
 Volume 28, Number 2, October 2023

 Software Measurement News

 Journal of the Software Measurement Community

Editors:

Alain Abran, Jens Heidrich, Reiner Dumke, Andreas Schmietendorf

1

CONTENTS
Announcements ..…... 2
 Andreas Schmietendorf, Jens Heidrich:
 Workshop KI-Szenarien im Zeitalter von ChatGPT & Co..............…….…......2
 Reiner R. Dumke: SML@b News ………………………………………….………………………. 4

Conference Reports ... 5
 Reiner R. Dumke (Edt.):
 Report on the IWSM-Mensura-2023... 5
 Jens Heidrich:
 Summary of the 17th International Conference on Software and System Processes ……..17

Community Reports ..…….................24
 Jean-Marc Desharnais: COSMIC Certification 2022 – 2023 …………………………………….. 24
 Alain Abran: Estimation Challenge committee Annual Report ..25
 K. R. Jayakumar: COSMIC Awards 2023 ……………………………………………………….….26
 Luigi Buglione: GUFPI-ISMA News ………………………………………………………………….29

News Papers... 30
 Charles Symons: Resolving the historical confusion about the meaning of software size
 and its use for project effort estimation………………………………….…………….......30
 Sandro Hartenstein, Sidney Leroy Johnson, Andreas Schmietendorf: Towards a Fast
 Cost Estimation Supported by Large Language Models ……………………………… 46

New Books on Software Measurement .. 66

Conferences Addressing Measurement Issues .. 71

Metrics in the World-Wide Web .. 74

Editors:
Alain Abran
Professor and Director of the Research Lab. in Software Engineering Management
École de Technologie Supérieure, 1100 Notre-Dame Quest, Montréal, Quebec, H3C 1K3,
Canada, alain.abran@etsmtl.ca

Jens Heidrich
Fraunhofer IESE
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
Jens.Heidrich@iese.fraunhofer.de

Reiner Dumke
Professor on Software Engineering,
University of Magdeburg, Faculty of Informatics, Germany,
reiner.dumke@t-online.de, http://www.smlab.de

Andreas Schmietendorf
Hochschule für Wirtschaft und Recht
Alt-Friedrichsfelde 60 10315 Berlin, Germany,
andreas.schmietendorf@hwr-berlin.de

Editorial Office: University of Magdeburg, FIN, Postfach 4120, 39016 Magdeburg, Germany

Technical Editor: Dagmar Dörge

The journal is published in one volume per year consisting of two numbers. All rights reserved
(including those of translation into foreign languages). No part of this issues may be reproduced in any
form, by photo print, microfilm or any other means, nor transmitted or translated into a machine
language, without written permission from the publisher.

 2023 by Otto-von-Guericke-University of Magdeburg. Printed in Germany

Software Measurement News 28(2023)2

Announcement 2

KI-Szenarien im Zeitalter von ChatGPT & Co

Öffentlicher Expertenworkshop in Anlehnung an die
Themen des IFAF-Forschungsprojekts TAHAI

(TrustAdHocAI – Details siehe QR-Code)

Veranstalter: GI-FG “Measurement & Data Science” - Arbeitskreis ESAPI

Ort: Fraunhofer IESE Kaiserlautern – 21. November 2023 09:00 bis 16:00 Uhr

Vorläufige Agenda der Vormittagssitzung (09:30 bis 12:30 Uhr):

Dr. Andreas Jedlitzschka (Fraunhofer IESE)
Prof. Dr. Andreas Schmietendorf (HWR Berlin/Uni Magdeburg)
Eröffnung und Ziele des Workshops

Prof. Dr. Claudia Nass (HS Mainz/Fraunhofer IESE) – Möglichkeiten des
Design Thinking im Diskurs von KI-Szenarien – angefragt

Dr. Peter Münte (Universität Innsbruck) – Fachliche Daten transkribierter
Geprächsverläufe im Mediationskontext – in Abstimmung

Prof. Dr. Erik Rodner (HTW Berlin) – Benchmarking von KI-Modellen
(Online-Beitrag)

Walter Letzel (TU Berlin) – Konzeptioneller Ansatz zur Analyse und
Bewertung von Mediationssitzungen (Online-Beitrag)

Sandro Hartenstein (HWR Berlin) – Prototypische Analyse von KI-APIs für
LLMs (Cloud vs. OnPremise)

Software Measurement News 28(2023)2

 3 Announcements

Vorläufige Agenda der Nachmittagssitzung (13:30 bis 16:00 Uhr):

Diskussion ggf. World Café:
Moderation Dr. Jens Heidrich (HS Mainz/Fraunhofer IESE)

Mögliche Themenschwerpunkte:

• Identifikation fachlicher KI-Szenarien,

• Bewertung der Datenqualität für KI,

• Auswahl und Bewertung von KI-Services (APIs),

• Rahmenbedingungen für KI-Experimente.

Prof. Dr. Andreas Schmietendorf (HWR Berlin/Uni Magdeburg)
Zusammenfassung und Ausblick

Bem.: Die Teilnahme am Workshop ist kostenfrei, dennoch wird um eine Anmeldung
(via Email: tahai@hwr-berlin.de) zum Zweck der besseren Organisation gebeten.
Ggf. notwendige Änderungen der Agenda sind vornehalten.

Software Measurement News 28(2023)2

Announcement 4

 SML@b News

Reiner R. Dumke, University of Magdeburg, Germany

https://softmeasure.de/

Currently, new versions of the SML@b Apps SoftwareSizing (Software sizing
based on the COSMIC FP method) and SoftwareCrash are available. They are im-
plemented in Flutter/Dart with their typical layouts. These apps are helpful for com-
puter science education and motivation. The apps are free in the Google Play Store.

SoftwareSizing

SoftwareSizing helps to accu-
rately measure the software
scope. This app serves mainly
for the application of the
COSMIC Function Point
method (as International Stan-
dard ISO/IEC 19761). This app
also enables the application of
a COSMIC method as Early &
Quick Method and the local
extension approach of the
process CFPs as Extend
Method. In addition, the app
enables conversion between
the various software scope
measures used in practice,
such as the IFPUG Function
Points, the Use Case Points,
the Story Points and, of course,
the Lines of Code, as well as
other size metrics.

SoftwareCrash

SoftwareCrash helps to identify
software dangers using the software
size as lines of code and their
relationship to the incorrectness.
The main reason for this is the
estimation of the number of errors
based on experience with profes-
sionally developed software in the
industrial sector. Furthermore, on
the basis of already existing very
comprehensive software systems,
such an error estimation can be
carried out retrospectively. For this
purpose, the respective code line
scopes known from the literature are
shown in a menu button. Hence, this
App is useful in the agile develop-
ment and as educational support for
computer science students and
professionals.

To use our apps SoftwareCount and SoftwareExpert on an iPhone, use the
usual emulators IEMU APK, Cider APK, IOSEmus etc.

Software Measurement News 28(2023)2

 Conference Report 5

Report on the IWSM/Mensura 2023
September 14 – 15, 2023, Rome, Italy

https://www.iwsm-mensura.org

Conference Abstracts:

An Analysis of Students’ Teams Scores at the 2022 Software Esti-
mation Challenge

Donatien Koulla Moulla, Jean-Marc Desharnais and Alain Abran.

This paper presents an analysis of the 2022 edition of the Software Estimation
Challenge’ organized by the COSMIC Group. The challenge is based on best practi-
ces in software effort estimation, including the use of the COSMIC – ISO 19761
standard for sizing software requirements and the early sizing of software functional
and non-functional requirements allocated to software functions. The three major
components of this challenge consist of sizing the software requirements of a case
study, developing an estimation model, and using it to estimate the development ef-

Software Measurement News 28(2023)2

6 Conference Report

fort for the case study provided. While a previous study was based on a survey of a
sub-group of 22 teams who participated in the 2022 edition of this challenge, the
study reported here is based on the analysis of students’ team scores across teams
and contexts of participation. To help the teams’ tutors and students plan and pre-
pare for future challenges, this study presents an analysis of how teams performed
across each of the challenge tasks. In summary, the teams performed best in the
tasks limited to the application of preprogrammed statistical formula, and much wor-
se in tasks requiring analytic skills for the sizing of the requirements or in the appli-
cation of their reasonably well-built estimation model to the practical case study they
had sized (that is, moving from theory to practice).

Functional Size Measurement for X86 Assembly Programs

Donatien Koulla Moulla, Abdel Aziz Kitikil, Ernest Mnkandla, Hassan Soubra
and Alain Abran.

Functional size measurement (FSM) provides a reliable and objective way to mea-
sure productivity and estimate the effort required for software activities. FSM auto-
mation, compared to manual measurement, enables to reduce errors, increase con-
sistency, and improve the efficiency of the measurement process. This paper pres-
ents a COSMIC-based automated FSM for X86 assembly programs widely used in
personal computers and servers. The proposed approach applies the COSMIC-ISO
19761 rules for sizing Functional User Requirements (FUR) of an X86 assembly
program by identifying functional processes, data groups and data movements. An
automated measurement prototype tool is also presented including its architecture,
its measurement algorithm, the verification protocol used and its measurement ac-
curacy on the measurement of two assembly programs. The prototype tool can be
useful to organizations and practitioners in the embedded systems industry.

AI-based Fault-proneness Metrics for Source Code Changes

Francesco Altiero, Anna Corazza, Sergio Di Martino, Adriano Peron and Luigi
Libero Lucio Starace.

In software evolution, some types of changes to the codebase (e.g.: a local variable
renaming refactoring) are less likely to introduce faults than others (e.g.: changes in-
volving control flow statements). Effectively estimating the fault-proneness of code-
base changes can provide a number of advantages in the software process. For ex-

Software Measurement News 28(2023)2

 Conference Report 7

ample, expensive and time-consuming regression testing, code review, or fault loca-
lization activities could be driven by fault-proneness, prioritizing the most critical
changes to detect issues more rapidly. A number of works in the literature have fo-
cused on predicting the fault-proneness of software systems. Less work, however,
has focused on the fault-proneness of evolutionary changes to a codebase, and
existing approaches typically require project-specific historical data to be used effec-
tively. This paper presents a set of AI-based metrics designed to estimate the fault-
proneness of source code changes. The proposed metrics are based on Tree Ker-
nel functions and Transformer models, that have been largely and effectively used
in the Natural Language Processing domain. Moreover, the proposed metrics can
be used on any software project, and do not require fine-tuning with project-specific
historical data. The effectiveness of the proposed metrics is assessed by applying
them to a dataset of real-world source code evolution scenarios, and by comparing
them against fault-proneness scores provided by a Software Engineering practitio-
ner. Results are promising and show that the proposed metrics are strongly correla-
ted with human-defined fault-proneness scores, and could thus be used as a good
proxy of costly human evaluations. The results also motivate further research on the
application of these metrics to concrete scenarios such as regression testing.

Software development effort estimation using Function Points and
simpler functional measures: a comparison

Luigi Lavazza, Angela Locoro and Roberto Meli.

Background — Functional Size Measures are widely used for estimating the deve-
lopment effort of software. After the introduction of Function Points, a few “simpli-
fied” measureshave been proposed, aiming to make measurement simpler and qui-
cker, but also to make measures applicable when fully detailed software specificati-
ons are not yet available. It has been shown that, in general, software size measu-
res expressed in Function Points do not support more accurate effort estimation
with respect to simplified measures. Objective — Many practitioners believe that
when considering “complex” projects, i.e., project that involve many complex tran-
sactions and data, traditional Function Points measures support more accurate esti-
mates than simpler functional size measures that do not account for greater-then-
average complexity. In this paper, we aim to produce evidence that confirms or dis-
proves such belief. Method — Based on a dataset that contains both effort and size
data, an empirical study is performed, to provide some evidence concerning the re-
lations that link functional size (measured in different ways) and development effort.
Results — Our analysis shows that there is no statistically significant evidence that

Software Measurement News 28(2023)2

8 Conference Report

Function Points are generally better at estimating more complex projects than sim-
pler measures. Function Points appeared better in some specific conditions, but in
those conditions they also performed worse than simpler measures when dealing
with less complex projects. Conclusions — Traditional Function Points do not seem
to effectively account for software complexity. To improve effort estimation, resear-
chers should probably dedicate their effort to devise a way of measuring software
complexity that can be used in effort models together with (traditional or simplified)
functional size measures.

A Method for Metric Management at a Large-Scale Agile Software
Development Organization

Pascal Philipp, Franziska Tobisch, Leon Menzel and Florian Matthes.

The benefits of agile methods for small projects inspired organizations to scale the-
se methods to more extensive settings consisting of multiple agile teams. Such sca-
ling agile settings are more complex, which can make maintaining situational awa-
reness difficult. Metrics can alleviate this problem by increasing insight into the de-
velopment organization. However, adopting metrics comes with various socio-tech-
nical challenges, and current research is missing guidance on metric management
in large agile organizations. Therefore, we present a goal-based method designed
for a large agile case organization to support stakeholders in selecting, operating,
and scaling metrics. Moreover, based on the learnings at the case organization, we
present design principles that can potentially guide the development of methods sui-
table for other contexts. We conducted this research following an action design re-
search (ADR) approach combined with situational method engineering (SME). Our
findings indicate that our method proved effective for the case organization. This
was accomplished by combining well-established elements (e.g., goal-orientation
and tool support) from measurement programs designed for traditional software en-
gineering with unique elements of our method (e.g., metric scaling activities and ali-
gnment with agile software development). With this study, we provide deep insights
into how metrics are managed at a large agile case organization. Researchers and
practitioners can use this work as a foundation for designing measurement pro-
grams suitable to other scaling agile organizations.

Software Measurement News 28(2023)2

 Conference Report 9

Functional Size Measurement automation for IoT Edge devices

Salma Salem and Hassan Soubra.

The Internet of Things (IoT) was born when Edge devices were interconnected via
the internet allowing them to send and receive data back and forth. Edge devices
are actually embedded systems processing data in real-time close to the physical
environment in which they are deployed. Functional Size Measurement (FSM) is a
tool to measure functionality provided by a software and obtain technical indicators
early in the design phase. The COSMIC method is an international standard for
functional size measurement of a software. A study [2] discussed FSM for Internet
of things (IoT) real-time embedded software and proposed a guideline using Ardui-
no. Another study in [8] proposed the idea of Universal IoT metrics and automated
some metrics proposed. This paper presents an approach to automatically measure
COSMIC functional size of any IoT Edge Device code. This paper is based on the
measurement procedure rules presented in [2], and it attempts to complete the tool
presented in [8].

Understanding Developer Practices and Code Smells Diffusion in
AI-Enabled Software: A Preliminary Study

Giammaria Giordano, Giusy Annunziata, Andrea De Lucia and Fabio Palom-
ba.

