses to balance cost, schedule. and technical objectves. Penodic
analysis of the relationships between measurement results and review
of the requirements and attributes of the system provides nsights that
help to identdy issues early, when they can be resohved with less
impact. Histoncal data, together with project or organizational context
information, forms the basis for the predictive models and methods
that should be used

Contents [nae]

1 Fundameantal Cancande

www.fisma.fi/in-english/:

I Englsh
- Tor bemer Masagement

LERELEN

PFOCEAS IR TVemens st e anks (Pt

FEMAS sestershp B roended fof sl Compates, fesearth onlty, prwveralies and tiher Paliutes Mleresled 1
WWRware meadorerwol Al Bhe mommrd Bare are 800t 40 actve member crpanastons and boa Ot ware

ra tovieath
FSNA & 3OOV DATCORNG SIANGETERINGN SchENe 303 DO 88 & MDOAN body 0f Feiand 1 Sevelopng EwoSM) Conlerence
a0 08 wnder BOEL JTC ST Sotware and Gystemm Engreern] sblommibios 2015, call Sx papecs
BN
Areas 1! A8t Basten whe FILUA Sl w b pa ety
LAt Lcar,

o SOBwWa 001 wysiems engoesreg Miewadois (SOEL 12007 SOEC Y88 BOEC 1550¢, O
o Vessursmes! of so®wars projects ISOEC 14143 BONC 20581

Reseerch Farem 1 20t
Feran 53%mare Vesaursment Aasscaton FEMA B & 2000 O300endent SSCHI0N ISCuAng 0N hefler 333015 b 9 151018

PRORPETRN T G NPT T vy AND S VT O 0T 00 B Gy Nee 00pnee v 980 T wr e
racagerant

Loope Marager Foree
Ay
WIS ww 1308

Software Measurement News

21(2016)2

58 Metrics in the World-Wide Web

http://nesma.org/:

Your starting point for software measurement and software

www.sei.cmu.edu/measurement/:

G— Software Engineering Institute | Carnegic Melbon University

Home > Measwrement & Anafyss r

Gettng Sraned

Revearch

Tocks & Methods
Contuttng

Care S1den

Dwr Pacgle

The SEI conducts rsearch and provdes gadance and axpernine m sobware measurement and Not Sure Where to Start?

http://www.omg.org/news/releases/pr2013/02-07-13.htm:

5
]

el ._L m.

OBJECT MANAGEMENT GROUP” RTE

Contact:

Julie Pike

oMG
+1-781-444 0404
julie@omg.org

Cloud Standards Customer Council Hosts "Big Data in the Cloud” Conference at Meeting in Reston, VA
Will Host Webinar on February 14th to Introduce Conference

MNeedham, MA- 02-07-2013- The Cloud Standards Customer Council (CSCC) will be hosting the "Big Data in the Cloud: Preparing for the Future" conference

Software Measurement News 21(2016)2

SOFTWARE MEASUREMENT NEWS

VOLUME 21 2016 NUMBER 2
CONTENTS
F AN LA Lo 18 aLoX =] 0 A T=] T 3

Position Paper

Christof Ebert
Cyclomatic Complexity - 40 Years Latercoeevveeiiiiieeeeeiiiineeeeeeennnn. 9

Capers Jones

The Origins of Function Point MetriCSccoovviiiiiiiiiiiii e, 12
Andreas Schmietendorf
Web APIs als Enabler einer erfolgreichen Digitalisierungsstrategie 15
Capers Jones
Exceeding 99% in Defect Removal Efficiency (DRE) for Software 19
New Books on Software Measurementcccccceeeevviiiiniiieieeeeeeeenn, 45
Conferences Addressing Measurement ISSUEScccevevveeeeeee, 49
Metrics in the World-Wide Web ..o, 51

ISSN 1867-9196

	01-Deckblatt.pdf
	02-Editors
	03-Announcements
	06-PositionPaper
	07-New-Books
	08-Conferences
	09-World-Wide-Web
	10-Inhaltsverzeichnis