To deal with continuous change requests and the strict time-to-market, practitioners
and big companies constantly update their software systems to meet users’ require-
ments. This practice force developers to release immature products, neglecting best
practices to reduce delivery times. As a possible result, technical debt can arise,
i.e., potential design issues that can negatively impact software maintenance and
evolution and, in turn, increase both the time-to-market and costs. Code smells—
sub-optimal design decisions identifiable by computing software metrics and provi-
ding a general overview of code quality —are common symptoms of technical debt.
While previous research focused on code smells primarily considering them in the
context of Java, the growing popularity of Python, particularly for developing artificial
intelligence (AI)-Enabled systems, calls for additional investigations. This prelimina-
ry analysis addresses this gap by exploring the diffusion of Python-specific code
smells, and the activities performed by developers that induce the introduction of
code smells in their systems. To perform our preliminary investigation, we selected
200 AI-Enabled systems available in the Niche dataset; We extracted 10,611 infor-

Software Measurement News 28(2023)2

10 Conference Report

mation on the releases using PyDriller, and PySmell to extract information about
code smells. The results reveal several insights: 1) Code smells related to object-
oriented principles are rarely detected in Python; 2) Complex List Comprehension is
the most prevalent and the most long-alive smell; 3) The main activities that can in-
duce code smells are evolutionary. This study fills a critical gap in the literature by
providing empirical evidence on the evolution of code smells in Python-based AI-
enabled systems.

Starting a new REST API project? A performance benchmark of
frameworks and execution environments

Sergio Di Meglio, Luigi Libero Lucio Starace and Sergio Di Martino.

REST APIs have become widely adopted in the software industry, finding extensive
usage for businesscritical purposes such as data exchange, mobile app develop-
ment, and microservice architectures. Such popularity has led to a proliferation of
dedicated frameworks, making it challenging for developers and organizations to
choose which one to use for developing resource-efficient solutions. Adding to the
complexity is the possibility of adopting also different execution environments, such
as GraalVM, that offer advantages such as faster startup times, lower memory foot-
print, and polyglot capabilities. Some prior works have investigated the performance
of various frameworks for REST APIs. Still, these studies often consider simplistic
scenarios with a single endpoint, which fail to capture the complexity and diversity of
real-world REST API applications. Furthermore, the impact of different execution
environments on performance was often overlooked. Consequently, there remains a
significant knowledge gap in comprehensively assessing the combined influence of
frameworks and execution environments on the performance of REST APIs. This
study aims to move a first step towards bridging that gap, by conducting a thorough
performance benchmark that encompasses real-world REST APIs and considers
also the effects of different execution environments. More in detail, the study focu-
ses on two of the most popular programming language and framework combinations
for REST APIs, namely JavaScript with the Express framework and Java with the
Spring framework. As for the execution environment, we consider both mainstream
execution environments for JavaScript and Java (Node and OpenJDK, respective-
ly), and GraalVM, which can execute both Java and JavaScript software. The
benchmarking process involves conducting realistic load and stress tests using
state-of-the-art tools. Results reveal significant differences in performance across
the considered combinations, providing insights that could support developers and
system architects in making more informed decisions on the technologies to use for
their REST API projects.

Software Measurement News 28(2023)2

 Conference Report 11

An Empirical Study on the Performance of Vulnerability Prediction
Models Evaluated Applying Real-world Labelling

Giulia Sellitto, Alexandra Sheykina, Fabio Palomba and Andrea De Lucia.

Software vulnerabilities are infamous threats to the security of computing systems,
and it is vital to detect and correct them before releasing any piece of software to
the public. Many approaches for the detection of vulnerabilities have been proposed
in the literature; in particular, those leveraging machine learning techniques, i.e.,
vulnerability prediction models, seem quite promising. However, recent work has
warned that most models have only been evaluated in in-vitro settings, under
certain assumptions that do not resemble the real scenarios in which such approa-
ches are supposed to be employed. This observation ignites the risk that the encou-
raging results obtained in previous literature may be not as well convenient in practi-
ce. Recognizing the dangerousness of biased and unrealistic evaluations, we aim to
dive deep into the problem, by investigating whether and to what extent vulnerability
prediction models’ performance changes when measured in realistic settings. To do
this, we perform an empirical study evaluating the performance of a vulnerability
prediction model, configured with three data balancing techniques, executed at
three different degrees of realism, leveraging two datasets. Our findings highlight
that the outcome of any measurement strictly depends on the experiment setting,
calling researchers to take into account the actuality and applicability in practice of
the approaches they propose and evaluate.

Metrics and Models for Developer Collaboration Analysis in Micro-
service-Based Systems. A Review

Xiaozhou Li, Amr S. Abdelfattah, Ruoyu Su, Joseph Lee, Ernesto Aponte, Ra-
chel Koerner, Tomas Cerny and Davide Taibi.

Microservices enable different teams to develop and deploy services independently.
Practitioners are frequently mentioning the need for independence between teams
and developers, and the need for metrics to measure developer collaboration. To
shed light on the existing metrics and models, we conducted a Systematic Mapping
Study to identify models for measuring the development activities, the metrics adop-
ted by these methods, and the output produced by the methods themselves. We
identified 10 different models proposed in 14 research papers. Results show that a
large amount of the existing models adopt qualitative metrics, questionnaires, and

Software Measurement News 28(2023)2

12 Conference Report

surveys to collect the information required while others use information from issue
tracking and version systems. The results will enable practitioners and researchers
to further validate and extend the research on metrics for evaluating the collaborati -
on and independence among developers

Size Measurement and Effort Estimation in Microservice-based
Projects: Results from Pakistan

Görkem Kılınç Soylu, Hüseyin Ünlü, Isra Shafique Ahmad and Onur Demir-
örs.

During the last decade, microservice-based software architecture has been a com-
mon design paradigm in the industry and has been successfully utilized by organi-
zations. Microservice-based software architecture, specifically in the form of reactive
systems, has substantial differences from the more conventional design paradigms,
such as the object-oriented paradigm. The architecture moved away from being da-
ta-driven and evolved into a behavior-oriented structure. The usage of a single data-
base is replaced by the structures in which each microservice is developed indepen-
dently and has its own database. Therefore, adaptation demands software organi-
zations to transform their culture. In this study, we aimed to get an insight into how
Pakistani software organizations perform size measurement and effort estimation in
their software projects which embrace the microservice-based software architecture
paradigm. For this purpose, we surveyed 49 Pakistani participants from different
agile organizations over different roles and domains to collect information on their
experience in microservice-based projects. Our results reveal that although Pakista-
ni organizations face challenges, they continue using familiar subjective size mea-
surement and effort estimation approaches that they have used for traditional archi-
tectures.

A Maturity Model Guidance Approach for Integration Testing of
Avionics Software

Gülsüm Güngör and Ayça Kolukısa Tarhan.

Safety-critical software failures lead to serious results such as loss of live or dama-
ge to the environment; therefore, safety-critical software verification requires special
attention. Avionics system software is one type of safety-critical software. “DO-
178C: Software Considerations in Airborne Systems and Equipment Certification”

Software Measurement News 28(2023)2

 Conference Report 13

was released in 2011 by RTCA, Inc., which defines processes for airborne systems
software development and verification. On the other hand, there are well-defined
guidelines to improve verification and validation processes of software system deve-
lopment, specifically for software testing. TMMI (Test Maturity Model Integration)
model is produced by TMMI Foundation as a guidance for organizations to improve
their test processes and product quality. Avionics system software has own safety-
related software characteristics, and TMMI does not specifically address software
testing practices of these characteristics. To fill this gap, we first identify avionics
software characteristics from DO-178C handbook as the base for software testing,
and then propose a domain specific guidance document that employs TMMI practi-
ces as complementary to DO178C activities. The document is aimed to help test or-
ganizations in improving test processes by focusing on airborne software characteri-
stics. The proposed approach is targeted for integration testing of avionics software,
since this level of testing is very critical for defect prevention in the safetycritical do-
main.

Resolving the Historical Confusions about the Meaning of Soft-
ware Size and Its Use for Project Effort Estimation

Charles Symons.

The software industry does not have a good track record of delivering systems on
time and budget. In part this is due to weaknesses in software sizing and project
 effort estimating methods and practices. This paper gives the author’s perspective
on how some of these weaknesses have arisen historically, resulting in differing
views on some basic underlying concepts that are still causing confusion today.
Some remedies are proposed to help eliminate the confusions. It is not easy to defi-
ne what we mean by the ‘size’ of an item of software, and this size is not always
clearly distinguished from the size of the project or the activity to develop and imple-
ment the software item. Even in recent years the Agile community has defined a
measure (Story Points) of the size of a User Story (a simple statement of software
requirements) but has used the same units of measurement to estimate or measure
the effort to develop and implement the Story. A software item manifests itself in dif-
ferent forms as it progresses through the states of its lifecycle from requirements,
design, and source code to executing code (using a ‘waterfall’ development process
for ease of illustration). In each state, the software item’s artefacts differ thus neces-
sitating different size measures, for example counts of SLOC (Source Lines of
Code) for the source code, and bytes for the executing code. Software size is usual-
ly the biggest driver of the effort to develop the size. Consequently, designers of

Software Measurement News 28(2023)2

14 Conference Report

software size measurement methods all aim that their sizes should correlate with ef-
fort. Allan Albrecht and other designers of early methods of sizing software require-
ments proposed to measure size as the product of two factors which became known
as: i) the ‘Unadjusted Function Point’(UFP) size, which is a measure of the required
software functionality, and ii) a ‘Value Adjustment Factor’ (VAF) that aims to account
for the relative difficulty of developing the software, e.g. by considering its ‘complexi-
ty’ and other types of requirements. These various VAF constituents are called
‘size-drivers’ in this paper. The product of a UFP and a VAF gives a software size in
units of ‘Function Points’ (FP). The paper argues why those software size measures
that are one-dimensional (e.g. UFP, SLOC, bytes) may all be thought of as different
types of software ‘length’. It further concludes that there is no reason to expect that
 different methods for measuring the ‘length’ of software items at different states in
their life-cycle will produce results that correlate well with each other, or with measu-
rements of the same items that attempt to also account for the difficulty in develo-
ping the sizes, or that account for this difficulty in different ways. Effort estimation
methods must take account of other factors besides size, referred to as ‘effort-dri -
vers’ in this paper. These can be either ‘pure’ effort drivers, i.e. attributes only of the
project, such as the numbers and capability of the staff assigned to the project, or
other types of requirements for the software system that are not taken into account
by the software size measures such as for its quality, e.g. portability requirements,
or technical requirements such as the required response time. The paper notes that
the designers of different size measurement methods and different effort estimation
methods have, at different times, made different decisions on whether to classify
some of these factors as size-drivers or as effort-drivers. A further conclusion, there-
fore, is that accurate effort estimation requires a coherent allocation of these factors
as either size-drivers or as effortdrivers. The result will be a ‘Coherent Size/Effort
Ecosystem’. Not recognising this need for coherence is another cause of confusion
and a source of error in effort estimation practices that rely on converting an estima-
ted size from one state, e.g. FPs, to another size, e.g. SLOC, for a different state
before converting size to effort. The paper next discusses the weights applied to the
various components of the UFP and VAF sizes. These were all derived by expert
judgements of the relative effort to develop the components. It is concluded that the-
se early FP sizes are all, strictly-speaking, standard measures (or indices) of Relati-
ve Effort for a software project. In spite of this conclusion, the paper also shows that
UFP-like sizes conform to the principles of Functional Size Measurement (FSM) for
measuring Functional User Requirements (FUR) as defined by ISO/IEC. A UFP size
may therefore also be legitimately regarded as a measure of software Functional
Size. But VAF-like factors do not conform to these same principles, and this has led
to their demise. As a matter arising from this discussion, the paper proposes impro-
vements to the ISO/IEC definition of the term ‘FUR’ to clarify its real meaning. The

Software Measurement News 28(2023)2

 Conference Report 15

final major topic discussed is what we mean by the ‘Non-Functional Requirements’
(NFR) of a software-intensive system or software product. There are various definiti-
ons of NFR and varying ways of accounting for them in effort estimation. The diffe-
rent definitions list different examples as types of non-functional requirements; the-
se lists overlap with the list of requirement types that were accounted for by VAF-li-
ke measures, and with the requirement types that are given as examples of what
are not FUR in the ISO/IEC definition. In response to this variety of definitions, the
COSMIC and IFPUG organizations collaborated to agree a definition of NFR which
was compatible with the ISO/IEC definition of FUR. A consequence of these two de-
finitions was that any software requirement could be clearly classified as either func-
tional or non-functional, With hindsight, this definition is flawed, as is the ISO/IEC
definition of FUR because both define quality requirements as non-functional. This
has caused confusion in practice, because many quality requirements appear, when
first expressed, to be NFR but on closer examination evolve into FUR for software,
or into a mixture of both FUR for software and requirements for ’nonsoftware’ e.g.
hardware. As an example, a requirement for the security of a software system (typi-
cally regarded as a quality requirement) may be met by software or hardware, or a
mixture. The paper therefore proposes further revisions to the ISO/IEC definition of
FUR and offers two options to revise the COSMIC/IFPUG definition of NFR to help
resolve this confusion. These revisions recognise that all requirements for a soft-
ware system must ultimately be allocated to software or to ‘non-software’. The revi-
sed definitions leave customers and project teams to decide how quality require-
ments will be allocated in their own individual developments, regardless of whether
they think of the requirements as a FUR or as NFR. The paper then examines a me-
thod (‘SNAP’) which claims to measure a collective size of the NFR for a software
item. The author gives several reasons why he considers this approach as an unwi-
se way of dealing with NFR in a size/effort ecosystem. In overall conclusion, the pa-
per identifies two priorities for action by the software metrics community: first, to ac-
cept the proposed revisions to the ISO/IEC definition of FUR and to the COSMIC/IF-
PUG definition of NFR, and second to convince the Agile community to incorporate
a modern functional size measurement method into their sizing/estimating eco-sys-
tems.

Software Measurement News 28(2023)2

16 Conference Report

The ABC Model: coming “back to the future” in (ICT) contracts

Luigi Buglione.

One of the main problems in current ICT projects is to determine the economic va-
lue of project activities using mostly (or solely) the deliverables produced, conside-
ring such projects as something repeatable and applying the ‘economies of scale’
principles. But looking to the inside of those projects, most of them are “artisanal”
projects, unique to a specific customer for a specific need and many variables
should be taken into account in order to provide in an estimation the right ‘quantity’
to be produced (also in terms of outcomes), effort and costs (to be translated into a
final price) considering all the activities in scope to such project, not only those
strictly devoted to produce the project deliverables. This paper will discuss the cur-
rent situation and a simple but effective solution to such issues using benchmarking
and data management best practices, overcoming also bad outsourcing practices,
called the ‘ABC Model’, providing an example with objective evidence.

Proceedings Publication:

The IWSM-Mensura-2023 proceedings will be published as CEUR proceedings du-
ring the next time.

Software Measurement News 28(2023)2

 Conference Report 17

Summary of the 17th International Conference on

Software and System Processes (ICSSP 2023)

Liming Zhu
CSIRO’s Data61

Eveleigh, Australia
Liming.Zhu@data61.csiro.au

Sherry Xu
CSIRO’s Data61

Eveleigh, Australia
Xiwei.Xu@data61.csiro.au

Jens Heidrich
Fraunhofer IESE

Kaiserslautern, Germany
Jens.Heidrich@iese.fraunhofer.de

Gayan Benedict
University of Technology

Sydney
Sydney, Australia

Gayan.Benedict@uts.edu.au

ABSTRACT

The 17th International Conference on Software and System Processes (ICSSP
2023) was held in conjunction with the 45th International Conference on Software
Engineering (ICSE 2023) in Melbourne, Australia, May 14-15, 2023. ICSSP is a
leading international forum for research on software and systems processes. ICSSP
conferences have been organized by the International Software and Systems
Process Association (ISSPA) or its predecessor, the International Software Process
Association (ISPA). The 2023 conference extended a sequence of predecessor
conferences and workshops stretching back more than a decade. For the 2023
ICSSP, the ISSPA was joining forces with representatives of CSRIO's Data61 unit,
the data and digital specialist arm of Australia's national science agency.

ICSSP 2023 was focusing on software and systems processes for and with these
new technologies, as well as on incorporating these new technologies into new
modes of working in software and systems development for business, government,
society, and the environment. The conference received 23 submissions of research,
experience, and short papers from which 10 high-quality papers (43%) were
accepted after the reviewing process. Complementing the technical program, we
had five industry talks sharing experiences and a panel discussion. We also have
been able to allure three inspiring and very interesting keynote talks.

KEYWORDS

Software development, systems development, development process, emerging
technologies, Blockchain, Artificial Intelligence, low-code / no-code, Augmented,
virtual, and extended reality.

1 Introduction

ICSSP conferences have been organized by the International Software and

Software Measurement News 28(2023)2

18 Conference Report

Systems Process Association (ISSPA) or its predecessor, the International Software
Process Association (ISPA). The ICSSP series grew out of two earlier and partly
overlapping series, the International Conferences on Software Process (ICSP),
dating back to 1991, and the International Software Process Workshops (ISPW),
dating back to 1984.

Recent ICSSP conferences have mostly been organized with or around ICSE,
with proceedings published by ACM or IEEE. The 2021 and 2022 conferences were
co-organized with the International Conference on Global Software Engineering
(ICGSE), and ICSSP 2022 was co-sponsored and co-organized with the Carnegie
Mellon University Software Engineering Institute. For the 2023 ICSSP, the ISSPA
was joining forces with representatives of CSRIO's Data61 unit, the data and digital
specialist arm of Australia's national science agency.

In recent years, innovative software and systems technologies have been rapidly
adopted with increasingly widespread but uncertain impacts. These technologies
include various forms of AI; big data and data science; blockchain and distributed
ledgers; augmented, virtual, and extended reality; low-code/no-code platforms; and
even quantum computing (among others). By their novel nature, these new
technologies and applications demand new approaches to software and systems
development. Beyond that, the novelty and uncertainty surrounding these
technologies and applications requires new and more effective approaches and
processes to assure correctness, understandability, predictability, responsibility,
security, ethics and other vital qualities of our software and systems.

At the same time, many of these new technologies may have applications within
the software life cycle. So, the question naturally arises, can we put technologies
such as AI, blockchain, low code, and big data, to work in improving our ability to
develop, manage, and apply new software and systems applications. We can even
ask whether it will become essential to do so.

ICSSP 2023 was focusing on software and systems processes for and with these
new technologies, as well as on incorporating these new technologies into new
modes of working in software and systems development for business, government,
society, and the environment. ICSSP 2023 aimed to bring together researchers and
practitioners to share their research findings, experiences, and new ideas on
diverse topics related to software and system processes. The goal was to advance
both the state of the research and the state of the practice by applying innovative
ideas from different fields of research to the future of software and system
engineering processes.

This year's conference received 23 submissions of research, experience, and
short papers from which 10 high-quality papers (43%) were accepted after the
reviewing process. Complementing the technical program, we had five industry talks

Software Measurement News 28(2023)2

 Conference Report 19

sharing experiences and a panel discussion. We also had been able to allure three
inspiring and very interesting keynote talks.

Altogether, this international event was an excellent forum for practitioners,
academics, and students from around the world to virtually meet and discuss issues
related to most critical topics in Software and Systems Processes.

Table 1: PC Members for ICSSP 2023

Ove Armbrust Dan Houston Tijs Slaats
Alberto Avritzer Liguo Huang Viktoria Stray
Dilum Bandara Hajimu Iida Stanley Sutton
Reda Bendraou Jil Klünder Binish Tanveer
Gayan Benedict Martin Kowalczyk Paolo Tell

Ivana Bosnić Marco Kuhrmann Eray Tüzün
Ricardo Britto Xiao Liu Michael Unterkalmsteiner
Jieshan Chen Fabrizio Maria Maggi Muhammad Usman
Paul Clarke Antonia Mas Pichaco Aurora Vizcaíno
Chiara Di

Francescomarino
Antoni Lluís Mesquida Hironori Washizaki

Christof Ebert Juergen Münch Mairieli Wessel
Michael Felderer Joyce Nakatumba Dietmar Winkler

Eduardo Figueiredo So Norimatsu Krzysztof Wnuk
Awdren Fontão Leon Osterweil Sherry Xu
Steven Fraser Ali Ouni Hasan Yasar

Liliana Guzman Özden Özcan Top Murat Yilmaz
Jens Heidrich Dietmar Pfahl He Zhang

Graham Hellestrand Stefan Sauer
James Hoang Lin Shi

2 Organization

Organizing committee of ICSSP 2023 consisted of the following people:
 Liming Zhu, General Chair (CSIRO’s Data61, Australia)

 Xiwei (Sherry) Xu, Program Co-Chair (CSIRO’s Data61, Australia)

 Jens Heidrich, Program Co-Chair (Fraunhofer IESE, Germany)

 Gayan Benedict, Industry Chair (University of Technology Sydney, Australia)

 Junjie Wang, Diversity Chair (Institute of Software at Chinese Academy of Sciences and
University of Chinese Academy of Sciences, China)

 Sung Une (Sunny) Lee, Local Chair (CSIRO's Data61, Australia)

 Yin Kia Chiam, Publicity Co-Chair (University of Malaya, Malaysia)

 Rifat Ara Shams, Publicity Co-Chair (CSIRO's Data61, Australia)

 Dawen (David) Zhang, Website and Proceedings Chair (CSIRO's Data61 & Australian
National University, Australia)

The program committee had 55 members from 19 countries around the world. They
are listed in Table 1.

Software Measurement News 28(2023)2

20 Conference Report

3 Submissions, Acceptance, and Attendance

ICSSP 2023 received 23 paper submissions including 15 full papers (up to 11
pages), 4 short papers (up to 6 pages), 4 experience reports (up to 6 pages). In
addition, we received two industry talk submissions. All submissions were reviewed
by our 55 PC members, who overall conducted 77 reviews. At the end of the review
period, we had an intense discussion about the results.

Finally, we decided to accept 10 papers (acceptance rate 43%) including 7 full
papers, two short papers, and one experience report. Furthermore, we accepted the
two submitted industry talks and invited 4 more industry talks for having a balanced
program between research and industry contributions. Authors from accepted
papers came mainly from Europe (50%), Asia (25%), Oceania (19%), and the
Americas (6%).

ICSSP 2023 had about 30 participants on-site and additional people participating
online (especially steering committee members joining for the opening and closing
session). Registered participants of the conference came mainly from Europe
(40%), Asia (30%), Oceania (27%), and the Americas (3%).

Overall, there was a lively and stimulating discussion after presentations and
during the breaks how emerging technologies have an impact on software and
system development processes.

4 Program Summary

The program of ICSSP 2023 comprised three keynotes, two full paper sessions,
one short paper and experience report session, one industry talk session, and one
industry panel discussion session.

The first keynote talk “A.I.gile - How Agile and AI (e)merge in practice” was given
by Prof. Dr. Philipp Diebold of IU International University and Bagilstein in Germany.
His presentation focused on how Artificial Intelligence (AI) can be integrated into
Agile processes. It explored the ways in which AI can enhance Agile methodologies
and improve the delivery of software solutions. The presentation discussed the
challenges and considerations that organizations must consider when implementing
AI in Agile environments. Attendees gained insights on how AI can improve Agile
processes and deliver innovative and valuable solutions.

The second keynote talk “A Technical Focus on Business Process Management –
Past, Present, and Emerging Topics” was given by Prof. Dr. Ingo Weber TU Munich
and Fraunhofer Gesellschaft in Germany. The goal of this talk was to provide an
overview of the Business Process Modelling (BPM) field, which is very related to
software engineering in several ways, and responsible for two out of nine German
unicorn startups. Accordingly, the talk started with a short excursion into history,
including a 100-year-old process model. Then he discussed process enactment and
its relation to low and no-code development and model-driven engineering. The past

Software Measurement News 28(2023)2

 Conference Report 21

10 years of BPM were heavily influenced by process mining, a flavor of data mining
using a process lens. The talk gave several examples using emerging technologies
like blockchain and finished with a brief view on augmenting BPM technologies with
artificial intelligence (AI).

The third keynote talk “AI-Augmented Software Engineering: Revolutionizing or
Challenging Software Quality and Testing?” was given by Dr. Tafline Ramos,
Amanda Dean, and David McGregor of Planit, an NRI Company. ChatGPT itself
offers great optimizations to initial research and document writing for industry
practitioners. However, it also suffers from key issues, such as not being able to
reference the sources of its ideas. It also has the potential for making incorrect
inferences that could be mistakenly accepted as factual by end-users, used in
workplace documentation, or in the worst case, published on the internet, and then
utilized in future releases of AI-based tools, creating negative feedback loops in
human learning. The talk looked at the current benefits and shortcomings of AI-
based software quality improvement tools, and the challenges of testing AI-based
software from a Quality Engineer’s perspective. They looked at international
standards and training courses for AI development and testing. They also explored
problems that quality engineering practitioners would like to see solved in the future,
to enable a holistic approach to AI-augmented software quality engineering.

Full paper session one was about “Process Automation” and had three paper
presentations: (1) “Automatically Generating Docker Files via Deep-Learning:
Challenges and Promises” by Giovanni Rosa (University of Molise), Antonio
Mastropaolo (Università della Svizzera italiana), Simone Scalabrino (University of
Molise), Gabriele Bavota (Software Institute, USI Università della Svizzera italiana),
and Rocco Oliveto (University of Molise). (2) “An Experience Report on Assessing
Software Engineer’s Outputs in Practice” by Juzheng Zhang, He Zhang, Lanxin
Yang, Liming Dong, and Yue Li (all (Nanjing University). (3) “Automatic Detection of
Security Deficiencies and Refactoring Advises for Microservices” by Burak Ünver
and Ricardo Britto (Ericsson and Blekinge Institute of Technology).

Full paper session two was about “Process Improvement and had four
presentations: (1) “Using GUI Test Videos to Obtain Stakeholders’ Feedback” by
Jianwei Shi, Jonas Mönnich, Jil Klünder, and Kurt Schneider (all Leibniz Universität
Hannover). (2) “Measuring the Benefits of CI/CD Practices for Database Application
Development” by Jasmin Fluri (Schaltstelle GmbH), Fabrizio Fornari (University of
Camerino), and Ela Pustulka (FHNW). (3) “On Preparing and Assessing Data for
Simulation Process Modeling: An Industrial Report” by Liming Dong, He Zhang, Yue
Li, Bohan Liu, and Zhiluo Weng (all Nanjing University). (4) “Adding Generic Role-
and Process-based Behaviors to Smart Contracts using Dynamic Condition
Response Graphs” by Yibin, Tijs Slaats, Boris Düdder, and Thomas T. Hildebrandt
(all University of Copenhagen).

Software Measurement News 28(2023)2

22 Conference Report

The industry talks session had six presentations: (1) “De-risking major industry
transformations using experimentation” by Gayan Benedict (University of
Technology Sydney). (2) “Analyzing the Implications of NFTs as Digital Identities in
Web3.0: A Privacy-Focused Approach” by Memoona Anwar, Tony Fitzgibbon and
Inam Gull (Data Zoo). (3) “Considering the Human in the loop when adopting AI” by
WHOM?. (4) “Helping companies de-risk the integration of first, second and third-
party AI models into a customer engagement platform” by Justin Tauber
(Salesforce). (5) “Achieving Business Success - A Framework for Software Delivery
of Emerging Technologies” by Mahesh Venkataraman and Shylaja Shivaram
(Accenture). (6) “Improve Software and System Process of Cloud Serverless
Architectures through Automated Testing with AI” by Rohit Patwardhan and Mallika
Fernandes (Accenture).

Presenters of our industry talks also participated in the panel discussion talking
about challenges and solution approaches of emerging technologies in the context
of software and system development processes.

In the final session two short papers and one experience report were presented:
(1) “Characterizing the Impact of Culture on Agile Methods: The MoCA Model” by
Michael Neumann (University of Applied Sciences & Arts Hannover), Klaus Schmid
(Stiftung University Hildesheim), and Lars Baumann. (2) “Towards Sustainable
Software for Public Sector Information Systems” by Reetta-Kaisa Ghezzi, Aapo
Koski, Janne Lautanala, Mikko Lehtisalo, Manu Setälä, and Tommi Mikkonen
(University of Jyvaskyla). (3) “Towards Better Code Reviews: Using Mutation Testing
to Improve Reviewer Attention” by Ziya Mukhtarov, Mannan Abdul, Mokhlaroyim
Raupova, Javid Baghirov, Osama Tanveer, Haluk Altunel, and Eray Tüzün (all
Bilkent University).

5 Distinctions

Based on review scores of PC members, we decided to have two best paper
awards, which were handed over during the closing session.

The first award went to the short paper “Towards Better Code Reviews: Using
Mutation Testing to Improve Reviewer Attention” by Ziya Mukhtarov, Mannan Abdul,
Mokhlaroyim Raupova, Javid Baghirov, Osama Tanveer, Haluk Altunel, and Eray
Tüzün (all Bilkent University).

The second award went to the full paper “Using GUI Test Videos to Obtain
Stakeholders’ Feedback” by Jianwei Shi, Jonas Mönnich, Jil Klünder, and Kurt
Schneider (all Leibniz Universität Hannover).

Software Measurement News 28(2023)2

 Conference Report 23

6 Future

ICSSP 2024 is planned to be co-located with the 46 th ICSE in Lisbon, Portugal. We
look forward to another inspiring 18th edition of the ICSSP conference.

ACKNOWLEDGMENTS

We want to thank our devoted members of the organizing and program committees
for their support, allowing us to arrange and run an exciting conference and to as-
semble a high-quality program. We also would like to thank the steering committee
for the continuous support. Finally, we express our sincere gratitude to all authors
who shared their research insights and practical experience with us as well as the
presenters who spark stimulating discussions with all the participants, who made
ICSSP 2023 a special and great conference.

Software Measurement News 28(2023)2

 Community Reports 24

COSMIC News

summarized from the COSMIC International Advisory Council (IAC)
members meeting by Reiner R. Dumke

COSMIC Certification 2022 – 2023

Jean-Marc Desharnais

Software Measurement News 28(2023)2

 25 Community Reports

Estimation Challenge committee Annual Report 2022-2023

Alain Abran

Software Measurement News 28(2023)2

 Community Reports 26

COSMIC Awards 2023

K. R. Jayakumar

Software Measurement News 28(2023)2

 27 Community Reports

Software Measurement News 28(2023)2

 Community Reports 28

Software Measurement News 28(2023)2

 29 Community Reports

GUFPI-ISMA News

Luigi Buglione

 ISMA President, Italy, luigi.buglione@gufpi-isma.org

Upcoming events from GUFPI-ISMA:

 Oct. 29, 2023: Webinar on “ISO 16355: the history of Quality Function
Deployment (QFD)” with Thomas Fehlmann
https://gufpiisma.wildapricot.org/event-5419180

 Nov. 24, 2023: 2d Metric Event 2023 (Bari/Italy)
https://gufpiisma.wildapricot.org/event5419026

All the previous events are available at: https://gufpiisma.wildapricot.org/events

BWT about ISBSG:

 IT Conference 2023 (online), Nov. 10, Nov. 17, 2023
https://www.isbsg.org/it-conference-2023

Software Measurement News 28(2023)2

https://gufpiisma.wildapricot.org/event5419026
https://gufpiisma.wildapricot.org/event5419026
https://gufpiisma.wildapricot.org/event-5419026

News Papers 30

 Resolving the historical confusions about the
meaning of software size and its use for project

effort estimation

Charles Symons

(Retired, unaffiliated) Reigate, England. E-mail: cr.symons@btinternet.com

This version of this paper has been updated in a number of places from the version submitted to the
IWSM Mensura Conference in Rome and presented on 15th September 2023

Abstract.

The software industry does not have a good track record of delivering
systems on time and budget. In part this is due to weaknesses in
software sizing and project effort estimating methods.
This paper discusses how some of these weaknesses have arisen
historically, resulting in differing views on some basic underlying
concepts such as the meaning of software size, types of software size
and their relationships, the distinction between software ‘size-drivers’
and project ‘effort-drivers’, the meaning of the weights assigned to the
components of software functional size measures, and the meanings of
Functional User Requirements and of Non-Functional Requirements.
Several conclusions are drawn, particularly that the current definitions
of the latter two concepts are misleading in how they deal with quality
requirements. Some recommendations are made on the need for
‘coherent size/effort ecosystems’ to help improve project effort
estimation, and to revise some existing concept definitions.

Keywords:

Software measurement, project effort estimation, functional requirements, non-
functional requirements

1. Introduction

75 years after the term ‘software engineering’ was first coined, there is still no
common understanding of what we mean by the ‘size’ of a software item, and
where to draw the line between methods for measuring software size, and methods
for estimating the effort for a project to develop an item of software starting from an
estimate of the software’s size.

This paper aims to examine the origins from a historical viewpoint of some of the
confusions that are common to all these methods where there is evidence that the

Software Measurement News 28(2023)2

mailto:cr.symons@btinternet.com

31 News Papers

confusions are still prevalent today, and to suggest some remedies to help
eliminate the confusions.

Having been actively involved in many of the developments since Allan Albrecht
first published his ‘Function Point’ (FP) method for sizing software requirements [1],
and at last believing I can explain the origin of these confusions, one of my aims is
to clear my own conscience. In what follows, where I criticise a development, I
confess to being directly or indirectly involved in contributing to the historical
confusion. Please forgive me. Along the way, I reach some new (to me!)
conclusions that I wish I had realised years ago.

In writing this paper, I have assumed that the reader is familiar with the two most
important uses of software sizes, namely

a) for measuring the performance of a completed software project (e.g.

project productivity = work output/work input = software size/project effort),

 and

b) in ‘top-down’ methods for estimating the effort for a project to develop a new item
of software.

These effort-estimation methods require as input: an estimate of software size
(usually the largest driver of effort); other system or project requirements; and past
(or ‘benchmark’) performance data.

I also assume that the reader is familiar with common software size measures
such as counts of Source Lines of Code (SLOC) and is familiar, at least in outline,
with the most widely known Functional Size Measurement (FSM) methods, i.e.
IFPUG [2], Nesma [3], MkII [4] and COSMIC [5], and with some effort estimation
methods. All these methods have been analysed and criticised at length for their
strengths and weaknesses and their suitability for their claimed purposes. Again, I
assume the reader is aware of these discussions.

The methods of software sizing listed above have become less commonly used in
recent years under multiple influences such as the increasing practice of
assembling software from existing components and from the introduction of Agile
methods. The latter, when first introduced, added to our list of confusions by using
Story Points [6] to size short statements of software requirements. In practice a
size estimate in units of Story Points was typically also taken as an effort estimate.
e.g. by assuming that

 one SP = one work-day.

The result was that a measurement of ‘velocity’ (a more developer-friendly term
than ‘productivity’), i.e. estimated SP/work-day, was actually a measure of
estimation accuracy rather than of performance. Nowadays, it seems to be
acknowledged that use of Story Points is a ‘bottom-up’ means of effort estimation.

Software Measurement News 28(2023)2

News Papers 32

In spite of their less common use nowadays, methods for software sizing and
project effort estimation, are still highly relevant to cases where a customer requires
an estimate of software development project cost in order to make the business
case for the investment, or to reach an agreement on costs with a software
supplier. This is especially the case for the development of very large software
systems. Software sizing methods are also important for quality control on software
requirements, for managing project ‘scope creep’, for monitoring performance-
improvement initiatives, and the like. In my opinion, it is therefore still important for
future generations of software engineers to resolve some of the confusions that still
persist today in this subject area.

2. So what do we mean by the ‘size’ of a software item?

Answering this question is important if we are to agree what parameters to
include in our software size measures.

When Allan Albrecht first described his FP method [1], he defined his
measurement as giving ‘an effective relative measure of function value delivered to
our customer’. This statement initially caused much confusion. It was a nice
marketing description, but the size of an item of software does not necessarily have
any relation at all to its value1 to the customer.

Software size is a rather nebulous concept that is difficult to define. In ordinary
discourse, we think of the size of a software item as a measure of how big it is, or
as a measure of the amount of software product, i.e. the work-output, of a project.
In ordinary conversation, we often talk about ‘the’ size of an item of software, only
distinguishing the results of using different methods of measuring ‘the’ size. There
is no one thing that one can call as the size of an item of software.

An item of software evolves over its life across different states, from an
expression of requirements to an executing program. Figure 1 shows the life-cycle
of a software item (the ‘Entity’) developed following a ‘waterfall’ approach, the
artefacts2 that exist in each state (the Entity’s Attributes) and the Measures of a
size of those attributes, using the EAM taxonomy [7].

Therefore a measurement of software size can only be properly understood when
the following are all known: the state of the item’s artefacts being measured, the
specific method used for the measurement, and the unit of measurement. Some
brief observations on Figure 1:

1 Software certainly delivered value in the form of revenue to IBM (Albrecht’s employer), likely in proportion to
its size. But the value to the customer could range from negative if the software was never used, to many times
its cost if it helped the customer achieve business efficiencies or increase revenue.

Software Measurement News 28(2023)2

33 News Papers

2 These artefacts have their own life-cycle. For example outline requirements may be measured approximately
by one method then, when the requirements are known in more detail, re-measured more precisely by another
method.

 'Functional size’ is generally accepted as meaning a measure of the size of
‘what the software must do’. For a fuller discussion of Functional User
Requirements and functional size, see section 4.

 Figure 1 shows a question-mark against sizing ‘Non-Functional’
Requirements (NFR) because there is confusion on how to distinguish
functional from non-functional requirements and how to measure the latter, if
at all. This topic is discussed in section 5.)

 Object Points are defined in Wikipedia as ‘… an approach used in software
development effort estimation …. (they) are a way of estimating effort size,
similar to Source Lines Of or Function Points.’ (This is another perfect
example of confusing software size and project effort.)

Figure 1. A software item (the Entity), its Attributes and size Measures over its life.

When we discuss a physical object, we usually talk of its size in terms of the
measure of its major dimension, for example the height of an office block, or the
tonnage of a ship. The nearest dimension of a physical object analogous to a
measure of software size is its length. Examples of useful measures of the length
of a software item include a count of the SLOC or of the number of bytes occupied
in computer memory. The length of a software item may not, however, be an
adequate measure of the difficulty of developing it.

Given the use of software size measures for effort estimation, an underlying aim
of every designer of a software size measurement method has been that, for a
given homogeneous set of projects, the method should measure software sizes
that correlate reasonably with the effort of the projects to develop those sizes. A
size measure that cannot be demonstrated to be reasonably correlated with effort
is practically useless. Some software size measurement methods have therefore
tried to account for other factors than length to reflect this extra difficulty, such as
the ‘complexity’ of the software (a complex subject!) .

After Albrecht first described his method, the IFPUG organization assumed
responsibility for the method and refined its definition. A size in units of FP [2] was

Software Measurement News 28(2023)2

News Papers 34

defined as the product of two numbers: the ‘Unadjusted Function Points’ (UFP)
size, and the ‘Value Adjustment Factor’ (VAF) size.

Measuring a UFP size involves first identifying the occurrences of five ‘Base
Functional Component’ (BFC3) types in the item’s functional requirements. Next,
each of the BFC types are classified into one of three sizes depending on their
‘complexity’, where the latter depends on two dimensions (e.g. counts of Data
Element Types (DETs) and of File Type References (FTRs)). The 5 x 3 = 15
different possible BFC-type sizes are finally allocated a fixed number of FPs on a
common, one-dimensional size scale. At this point, the foregoing two-dimensional
classification parameters are ‘forgotten’. This procedure is fundamentally no
different from counting SLOC as a measure of the size of a software program. One
SLOC BFC can be of several types (declarative, control, compute, etc.) and has a
length in terms of the number of characters in the line which can vary enormously.
Nevertheless, we ignore this detail and count each SLOC as one unit.

Given that we are accustomed to regarding a SLOC count as a measure of
‘source code length’, by the same logic we can regard a count of UFP as a
measure of ‘functional length’, and a count of OO Points as a ‘design length’.

IFPUG’s VAF size, however is of a different nature. It accounted for 14 factors,
mainly of various technical requirements that were judged to affect software size
apart from its length. For example, in the early 1980’s more work had to be done,
i.e. it was more difficult, to develop a system to operate on-line than in batch mode.
It therefore made sense to include various types of requirements in the FP size
measure that accounted for such extra difficulties. One can criticise the way the
VAF was designed, but Albrecht’s intention in first designing the VAF was, in my
opinion, perfectly understandable. I will refer to these other factors in his software
size measure that reflect the goal of taking account of development difficulty, as
‘size-drivers’.

Conclusion.
There is no reason to expect that different methods for measuring the

‘length’ of software items at different states in their life-cycle will produce
results that correlate well with each other, or with measurements of the same
items that attempt to also account for the difficulty in developing the sizes, or
that account for this difficulty in different ways.

Yet many results have been published on the degree of convertibility between
sizes of software in different states, measured by different methods, without
acknowledging these factors or attempting to compensate for the inevitable
differences that arise.

3

A BFC is defined as an ‘elementary unit of Functional User Requirements defined by and used by an FSM Method for

measurement purposes’. [11]

Software Measurement News 28(2023)2

35 News Papers

Although functional size is usually the main driver of the effort of a project to
develop a new item of software, there are many other types of requirements for a
software project besides functional size that must be taken into account when
estimating the project effort. I will refer to the latter as ‘effort-drivers’. Confusion
now arises because designers of different sizing and estimation methods have
made different decisions about which of these requirements to consider as
software size-drivers and which as project effort-drivers.4

Listed below are a few of the main groups of requirements that, historically, have
been classified as either software size-drivers or as project effort-drivers4.

a) Quality requirements such as for performance, reliability, etc.

b) The complexity of the software, particularly of mathematical algorithms and
logic sequences.

c) The programming language used to develop the software

d) The number of users and/or implementations.

e) The extent of the software product that will re-use existing software
components.

Some requirements are, however, ‘true’ project effort-drivers, meaning they are
attributes only of the project to be developed. For example:

a) Project processes, risk, and governance.

b) Project constraints such as target delivery dates, budget limitations, inter-
dependencies with other projects, etc.

c) The project staffing, taking account of the actual staff numbers available and
their experience relative to the ideal needs.

Figure 2 illustrates the choices to be made for any process of estimating project
effort starting from an estimate of software size (in this case assuming functional
requirements as input), showing the other requirements that may be allocated as
either software size-drivers or as project effort-drivers (from the first list above), and
the ‘true’ project effort-drivers (from the second list).

4
 This paper focuses on the confusions arising in sizing and effort-estimation for a project to develop a

software-item. The actual processes of a) estimating effort from the various types of requirements/effort-
drivers, taking into account measures of past performance in delivering systems of the type to be developed
(i.e. benchmarks) and then b) for converting estimated effort and other requirements into project costs are
beyond the scope of this paper. This also explains why I avoid using the term ‘cost-driver’.

Software Measurement News 28(2023)2

News Papers 36

Figure 2. Which requirements to consider as 'Size-Drivers' and which as 'Effort-Drivers'?

Recommendation.
Any method that aims to make a reasonably accurate estimate of project

effort must ensure a coherent and consistent allocation of size- and effort-
drivers between the software sizing step and the effort estimation step.

Let us call the resulting system a ‘Coherent Size/Effort Ecosystem’.

As examples:

 The COCOMO estimation method [8] which takes counts of lines of code as
the software size measure is a coherent eco-system (leaving aside whether
the system has other possible limitations or deficiencies).

 The commonly-used procedure of estimating the size of the software
functional requirements, then converting this size to counts of lines of code
using external data, then entering this size into a black-box effort estimation
tool, is certainly NOT a coherent size/effort eco-system and is most unlikely
to produce consistently reliable effort estimates. Santillo [9] pointed out how
easily errors can propagate when using such a process.

 To establish a coherent in-house eco-system for estimating effort early in the
life of a project, probably the best way (if one has the resources) is to use a
standard method for sizing software functional requirements, to define a
limited set of effort-drivers relevant to the in-house environment, and to
collect sufficient size and effort data on past completed projects to establish
in-house performance benchmarks.

3. On the ‘weights’ used by some early methods for sizing
software requirements.

When I first used Albrecht’s sizing method, I found some systems where the
measurements did not seem to fully reflect the size of transactions that had to
navigate through large, multi-level (i.e. ‘complex’) databases. My main aim in
developing the ‘MkII’ FP Analysis method [4], therefore, was to improve on
Albrecht’s Unadjusted FP size component.

Software Measurement News 28(2023)2

37 News Papers

I chose to measure the size of a logical transaction by a count of the DETs as the
measure of each of the input and output phases of the transaction respectively, and
by a count of the number of entity-types referenced (ERs) as the measure of the
processing phase of the transaction. But how to add two counts of DETs to a count
of ERs? The three counts had to be weighted in some way. It seemed obvious to
use weights proportional to the relative effort to implement the three types of
counts. I therefore used a Delphi approach, asking the developers of over 60
projects to ‘guestimate’ the relative amount of effort needed for the three phases of
the transactions. From these data I derived an ‘industry-average’ set of weights.
The MkII UFP size of a transaction was then the weighted sum of the counts of the
DET’s and ERs.

At the time, I saw nothing inherently wrong with Albrecht’s VAF, so I added a few
more factors, e.g. requirements for security, interfaces to other applications, etc.,
re-named the result a ‘Technical Complexity Adjustment’ (TCA), and re-calibrated
the weight of the sum of its components, using the same Delphi approach. Later, I
received evidence5 that Albrecht’s weights for the components of his FP method
were similarly derived from an IBM effort estimation method, i.e. Albrecht’s weights
were also derived from relative effort to develop the various components.

Shortly after publishing the MkII method, a software metrics expert for whom I
have great respect, commented that MkII FPA was ‘not a software sizing method,
but an estimation method’. So, is it true that these early Function Point methods,
[2], [3], [4] and others are actually ’software sizing’ methods? Or are they ‘project
estimation’ methods?

Undeniably, from a mathematical viewpoint, given the weights applied to counts
of BFCs were all derived from relative effort, the units of the methods must be
proportional to effort. But the Unadjusted FP sizes they produce only take account
of requirements for software functional ‘length’; they do not take account of any of
the other factors that may be considered as size-drivers or effort-drivers of the
project being estimated, So these methods cannot, in my opinion, be considered as
estimation methods in any practical sense; they are hybrids of software sizing and
effort estimation methods.

Conclusion.
The UFP components (BFCs) of these early FP methods actually measure a

standard ‘Relative Effort’ for a software project.

Describing these methods as measuring a standard ‘Relative Effort’ is more
accurate than describing them as a standard ‘functional length’. A Relative Effort
size is a valid measure (or an ‘index’ if preferred) of the amount of work required to
develop the functionality of an item of software, relative to an arbitrary standard
work-size. Relative Effort size measurements are on a ratio scale. Their units of
measurement have no meaning on any absolute scale (like a ‘Dow Jones index’ of
software size, as Albrecht once commented.)

5 I was given a paper copy of a set of Albrecht’s hand-drawn OHP slides entitled ‘‘Where Function Points (and

weights) came from”, dated February 2nd, 1986

Software Measurement News 28(2023)2

News Papers 38

The concept of defining a ‘standard effort’ as a measure of the size of a task,
against which actual effort could be compared was first introduced by Frederick
Taylor [10]. His ideas on measuring work and on using them to measure and help
improve productivity have been in use for over a century.

Taylor’s ideas are applied to highly-repetitive work and his standard effort is
measured in absolute units of time (e.g. minutes) for a specific process. In contrast,
software development is non-repetitive work and Relative Effort is a measure that is
independent of the development process. Nevertheless, the idea of comparing
actual effort against a measure of standard effort in order to measure productivity is
the same for both cases, and equally valuable. Similarly, the estimated Relative
Effort of a software-item to be developed may be used as the primary software size
input to a project effort estimation method.

Does it then follow that a Relative Effort size is also a valid measure of the
functional size of a software-item, as the methods’ protagonists claim?

4. The ISO/IEC standard 14143/1 on ‘Functional Size Measurement:
Definition of Concepts’

In about 1995, the International Organization for Standardization (ISO)
established a Working Group (ISO/IEC/JTC1/ SC7/WG12). WG12 set out to define
some principles for Functional Size Measurement. The resulting standard, ISO/IEC
14143/1 [11], includes some important definitions.

“Functional User Requirements (abbreviated as ‘FUR’): sub-set of
the User Requirements describing what the software does, in terms of
tasks and services.”

“Functional Size: size of the software derived by quantifying the
Functional User Requirements.”

[A first, maybe pedantic, comment about the definition of ‘FUR’ is to ask why are
FUR a sub-set of the User requirements? Requirements may be specified by many
actors, including the project sponsor and lawyers, who will never be users. What
the term intends, I believe, is that these are the requirements for tasks and services
that will be provided to the software users. Secondly, the term ‘functional’ (or
function, or functionality) is not defined in 14143/1. The meaning is only implied by
the phrase ‘what the software does’. These two interpretations of the term FUR turn
out to be quite important - see Section 5. Another minor anomaly in the definition of
FUR is that in reality Requirements specify what the software ‘must or should do’ in
the future, when it is developed – not what the software ‘does’, implying it already
exists.]

Software Measurement News 28(2023)2

39 News Papers

Recommendation.
A better definition of FUR would be ‘sub-set of the requirements describing

what the software must or should do, in terms of tasks and services, for its
users.

One of the most important FSM principles defined in 14143/1 is (extracts):

“Functional Size shall have the following characteristics:

i it is not derived from the effort required to develop or to support the software
being measured;

ii it is independent of the methods used to develop or to support the software
being measured;

iii it is independent of the physical or technological components of the software
being measured.”

Conclusion.
The two definitions quoted above and the clause i) concerning FSM

characteristics mean that the ‘Unadjusted’ FP size components of early
Function Point methods that rely on relative-effort-related weights (i.e. that
measure Relative Effort sizes) can legitimately describe themselves as ‘FSM
Methods’.

It follows, however, that the VAF component of Albrecht’s method, the TCA
component of the MkII FP method and their equivalents in other early FP methods
do not comply with clauses ii) and iii) of the FSM characteristics. These
components were therefore dropped for ISO FSM method standardization
purposes and were, effectively, consigned to history.

5. Functional or Non-Functional Requirements?

The VAF and their equivalents in other FP methods had fulfilled a role as software
size-drivers in the then-existing size/effort eco-systems (coherent or not). Now that
their components no longer contributed to functional size, they inevitably had to join
the list of effort-drivers and so they became entangled with the concept of ‘Non-
Functional Requirements’.

A web-search on ‘Non-Functional Requirements’ (NFR) reveals a plethora of
different lists of example NFR and a variety of vague definitions, many published in
recent years. How to define NFR, how to distinguish NFR from FUR, and whether it
makes sense to measure a size of a set of NFR (as indicated in Figure 1), are still
major sources of confusion in the software metrics community.

For many years the IEEE’s SEVOCAB [12] gave a definition of NFR from the
ISO/IEC/IEEE 24765:2010 standard as:

Software Measurement News 28(2023)2

News Papers 40

“A software requirement that describes not what the software will do but
how the software will do it. Example: software performance requirements,
software external interface requirements, software design constraints, and
software quality attributes.”

The 14143/1 definition of FUR has a (non-normative) Note, part of which
effectively provides us with another definition of NFR. It states:

“User Requirements that are not Functional User Requirements include but are not
limited to:

i. quality constraints (for example usability, reliability, efficiency and portability);

ii. organizational constraints (for example locations for operation, target
hardware and compliance to standards);

iii. environmental constraints (for example interoperability, security, privacy and
safety);

iv. implementation constraints (for example development language, delivery
schedule).”

Notice the overlaps (but also the inconsistencies) between the components
of a VAF or TCA (described earlier as ‘size-drivers’), the examples of NFR
given in the SEVOCAB definition, and the examples of requirements that are
not FUR according to ISO/IEC 14143/1.

The early definition given in SEVOCAB is not very helpful. None of the examples
it gives of NFR define ‘how’ the software will do what it must do. Moreover, some
performance requirements typically apply at the system level e.g. requirements for
response time or availability; these can therefore involve requirements for hardware
as well as software.

Recognising the lack of a precise definition of NFR, the COSMIC and IFPUG
organizations collaborated to produce a more refined definition of NFR and a
glossary of 70 NFR terms [13]. Their definition of NFR6, which now also appears in
the SEVOCAB, is as follows.

“Any requirement for a software-intensive system or for a software product,
including how it should be developed and maintained, and how it should perform in
operation, except any functional user requirement for the software.

NOTE: Non-functional requirements (NFR) concern:

 the software system or software product quality;

 the environment in which the software system or software product must
be implemented and which it must serve;

 the processes and technology to be used to develop and maintain the
software system or software product, and the technology to be used for
its execution.”

6

(which I personally initially drafted!)

Software Measurement News 28(2023)2

41 News Papers

Taken together, the 14143/1 definition of FUR and this latest definition of NFR
were intended to encompass all the possible requirements for a software-intensive
system or software product, and to be mutually exclusive. In other words, any
software system requirement must be either a FUR or a NFR. But with hindsight
this is not true. In fact, making this hard distinction between FUR and NFR turns
out to be highly misleading and has added to our confusions.

The problem arises with classifying quality requirements as non-functional
according to the definitions of both FUR and of NFR. But to take a simple example,
a quality requirement for security may be implemented either in software (hence
arise from a FUR), or in hardware (hence arise from a NFR), or by a mixture of both
software and hardware.

More importantly, many quality requirements may initially be expressed as NFR,
but are likely implemented entirely in software and thus contribute to the size of the
software. Examples are requirements for auditability, privacy, portability,
maintainability, usability, etc. Such requirements could therefore equally be first
expressed in statements of NFR or in statements of FUR.

Any requirement, whether initially expressed as a FUR or as a NFR, that is
allocated to software must add to its size, which will show up in the
software’s size when measured by e.g. counts of SLOC or of bytes. However,
FSM methods generally cannot account for every type of software
requirement in their measures of functional size – requirements for
mathematical algorithms being an obvious example. This inability of FSM
methods to account for all types of requirements can lead to difficulties in
their use as the primary input for estimating effort.

An example of the current confusion surrounding measurement of NFR exists in
the form of the SNAP method [14]. The impact on software size and/or project effort
of individual NFR can of course be measured or estimated. But the SNAP method
aims to define how to measure a ‘non-functional size’ for software which in turn, it
claims7, enables one to measure a standard collective size of the NFR for a
software item. (The method assumes that NFR are defined as above by
COSMIC/IFPUG but are limited to NFR for software). However, in my opinion,
regardless of the validity of this claim, it was unwise to attempt to define a measure
of the collective size of any set of NFR for a software item for several reasons.

7

The SNAP (‘Software Non-Functional Assessment Process’) method was apparently designed to measure a

size of various types of requirements for software features that could not be accounted for by the IFPUG
Function Point method. The size resulting from a SNAP measurement was called the ‘Non-Functional Size’ to
distinguish it from the Functional Size. This decision was unwise: classifying a software feature as ‘non-
functional’ simply because it cannot be measured by a FSM method is confusing. Next, ‘requirements for the
non-functional size of software’ were taken to mean the same as ‘the non-functional requirements for software’,
an entirely different concept. The claim that the SNAP method measures a size of the ‘NFR for software’ is
therefore disputed [15].

 It is extremely difficult, if not impossible, to envisage a meaningful collective
size of such a wide variety of types of NFR for software, which range across

Software Measurement News 28(2023)2

News Papers 42

requirements for software quality, the environment it must serve (e.g. including the
size of the user base), and the technology to be used for its development (e.g.
including the programming language to be used, re-use of existing code, etc.)

 Not only is there a wide variety of types of NFR for software, but also
numbers of possible NFR. For example, the COSMIC/IFPUG Glossary lists
around 30 terms for different quality requirements for software, some of
which overlap in meaning. This is no basis for a standard size measurement.

 The method defines 14 different BFCs, each of which can have 3 sizes.
Applying expert-judgement to determine the 42 effort-related industry-
standard weights for the various contributions is a challenge.

 As we have seen, quality requirements may be viewed as NFR in some
cases and by others as FUR. (Indeed, at the time of writing, the
IEEE/ISO/IEC Committee Draft version of the SNAP standard [14]
acknowledges that ‘The boundary between functional requirements and
NFR does not have a universally-agreed definition’ and ‘This document
covers a subset of non-functional requirements’ - but does not state which
sub-set. Again, this is no basis for a standard size measurement.

 It must be a serious challenge to design a coherent size/effort eco-system
when having to incorporate both a functional size and a NFR size on
different unrelated scales, to estimate the allocation of effort between work
on the two sizes, then to work out how the functional and NFR sizes relate to
existing size- and effort-drivers, and to existing benchmark data (probably
based only on functional size).

Conclusion.
We must recognise that any requirement for a software system project,

however initially expressed, must ultimately be allocated

 either to software functionality, and thus contribute to its size (though
only counts of SLOC or bytes may be able to detect every size addition),

 or to project effort or other project costs. Such requirements can arise
from non-software-related items such as for hardware, or for other
activities which may consume project effort such as hardware installation
or training, or the requirement must be a ‘true’ project effort-driver, i.e. a
constraint on the project.

In this context, the current ISO/IEC definition of FUR and the COSMIC/IFPUG
definition of NFR create confusion because they classify quality requirements as
non-functional, but we know that quality requirements can impact software and/or
non-software. To resolve this issue and hence the confusion about the distinction
between FUR and NFR requires changes to their respective definitions.

Software Measurement News 28(2023)2

43 News Papers

Recommendation.
Remove clause i) in the NOTE to the definition of FUR in the ISO/IEC

14143/1 standard concerning ‘quality constraints’ and remove the
corresponding Note in the ‘COSMIC/IFPUG Glossary of terms for NFR (etc)’
concerning ‘the software system or software quality constraints’.

In both of these documents, replace the deleted clause by: ‘NOTE. Quality
constraints or requirements may be expressed as either functional or as non-
functional requirements.’

A more radical, alternative option is to re-think the concept of NFR with a new
definition that better reflects the name ‘NFR’:

Alternative Recommendation.
‘Any requirement for a software-intensive system or for a software product

that does not add to software functionality.

NOTE: Non-functional requirements concern organizational constraints (for
example, numbers of implementations), the processes and technology used
to develop and maintain the software system or software product, and the
technical environment in which it is executed.’

In practice a consequence of the existing definition is that whereas quality
requirements for, say, ‘system availability’ or for ‘system performance’ will be
interpreted initially as a NFR, in the future, with either of the proposed options for
the new definitions, it will not be clear initially whether such a requirement implies a
FUR or is an NFR, or a mixture. If that forces earlier consideration of this question,
that may be an advantage of the new definition.

Accepting the above Conclusion and the second Alternative Recommendation
should mean that the model of Figure 2 can be rationalized making it easier to
develop a Coherent Size/Effort Ecosystem, as shown in Figure 3.

Figure 3. A simplified Coherent Size/Effort Ecosystem, assuming the recommended
alternative revised definition of NFR

Software Measurement News 28(2023)2

News Papers 44

6. Overall Conclusions

The community of professionals interested in software size measurement and
project effort estimation methods is relatively small and fragmented. This has
perhaps led to the current inconsistent set of concepts and definitions. In turn, this
has resulted in practitioners having to work with incoherent size/effort ecosystems,
often producing poor effort estimates. The software industry’s poor reputation for
delivering systems to estimated time and budget seems likely to be due in part to
the weaknesses of its software sizing and project effort estimation methods and
products. These weaknesses then feed back into their limited use. A vicious spiral.

The various methods for measuring a size of a software item discussed in this
paper all produce one-dimensional size measures, but they have different
meanings with consequences for how they can be used to build coherent size/effort
ecosystems.

 Sizing methods, the weights of whose BFCs were calibrated on project
effort, with units expressed as ‘Unadjusted’ Points (e.g. early UFP sizes,
Unadjusted Use Case Points, and the like) are really measures of the
amount of work required to develop the functionality of a software item,
relative to an arbitrary standard amount of work.

 The early UFP sizes qualify as measures of a ‘functional size’ of the FUR,
according to the ISO/IEC 14143/1 definition. They can also be thought of as
measures of ‘functional length’.

 The COSMIC FP method produces functional sizes that are truly
independent of effort (but that have been shown to correlate well with effort
for several types of software at different levels of granularity). CFP sizes,
with a single ‘data movement’ as a unit of measurement can also be thought
of as a measure of ‘functional length’.

 A count of the number of bytes of memory that a program occupies when it
is executing is the software size measure that comes closest to our notion of
a physical length.

 One line of SLOC can be thought of as a measure of ‘source code length’
but SLOC counts suffer weaknesses as a standard due to varying counting
rules, dependence on programming language, programmer skill, and other
factors.

As far as measurement practices are concerned, two priorities stand out for
implementation from this discussion.

For the software sizing and estimation community generally, the greatest needs
are to converge on a common understanding of the meaning of and relationships
between FUR and NFR, and to define coherent size/effort eco-systems. This
should help improve understanding and acceptance of the subject of software size
measurement and improvement of effort estimation methods.

Software Measurement News 28(2023)2

45 News Papers

If the Agile community is serious about measuring its productivity and
demonstrating improvement, then it needs to adopt an objective, standard measure
of its work-output and to build a coherent ‘top-down’ size/effort ecosystem
reconciled with a ‘bottom-up’ ecosystem for estimating effort at all levels of
granularity, using the same FSM method. The COSMIC FP method can be used ‘as
is’ for this purpose; other FSM methods can also be applied for use in Agile
projects, albeit with adaptations of, or additions to, their standard rules.

More generally, software development practitioners would benefit from a)
developing a better understanding of what are NFR, and b) giving greater priority to
eliciting NFR and thinking about how they will be allocated (to software or to non-
software) early in a project before starting design and coding, especially for NFR
that apply across a whole system.

References

[1] Albrecht, A., ‘Measuring Application Development Productivity’, IBM Application Development
Symposium, Monterey, CA, October 14-19, 1979

[2] The ‘IFPUG Counting Practices Manual’. The International Function Point User Group. See
www.ifpug.org. (Version 4.3 is published as ISO/IEC 20926.)

[3] The ‘NESMA FPA Counting Practices Manual’. See https://nesma.org. (The 2008 version is
published as ISO/IEC 24570.)

[4] The ‘MkII FPA Counting Practices Manual’. (Version 1.3.1 of the MkII FPA method is published as
ISO/IEC 20968.)

[5] The ‘COSMIC Measurement Manual’, See www.cosmic-sizing.org. (The 2011 version is published
as ISO/IEC 19761.)

[6] See for example: What Are Story Points and Why Do We Use Them?
(mountaingoatsoftware.com)

[7] The Entity – Attribute – Measure Taxonomy, Buglione L., Ebert C., Estimation, Encyclopaedia of.
Software Engineering, Taylor & Francis Publisher, June. 2012, ISBN: 978-1-4200-5977-9)

[8] Boehm, B., (1981). Software Engineering Economics. Prentice-Hall. ISBN 0-13-822122-7.
[9] Santillo, L., ‘Error Propagation in Software Measurement and Estimation’, 16th International

Workshop on Software Measurement, Potsdam, Germany, 2006
[10] Frederick Taylor, ‘The Principles of Scientific Management’, 1911. Re-published by W.W. Norton

& Company, 1967, ISBN 0-393-00398-1.
[11] ISO/IEC 14143-1:2019 Information technology — Software measurement — Functional size

measurement — Part 1: Definition of concepts
[12] ISO/IEC/IEEE 24765:2010 Systems and software engineering—Vocabulary.
[13] ‘Glossary of terms for Non-Functional Requirements and Project Requirements used in software

project performance measurement, benchmarking and estimating’ version 1.0, September
2015. See www.cosmic-sizing.org or www.ifpug.org .

[14] ‘Software engineering — Standard for software nonfunctional size measurements’, ISO/IEC
32430, www.iso.org

[15] Abran, A., ‘IEEE 2430 Non-Functional Sizing Measurements: A Numerical Placebo’, IEEE
Software , 2021 | Volume: 38, Issue: 3.

Software Measurement News 28(2023)2

News Papers 46

Towards a Fast Cost Estimation Supported
by Large Language Models

Sandro Hartenstein1,2, Sidney Leroy Johnson1, Andreas Schmietendorf1,2

sandro.hartenstein@hwr-berlin.de, s_johnson20@stud.hwr-berlin.de, andreas.schmietendorf@hwr-berlin.de

1
 Berlin School of Economics and Law, Alt-Friedrichsfelde 60, 10315 Berlin, Germany

2 Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

Abstract
This elaboration describes the conceptual identification of the capabilities of
large language models for cost estimation. For this purpose, the possibilities of
the models for size estimation according to COSMIC Function Point are
explained and examined prototypically. A comparison of a manual
measurement with a trained and untrained model shows the current state of AI
capabilities in a concrete example. Finally, the next steps within the study are
briefly discussed.

Keywords

Artificial intelligence, size measurement, function points, cost estimation

1. Introduction

Embrace the power of Artificial Intelligence (AI) in software development cost
estimation and revolutionize the way you plan your projects. Traditional cost
estimation methods often rely on manual effort and subjective judgment, leading to
inconsistencies, inaccuracies, and delays. By integrating AI into your estimation
process, you unlock a world of possibilities.

AI is able to bring objectivity, efficiency, and predictive capabilities to the table.
Through advanced algorithms and machine learning techniques, AI analyzes
historical data, project parameters, and industry trends to generate accurate cost
estimates. It eliminates human biases and enhances decision-making by
considering a multitude of factors simultaneously.

With AI, you can benefit from faster estimation cycles, saving valuable time and
resources. Its ability to process vast amounts of data in seconds means you can
generate reliable cost estimates in a fraction of the time it would take using
traditional methods. This efficiency allows you to allocate your resources more
effectively, optimize project planning, and make informed decisions swiftly.

Moreover, AI-powered cost estimation provides a proactive approach. By
leveraging machine-learning algorithms, AI continuously learns and adapts to new
data, refining its estimation accuracy over time. It identifies patterns, recognizes

Software Measurement News 28(2023)2

mailto:andreas.schmietendorf@hwr-berlin.de
mailto:s_johnson20@stud.hwr-berlin.de
mailto:sandro.hartenstein@hwr-berlin.de

47 News Papers

project risks, and provides valuable insights that help you mitigate challenges
before they arise. This proactive approach empowers you to make strategic
adjustments, improve cost control, and increase the likelihood of project success.

The aim is to determine the possibilities of AI for automating and optimizing the
COSMIC FP method. For this purpose, we have formulated the following research
questions, which are to be answered in the proposal:

1. How can the cost estimation process supported by AI?

2. Can the software size be accurately determined with AI and COSMIC FP?

2. State of the Art

This section briefly explains the most important terms in the context of the
subject area and presents current interesting studies and approaches.

2.1. Important terms

AI, short for Artificial Intelligence, refers to the simulation of human intelligence in
machines that are programmed to think, learn, and perform tasks that typically
require human intelligence. It is a branch of computer science that focuses on
developing intelligent systems capable of replicating or emulating human cognitive
abilities.

AI encompasses a wide range of techniques, algorithms, and approaches,
including machine learning, deep learning, natural language processing, computer
vision, expert systems, and more. These techniques enable AI systems to analyze
and interpret complex data, recognize patterns, make decisions, solve problems,
and even engage in natural language conversations.

Machine learning is a core component of AI and involves training models with
large amounts of data to recognize patterns and make predictions or decisions.
Deep learning, a subset of machine learning, utilizes artificial neural networks
inspired by the structure of the human brain to process and learn from complex
data.

AI systems can be categorized into two types: narrow AI and general AI. Narrow
AI refers to systems designed to perform specific tasks within a defined domain.
For example, image recognition, voice assistants, and recommendation systems
are all examples of narrow AI applications. On the other hand, general AI aims to
possess human-like intelligence across a broad range of tasks and exhibit
characteristics such as reasoning, learning, and adaptability.

AI has widespread applications across various industries and domains. It is used
in healthcare for diagnosing diseases and assisting in treatment plans, in finance
for fraud detection and algorithmic trading, in transportation for autonomous
vehicles, in customer service for chatbots, in manufacturing for process
optimization, and in many other fields.

Software Measurement News 28(2023)2

News Papers 48

The field of AI continues to advance rapidly, with ongoing research and
development exploring new techniques, algorithms, and applications. As AI
systems become more sophisticated, they hold the potential to revolutionize
industries, improve efficiency, and solve complex problems, making a significant
impact on society as a whole.

Software Requirements are a description of the features and functionalities that
a software system must have. They specify what the software should do and how it
should perform.

There are several types of software requirements, including functional
requirements, non-functional requirements, and domain requirements. Functional
requirements describe the specific behaviors or functions of the software system.
They specify what the system should do. Non-functional requirements describe the
qualities or characteristics of the system. They specify how well the system should
do what it does. Domain requirements are specific to the domain or industry in
which the software will be used. They may include legal or regulatory requirements,
industry standards, or other constraints that must be met by the software.

COSMIC FP (Function Point) is a software development methodology that
measures the size of a system in terms of its functional requirements. It provides a
standardized way to measure and compare the size of different systems,
regardless of their technology or programming language. COSMIC FP is based on
the concept of function points, which are used to quantify the functionality of a
software system. The methodology involves analyzing the system's functional
requirements and mapping them to specific function points, such as user inputs,
outputs, and inquiries. By using this approach, organizations can better understand
the size and complexity of their systems, identify areas for improvement, and make
more informed decisions about software development projects.

Figure 1 Measurement process of COSMIC FP

The measurement is carried out in three phases, which are shown in Figure 1
Measurement process of COSMIC FP . In the first phase, the functional user
requirements, short FUR, are formed from the software context, requirements and
measurement objectives. This is visualized in detail in . In the second phase, these
are mapped to the Generic Software Model, which is shown in , so that the data
movements become visible. In the third phase, the CFP of the individual data
movements of the FUR are added together and result in the project size as CFP.

Software Measurement News 28(2023)2

49 News Papers

Figure 2 Functional User Requirements Figure 3 Generic Software Model

2.2.Related Studies

The requirement to determine the cost of software projects quickly and precisely
has existed for a long time, but for an accurate prediction many parameters have to
be taken into account. With AI Supported Software Engineering it is now also
possible to automate software design. Three current studies serve as a technical
preselection of the approach:

• This study from 2020 uses ensemble learning bagging with base learner

Linear regression, SMOReg, MLP, random forest, REPTree, and M5Rule to

estimate the cost of software development. The dataset is based on 499

projects. The results show that the Mean Magnitude Relative error of

Bagging M5 rule with Genetic Algorithm as Feature Selection is 10%, which

makes it better than other algorithms.

• This study from 2023 suggests a learning-based cost estimation model that

leverages relational databases to improve accuracy. The proposed approach

estimates project cost based on the effort required to complete software

development, which is a key driver of the project cost. The proposed model

is designed to address the challenges posed by the variability in open-

source development, including variable team sizes, working hours and

expertise. The proposed model is evaluated against 100 open source

software repositories and shows its effectiveness in accurately estimating

development costs.

• This study from 2021 involves research about software effort estimation

using machine learning algorithms. The objective of this research is to use

several algorithms of machine learning to estimate the effort of software

project development. The best machine learning model is chosen to

compare with the Constructive Cost Model (COCOMO) which is one of the

well-established software project estimation models but has some

weaknesses, but still has some weaknesses, including a lack of accuracy

according to software developers)

Software Measurement News 28(2023)2

News Papers 50

3. Concept

Our approach is to estimate software size based on requirements catalogues
and optimized AI models. The goal is the targeted support of Cosmic FP Analysis
by AI for the identification of data movement types. Thus, phase 2 of the
measurement process, shown in Figure 1 Measurement process of COSMIC FP ,
is to be automated. This information will then be used to carry out phase 3. Figure
4 Concept of a fast cost Estimation with AI and COSMIC FP illustrates the
approach schematically.

Figure 4 Concept of a fast cost Estimation with AI and COSMIC FP

With the size of the software product as CFP, established conversion factors for
general types of software can be used to determine the anticipated costs. This
conversion can be fine-tuned later using the software type and context. The
conversion into person-months, or PM for short, is:

1 CFP ≈ 0,07 PM

3.1.Capabilities of AI

In addition to looking at the current literature on the subject, we conducted our
own investigations and tests with potential AI technologies. The focus was on the
applicability and quality of the results for the concept.

A large language model (LLM) is a language model consisting of a neural
network with many parameters (typically billions of weights or more), trained on
large quantities of unlabeled text using self-supervised learning or semi-supervised
learning. LLMs emerged around 2018 and perform well at a wide variety of tasks.
They are deep learning neural networks, a subset of artificial intelligence and
machine learning. Large language models are first pre-trained so that they learn
basic language tasks and functions. Pretraining is the step that requires massive
computational power and cutting-edge hardware. LLMs can recognize, summarize,
translate, predict and generate text and other content based on knowledge gained
from massive datasets3. They are among the most successful applications of
transformer models.

Software Measurement News 28(2023)2

51 News Papers

In our consideration of LLMs, specifically ChatGPT, in the context of software
development, we have potential in terms of generating software architectures,
shown at the appendix 6.1. We found shortcomings in quality and accuracy, but the
LLM was not trained for this focus. For this reason, LLMs trained specifically for the
task could greatly improve cost estimation.

Semantic analysis is the process of using natural language processing (NLP),
text analysis, and computational linguistics to identify and extract subjective
information from source materials. It is used to determine the emotional tone
behind a series of words, used to gain an understanding of the attitudes, opinions,
and emotions expressed within an online mention. Some popular use cases of
sentiment analysis include social media monitoring, customer support
management, analyzing customer feedback, brand monitoring and reputation
management

In our consideration of sematic analysis of software system requirements in the
context of software engineering, we have identified potential. Furthermore, it was
found that the quality of the results is very much dependent on the training data
set.

3.2.Experiment

In order to determine the suitability of AI in measurement, a practical comparison
was chosen as the method. This provides an initial picture of the performance and
is manageable in terms of effort. Figure 5 Process for determining the suitability of
LLM for sizing software projects. shows the workflow of the approach. The stages
are as follows:

1. Context + Requirements

2. Legacy Measurement

3. AI Measurement

4. LLM Training

5. AI Measurement (Trained LLM)

6. Comparison

The first step is to define the context, i.e. the type and goal of the software, and
to determine detailed requirements. This was done in a concrete experiment with
the support of Chatgpt. The key results of this step are listed in Appendix 6.2.

In the second step, the measurement is carried out manually to obtain reference
values. The results are listed in Appendix 6.3.

In the third step, the requirements are mapped to COSMIC FP using LLM and
measured. The outputs are listed in Appendix 6.4.

The fourth step is the training of the LLM. Here, the LLM is prepared with a few
partial results of the manual CFP mapping using promting. This is documented in
Appendix 6.5.

Software Measurement News 28(2023)2

News Papers 52

In the fifth step, the requirements are mapped to COSMIC FP using the trained
LLM and measured. These results are also shown in Appendix 6.6.

Figure 5 Process for determining the suitability of LLM for sizing software projects.

The criterion is the accuracy and the rough overall effort of the measurement.

3.3.Results

Table 1 Comparison of the measurements compares the results of the individual
measurements in order to identify deviations of individual mapping points. An
important finding is the close examination of the issue of the LLM. In the
experiment, the first run classified and scored according to IFPUG FP, although
COSMIC FP was requested. Furthermore, the LLM had to be made aware of
missing results, e.g. writes, and the aggregation of the individual partial results was
difficult. This could be addressed by using the intermediate results.

Table 1 Comparison of the measurements

Software Measurement News 28(2023)2

53 News Papers

The overall result shows a good suitability of LLMs. This is especially relevant
against the background of the high effort required for manual mapping and
measurement.

4. Conclusion

The results of the experiment with show clear potential for the use of AI in the
sizing and cost estimation of software development projects, especially in the
requirements phase. Which is at the beginning of the software development cycle
and therefore no software artefacts are available yet. The results also show that the
quality depends very much on the intensity of the training.

The findings in relation to the research questions are:

1. How can the cost estimation process be supported by AI?

a. The cost estimation process can be greatly accelerated by using

large scale models. Specifically, activities related to function user

requirements, CFP mapping and CFP measurement can be

automated.

b. Communication with LLM is challenging and not always goal-

oriented, as methods sometimes have to be demanded

emphatically.

3. Can the software size be accurately determined with AI and COSMIC FP?

c. The accuracy of the size measurement depends very much on the

input parameters; if these are pre-trained with the help of promting,

the result is much more accurate.

d. Training the LLMs via promting is also non-trivial, as, for example,

inaccurate examples of the LLM are exacerbated in their

subsequent executions.

For further research on this topic, we are focusing on training (promting), especially
on the development of cross-project datasets. Furthermore, a permanent validation
of the input parameters with the AI outputs is helpful to address misunderstandings
and false statements at an early stage.

Software Measurement News 28(2023)2

News Papers 54

5. References

Software Measurement News 28(2023)2

55 News Papers

6. Appendix

6.1 Generic Software Model by ChatGPT

Generated under the use of ChatGPT (https://chat.openai.com/)

Software Measurement News 28(2023)2

https://chat.openai.com/

News Papers 56

6.2 Requirements by ChatGPT

The entire request history can be found under:

https://cloud.hwr-berlin.de/s/bmjWnHcBr3Fxsxb password: HYConMjzAj

Shorten results:

Question to ChatGPT:

Create a concrete software model of a CRM system for 1000 users and the main

requirement of integrity, confidentiality and availability. It should include the typical

requirements of a CRM system. Please provide all Functional User Requirements.

Answer from ChatGPT:

Sure! Here are some functional user requirements for a CRM system designed to

cater to 1000 users with a focus on integrity, confidentiality, and availability:

1. User Authentication and Authorization:

o The system should support secure user authentication and enforce

strict access controls based on user roles and permissions.

o Users should have unique credentials to access the system, and

passwords should be securely stored using industry-standard

encryption.

2. Contact Management:

o Users should be able to add, view, edit, and delete contacts.

o Contacts should include essential information such as name, email,

phone number, address, and any additional custom fields.

o The system should provide search and filtering capabilities to easily

find and retrieve specific contacts.

3. Lead and Opportunity Management:

o Users should be able to create and track leads and opportunities.

o Each lead/opportunity should have relevant information such as

source, status, value, expected closing date, and associated

contacts.

o Users should be able to assign leads/opportunities to specific users

or teams for follow-up and collaboration.

o The system should allow progress tracking, including updating the

stage of each lead/opportunity.

4. Sales and Pipeline Management:

o The system should provide functionality for managing the sales

pipeline.

o Users should be able to track the progress of deals, view sales

targets, and analyze sales performance.

Software Measurement News 28(2023)2

https://cloud.hwr-berlin.de/s/bmjWnHcBr3Fxsxb

57 News Papers

o The system should generate reports and visualizations to provide

insights into the sales process and identify potential bottlenecks.

5. Customer Interaction Tracking:

o Users should be able to log and track all interactions with customers,

including meetings, calls, emails, and notes.

o The system should provide a centralized history of customer

interactions for easy reference and follow-up.

6. Task and Activity Management:

o Users should be able to create and manage tasks and activities

related to contacts, leads, opportunities, and other CRM entities.

o The system should support assigning tasks to users, setting due

dates, and sending notifications/reminders.

7. Communication Integration:

o The system should integrate with email clients to facilitate seamless

email communication within the CRM.

o Users should be able to send and receive emails directly from the

CRM system and have them automatically linked to relevant contacts

or leads.

8. Reporting and Analytics:

o The system should offer comprehensive reporting capabilities,

allowing users to generate predefined and custom reports.

o Reports should cover various aspects, including sales performance,

lead conversion rates, customer satisfaction, and team productivity.

o The system should provide interactive dashboards and visualizations

to analyze data effectively.

9. Integration with Other Systems:

o The CRM system should support integration with other business

applications such as marketing automation, customer support, or ERP

systems.

o Integration should enable seamless data sharing and synchronization

between different systems.

10.Mobile Accessibility:

o The CRM system should have a mobile-friendly interface or a

dedicated mobile app to allow users to access and manage CRM

data on the go.

Remember that these requirements are just a starting point, and you may need to

further refine and tailor them based on the specific needs and preferences of your

organization.

Software Measurement News 28(2023)2

News Papers 58

6.3 Legacy Measurement

Table 2 COSMIC FP Measurement for CR

Software Measurement News 28(2023)2

59 News Papers

6.4. FUR Mapping by ChatGPT

The entire request history can be found under:

https://cloud.hwr-berlin.de/s/bmjWnHcBr3Fxsxb password: HYConMjzAj

Shorten results:

Question to ChatGPT:

Please provide all Functional User Requirmentns and data movements (Entries,

Exits, Reads, Writes) for a COSMIC FP analysis.

Answer form ChatGPT:

To perform a COSMIC (Counting Software Intensive Projects Using IFPUG

Function Points) FP analysis, we need to define the functional user requirements

and identify the data movements (entries, exits, reads, writes) associated with each

requirement. Here are the functional user requirements and their corresponding

data movements:

 User Authentication and Authorization:
 Data Movements:
 Entries: User credentials (username, password)
 Reads: User roles and permissions
 Writes: N/A
 Exits: Access granted or denied

 Contact Management:
 Data Movements:
 Entries: New contact details (name, email, phone number, address, etc.)
 Reads: Contact information for viewing or searching
 Writes: Updated contact information
 Exits: Confirmation of contact creation, retrieval, or update

 Lead and Opportunity Management:
 Data Movements:
 Entries: New lead/opportunity details (source, status, value, etc.)
 Reads: Lead/opportunity information for viewing or searching
 Writes: Updated lead/opportunity information
 Exits: Confirmation of lead/opportunity creation, retrieval, or update

 Sales and Pipeline Management:
 Data Movements:
 Entries: Sales targets, progress updates
 Reads: Sales performance data, pipeline status
 Writes: N/A
 Exits: Sales reports, pipeline analysis

Software Measurement News 28(2023)2

https://cloud.hwr-berlin.de/s/bmjWnHcBr3Fxsxb

News Papers 60

 Customer Interaction Tracking:
 Data Movements:
 Entries: Logged interactions (meetings, calls, emails, notes)
 Reads: Interaction history for specific customers
 Writes: N/A
 Exits: Interaction details, summary reports

 Task and Activity Management:
 Data Movements:
 Entries: New tasks or activities (description, due date, assigned user)
 Reads: Task/activity details for viewing or searching
 Writes: Updated task/activity information
 Exits: Confirmation of task/activity creation, retrieval, or update

 Communication Integration:
 Data Movements:
 Entries: Email content, recipients
 Reads: Received emails, linked contacts/leads
 Writes: Sent emails, linked contacts/leads
 Exits: Email sending/receiving status, linked email history

 Reporting and Analytics:
 Data Movements:
 Entries: Report parameters (filters, time periods, data sources)
 Reads: Relevant data for generating reports
 Writes: N/A
 Exits: Generated reports, visualizations

 Integration with Other Systems:
 Data Movements:
 Entries: Data to be shared or synchronized with other systems
 Reads: Data from other integrated systems
 Writes: Data updates to other integrated systems
 Exits: Synchronization confirmation, shared data status

 Mobile Accessibility:
 Data Movements:
 Entries: User login credentials, mobile device information
 Reads: CRM data for viewing or manipulation
 Writes: Updated CRM data
 Exits: Confirmation of data access or updates via mobile devices

These are general data movements associated with each functional user
requirement. It's important to note that the actual data movements may vary
depending on the specific implementation and design of the CRM system.

Software Measurement News 28(2023)2

61 News Papers

6.5. CFP Measurement by ChatGPT

Entire request history: https://cloud.hwr-berlin.de/s/YraAoBnECefeayR password:
pH65oAgyrW

Shorten results:

To estimate the Cosmic Function Points (FP) for the given CRM system
functionalities, we will consider the data movements involved in each functionality.
Cosmic FP is a measure of the functional size of a software system, considering
the inputs, outputs, inquiries, files, and external interfaces. Each data movement
category is assigned a weight, and we calculate the total unadjusted function points
(UFP) by summing up the weights of the data movements.

Here is the estimation for each functionality:

1. User Authentication and Authorization:
 Data Movements:
 - Entries: 2 (user credentials)
 - Reads: 2 (user roles and permissions)
 - Writes: 0
 - Exits: 1 (access granted or denied)

 Total UFP for User Authentication and Authorization: 5

2. Contact Management:
 Data Movements:
 - Entries: 1 (new contact details)
 - Reads: 2 (contact information)
 - Writes: 1 (updated contact information)
 - Exits: 1 (confirmation of contact creation, retrieval, or update)

 Total UFP for Contact Management: 5

3. Lead and Opportunity Management:
 Data Movements:
 - Entries: 1 (new lead/opportunity details)
 - Reads: 2 (lead/opportunity information)
 - Writes: 1 (updated lead/opportunity information)
 - Exits: 1 (confirmation of lead/opportunity creation, retrieval, or update)

 Total UFP for Lead and Opportunity Management: 5

4. Sales and Pipeline Management:
 Data Movements:
 - Entries: 2 (sales targets, progress updates)
 - Reads: 2 (sales performance data, pipeline status)
 - Writes: 0
 - Exits: 2 (sales reports, pipeline analysis)

Software Measurement News 28(2023)2

https://cloud.hwr-berlin.de/s/YraAoBnECefeayR

News Papers 62

 Total UFP for Sales and Pipeline Management: 6

5. Customer Interaction Tracking:
 Data Movements:
 - Entries: 1 (logged interactions)
 - Reads: 2 (interaction history)
 - Writes: 0
 - Exits: 2 (interaction details, summary reports)

 Total UFP for Customer Interaction Tracking: 5

6. Task and Activity Management:
 Data Movements:
 - Entries: 1 (new tasks or activities)
 - Reads: 2 (task/activity details)
 - Writes: 1 (updated task/activity information)
 - Exits: 1 (confirmation of task/activity creation, retrieval, or update)

 Total UFP for Task and Activity Management: 5

7. Communication Integration:
 Data Movements:
 - Entries: 2 (email content, recipients)
 - Reads: 2 (received emails, linked contacts/leads)
 - Writes: 1 (sent emails, linked contacts/leads)
 - Exits: 2 (email sending/receiving status, linked email history)

 Total UFP for Communication Integration: 7

8. Reporting and Analytics:
 Data Movements:
 - Entries: 1 (report parameters)
 - Reads: 2 (relevant data for generating reports)
 - Writes: 0
 - Exits: 2 (generated reports, visualizations)

 Total UFP for Reporting and Analytics: 5

9. Integration with Other Systems:
 Data Movements:
 - Entries: 1 (data to be shared or synchronized with other systems)
 - Reads: 2 (data from other integrated systems)
 - Writes: 1 (data updates to other integrated systems)
 - Exits: 2 (synchronization confirmation, shared data status)

 Total UFP for Integration with Other Systems: 6

Software Measurement News 28(2023)2

63 News Papers

10. Mobile Accessibility:
 Data Movements:
 - Entries: 2 (user login credentials, mobile device information)
 - Reads: 2 (CRM data)
 - Writes: 1 (updated CRM data)
 - Exits: 1 (confirmation of data access or updates via mobile devices)

 Total UFP for Mobile Accessibility: 6

Now, to calculate the total Cosmic FP, we sum up the UFP for each functionality:

Total Cosmic FP = 5 + 5 + 5 + 6 + 5 + 5 + 7 + 5 + 6 + 6 = 55

Therefore, the estimated Cosmic Function Points (FP) for the given CRM system is
55.

Software Measurement News 28(2023)2

News Papers 64

6.6. FUR Mapping and CFP Measurement by trained ChatGPT

Entire request history: https://cloud.hwr-berlin.de/s/5N7jQzf2oD8MZYw
password: rNYwtYWQoc

Grouped Results:

1. User Authentication and Authorization:
Requirement 1: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Requirement 2: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Sum of Group 1: 6 CFP

2. Contact Management:
Requirement 1: Entries: 1 Exits: 1 Reads: 1 Writes: 1 Sum: 4 CFP
Requirement 2: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Requirement 3: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Sum of Group 2: 10 CFP

3. Lead and Opportunity Management:
Requirement 1: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Requirement 2: Entries: 1 Exits: 1 Reads: 1 Writes: 1 Sum: 4 CFP
Requirement 3: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Requirement 4: Entries: 0 Exits: 0 Reads: 1 Writes: 1 Sum: 2 CFP
Sum of Group 3: 12 CFP

4. Sales and Pipeline Management:
Requirement 1: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Requirement 2: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Requirement 3: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Sum of Group 4: 9 CFP

5. Customer Interaction Tracking:
Requirement 1: Entries: 1 Exits: 1 Reads: 1 Writes: 1 Sum: 4 CFP
Requirement 2: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Sum of Group 5: 7 CFP

6. Task and Activity Management:
Requirement 1: Entries: 1 Exits: 1 Reads: 1 Writes: 1 Sum: 4 CFP
Requirement 2: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Sum of Group 6: 7 CFP

7. Communication Integration:
Requirement 1: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Requirement 2: Entries: 1 Exits: 1 Reads: 1 Writes: 1 Sum: 4 CFP
Sum of Group 7: 7 CFP

8. Reporting and Analytics:
Requirement 1: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Requirement 2: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Requirement 3: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Sum of Group 8: 9 CFP

9. Integration with Other Systems:
Requirement 1: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Requirement 2: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Sum of Group 9: 6 CFP

Software Measurement News 28(2023)2

https://cloud.hwr-berlin.de/s/5N7jQzf2oD8MZYw

65 News Papers

10. Mobile Accessibility:
Requirement 1: Entries: 1 Exits: 1 Reads: 1 Writes: 0 Sum: 3 CFP
Sum of Group 10: 3 CFP

Sum of all CFP: 78 CFP

Software Measurement News 28(2023)2

New Books on Software Measurement 66

Gintautas Dzemyda et al.

Data Science in Applications

Springer Publ. 2023

The author provides an overview of a wide range of
relevant applications and reveals how to solve
them. Current applications in finance, technology,
education, medicine and other important and
relevant fields are data-driven with an enormous
volumes of data. Specific methods need to be
developed or adapted to solve a particular problem.
It illustrates data science in applications. The set of
examples in this book helps to solve essential
problems for data management. This book can be
used as material for lectures at universities.

Loon Ching Tang, Hongzhi Wang:

Big Data Management and
Analysis for Cyber Physical

Systems

Springer Publ. 2022

This book consists of selected and peer-reviewed
papers presented at 2022 4th International
Conference on Big Data Engineering and
Technology (BDET). The BDET conference series
aims to provide the big data engineering and
technology to inform the international colleagues
in big data, algorithm and applications, emerging
standards for big data, big data infrastructure,
MapReduce and cloud computing, big data
visualization, big data semantics, scientific
discovery and intelligence, especially of the cyber-
physical systems of interest.

Sanjoy Das:

Cloud Computing Enabled Big-
Data Analytics in Wireless Ad-hoc

Networks (Wireless
Communications and Networking

Technologies)

CRC Press, 2022

The reference text covers big data concept in cloud
based Wireless Ad hoc network and machine
learning approaches in a single volume. It will be an
ideal reference text for graduate students and
academic researchers in the fields of electrical
engineering, electronics and communication
engineering, computer science and engineering.

Software Measurement News 28(2023)2

https://www.amazon.de/Sanjoy-Das/e/B09SYHQBKL/ref=dp_byline_cont_book_1
https://www.jpc.de/s/gintautas+dzemyda

New Books on Software Measurement 67

D. Wang, A.-L. Barabási:

The Science of Science
Big Data, Metrics, and Impact

Cambridge University Press, 2021

„Big data analysis and quantitative tools help
identify success and failure within the discipline.
Areas in the 'science of science' that are ripe for
further research are explored, and the implications
this could have for future technological and
innovative work are examined. With anecdotes
and detailed, easy-to-follow explanations of the
research, this book is accessible to all scientists,
policy makers, and administrators with an interest
in the wider scientific enterprise.“

C. Cicero et al.:

Software Architecture Metrics

O‘Reilly Publ, May 2022

„This isn't a book about theory. It's more about
practice and implementation, about what has
already been tried and worked. Detecting software
architectural issues early is crucial for the success
of your software: it helps mitigate the risk of poor
performance and lowers the cost of repairing
those issues. Written by practitioners for software
architects and software developers eager to
explore successful case studies, this guide will
help you learn more about decision and
measurement effectiveness.“

L. Amorosi, P. Dell‘Olmo, I. Lari:

Optimization in Artificial
Intelligence and Data Science

Springer Publ. Berlin, Heidelberg, 2022

„The book offers new and original contributions on
different methodological optimization topics, from
Support Vector Machines to Game Theory Network
Models, from Mathematical Programming to Heuristic
Algorithms, and Optimization Methods for a number of
emerging problems from Truck and Drone delivery to
Risk Assessment, from Power Networks Design to
Portfolio Optimization. The articles in the book can give
a significant edge to the general themes of
sustainability and pollution reduction, distributive
logistics, healthcare management in pandemic
scenarios and clinical trials, distributed computing,
scheduling, and many others.“

Software Measurement News 28(2023)2

New Books on Software Measurement 68

Seiersen, R.:

The Metrics Manifesto:
Confronting

Security with Data

John Wiley Publ., 2022, ISBN 978-1-119-51536-4

The Metrics Manifesto considers security with
data delivers an examination of security metrics
with R, the popular opensource programming
language and software development environment
for statistical computing. This insightful and upto-
date guide offers readers a practical focus on
applied measurement that can prove or disprove
the efficacy of information security measures
taken by a firm. The book's detailed chapters
combine topics like security, predictive analytics,
and R programming to present an authoritative
and innovative approach to security metrics

Maxemilian Bieleke:

Performanceoptimierung in
Single-Page Application

Shaker-Verlag, Aachen, 2021, ISBN 978-3-8440-
8315-6

Das vorliegende Buch beschreibt die Effizienz von
Web-Applikationen hinsichtlich deren
Performance in ausgewählten Anwendungs-
bereichen.

Akay, A.:

Metrics and Visualization for
Know-ledge Maturing in

Structured Data

Akademiker-Verlag, 2021

This book considers the maturing of information in
collaborative environments such as Wikis, intranet
documents or documents in cloud is investigated
via four metrics. After the definition and calculation
of the metrics, the results are visualized in
graphical format. Therefore, the readers can see
the evolution of the metrics within the time, but
also the relations of metrics with each other.

Software Measurement News 28(2023)2

New Books on Software Measurement 69

Andreas Schmietendorf

ESAPI 2020 – 4. Workshop
Evaluation of Service-APIs

Shaker-Verlag, Aachen, November 2020, ISBN 978-3-
8440-7515-1

Das vorliegende Buch fasst die insgesamt 11 Beiträge
und Diskussionen des 4. Workshop zur Bewertung von
service-basierten APIs zusammen und ist in der
Buchreihe der Schriften zu modernen Integrations-
architekturen erschienen.

Hartenstein/Nadobny/Schmidt/
Schmietendorf:

Sicherheits- und Compliance
Management

Logos-Verlag, Berlin, 2020
ISBN 978-3-8525-5086-8

This book describes approaches and techniques for
implementing Web APIs keeping security-related
requirements. The API management involves analytical
and constructive approaches for quality assurance
during the development. The DevOps approach was
considered in the context of business processes.

Thomas M. Fehlmann:

Autonomous Real-Time Testing
Testing Artificial Intelligence and Other Complex

Systems
Logos-Verlag, Berlin, 2020

ISBN 978-3-8525-5086-8

The book explains the theory and the implementation
approach for a framework for Autonomous Real-Time
Testing (ART) of a software-intense system while in
operation. Principles and approaches like Combinatory
logic,Analytic Hierarchy Process (AHP) and Quality
Function Deployment (QFD) are used for a complex
testing approach of real-time systems like automotive
solutions, IoT control software and embedded system
releases.

Software Measurement News 28(2023)2

New Books on Software Measurement 70

Please remember:
Harry Sneed:

Endstation Wien

 45 Jahre Projekterfahrungen in der
deutschsprachigen IT-Welt

BoD Norderstedt, 2017, 328 S.
ISBN 978-3-7448-8364-1

Dieses Buch beschreibt nahezu die gesamte Tätigkeit
von Harry Sneed in der IT-Welt, von den Anfängen der
Großrechner mit den COBOL und PL/1-Programmen
bis hin zu den aktuellen und modernen Ansätzen
Service-orientierter Technologien und Systemen.

Dieses Buch fasst vor allem die umfangreichen
Erfahrungen zu Wartungs-, Migrations- und
Testprojekten zusammen, die auch für die
Beherrschung aktueller und moderner Software-
Anwendungen, von unschätzbarem Wert sind.

Abran, A.:

Software Project Estimation: The
Fundamentals for Providing

High Quality Information to Decision
Makers

Wiley IEEE Computer Society Press, 2015
(288 pages), ISBN 978-1-118-95408-9

This book introduces theoretical concepts to explain
the fundamentals of the design and evaluation of
software estimation models. It provides software
professionals with vital information on the best software
management software out there. End-of-chapter
exercises, Over 100 figures illustrating the concepts
presented throughout the book, Examples incorporated
with industry data.

Dumke, R., Schmietendorf, A., Seufert, M., Wille, C.:

Handbuch der
Softwareumfangsmessung und

Aufwandschätzung

Logos Verlag, Berlin, 2014 (570 Seiten), ISBN 978-3-
8325-3784-5

This book shows an overview about the current
software size measurement and estimation approaches
and methods. The essential part in this book gives a
complete description of the COSMIC measurement
method, their application for different systems like
embedded and business software and their use for
cost and effort estimation based on this modern ISO
size measurement standard.

Software Measurement News 28(2023)2

Conferences Addressing Metrics Issues

Software Measurement & Data Analysis Addressed
Conferences

September 2023

EuroAsiaSPI2 2023:

European Systems & Software Process Improvement and
Innovation Conference
August 30 – September 01, 2023, Grenoble, Switzerland
see: https:// conference .eurospi.net/index.php/ en/

Smart Data
Car Data 2023:

Automobilwoche Konferenz
September 1, 2023, Munich, Germany
see: https://www.smartdata-cardata.de/programm.html

Euromicro DSD/
 SEAA 2023:

Software Engineering & Advanced Application Conference
September 6 - 8, 2023, Durres, Albania
see: https://dsd-seaa2023.com/

RE 2023:
IEEE International Requirement Engineering Conference
 September 4 - 8, 2023, Hannover, Germany
see: https:// conf.researchr .org/home/RE-2023

ASE 2023:
Automated Software Engineering
September 11 - 15, 2023, Kirchberg, Luxembourg
see: https://conf.researchr.org/home/ase-2023

IWSM/MENSURA
2023:

The Join Conference of the 32nd International Workshop on
Software Measurement and the 17th International Confernce
on Software Process and Product Measurement
September 14 – 15, 2023, Rome, Italy
see: https://www.iwsm-mensura.org/

QEST 2023:

International Conference on Quantitative Evaluation of
Systems
September 18 - 23, 2023, Antwerp, Belgium
see: https://www.qest.org/qest2023

AIMS 2023:
International Conference on AI and Mobile Services
September 23 - 26, 2023, Honolulu, USA
see: https://www.servicesociety.org/aims

SCC 2023:
International Conferences on Service Computing
September 23 – 26, 2023, Honolulu, USA
see: https://servicesociety.org/scc

YSDS 2023:
Young Scientists and early-stage research in Data Science
September 27, 2023, Berlin, Germany
see: https://fg-data-science.gi.de/

BigData 2023:
AI & Big Data Congress
September 27 - 28, 2023, Barcelona, Spain
see: http://aicongress.barcelona/es/

Software Measurement News 28(2023)2

71

 Conferences Addressing Metrics Issues

IMMM 2023:

International Conference on Advances in Information
Mining and Management
June 26 - 30, 2023, Nice, France
see: https://www.iaria.org/conferences2023/IMMM23.html

October 2023

data2day 2023:

Konferenz für Big Data, Data Science und Machine
Learning
October 11 – 12, 2023, Karlsruhe, Germany
see: https://www.data2day.de/

API 2023:
API Conference 2023
October 16 - 18, 2023, Berlin, Germany
see: https:// apiconference.net/berlin-de/

ESEIW 2023:
Empirical Software Engineering International Week
October 23 - 27, 2023, New Orleans, USA
see: https:// conf.researchr.org/home/eseiw-2023

ESEM 2023:

Conference on Empirical Software Engineering and
Measurement
October 23 - 27, 2023, New Orleans, USA
see: https:// conf.researchr.org/home/esem-2023

ASQT 2023:
Arbeitskonferenz Softwarequalität, Test und Innovation
--- not this year ---
see: http://www.asqt.org/

November 2023

SEFM 2023:

International Conference on Software Engineering and
Formal Methods
November 6 - 10, 2023, Eindhoven, Netherlands
see: https://sefm-conference.github.io/2023/

BigDataSE 2023:

IEEE International Conference on Big Data Science and
Engineering
--- not this year ---
see: http://www.ieee-hust-ncc.org/2022/BigDataSE/

ICSEA 2023:

International Conference on Software Engineering
Advances
November 13 - 17, 2023, Valencia, Spain
see: https://www.iaria.org/conferences2023/ICSEA23.html

Software Measurement News 28(2023)2

72

http://www.asqt.org/

Conferences Addressing Metrics Issues

December 2023

IEEE ICDM
2023:

IEEE International Conference on Data Mining
Dezember 1 - 4 , 2023, Shanghai, China
see: https://www.cloud-conf.net/icdm2023/index.html

ESEC/FSE
2023:

European Software Engineering Conference and Symposium
on the Foundation of Software Engineering
Dezember 3 - 9, 2023, San Francisco, USA
see: https://2023.esec-fse.org/

PROFES 2023:

International Conference on Product Focused Software
Process Improvement
Dezember 11 -13, 2023, Dornbirn, Australia
see: https:// conf.researchr.com/home/ /profes-2023/

BCD 2023:

International Conference on Big Data, Cloud Computing, and
Data Science Engineering
December 14 - 16, 2023, Hochimin City, Vietnam
see: https://acisinternational.org/conferences/bcd-2023/

Big Data 2023:
IEEE International Conference on Big Data
December 15-18, 2023. Sorrento, Italy
see: https://bigdataieee.org/BigData2023/

see also:

 http://www.acisinternational.org/newconferences.html

 https://www.acm.org/conferences

 https://www.ieee.org/conferences_events/index.html

Software Measurement News 28(2023)2

73

 Measurement in the World-Wide Web 74

C O M M U N I T I E S

 Common Software Measurement
 International Consortium (COSMIC)

http://cosmic-sizing.org

 Central Europe Computer
Measurement Group (ceCMG)

http://www.cecmg.de

Metrics Association's Inter-
 national Network (MAIN)

http://www.mai-net.org

Netherlands Software Metrics
 users Association (NESMA)

http://www.nesma.org/

Software Measurement News 28(2023)2

 75 Measurement in the World-Wide Web

 GI-Fachgruppe Software-
 Messung und Bewertung

 https://fg-metriken.gi.de/

 (Measurement News Online)

 Deutschsprachige Anwender-
gemeinschaft für Software-Metrik
 und Aufwandschätzung

http://www.dasma.org

 International Software Bench-
marking Standard Group (ISBSG)

https://www.isbsg.org

Finnish Software Measurement
 Association (FISMA)

 http://www.fisma.fi/in-english/

Software Measurement News 28(2023)2

 Measurement in the World-Wide Web 76

 Asociacion Espanola de
 Metricas de Software

http://www.aemes.org/

 United Kongdom Software
Metrics Association (UKSMA)

http://www.uksma.co.uk

Gruppo Utenti Function Point Italia -
Italian Software Metrics Association
 (GUFPI - ISMA)

http://www.gufpi-isma.org

Anwenderkonferenz Software-
 qualität und Test (ASQT)

http://www.asqt.org

Software Measurement News 28(2023)2

 77 Measurement in the World-Wide Web

M E A S U R E M E N T S E R V I C E S

Software Measurement Laboratory
 (SML@b)

 https://softmeasure.de

 International Function Point
 Users Group (IFPUG)

http:www.ifpug.org

 Practical Software & Systems
 Measurement

www.psmsc.com/:

Software Measurement News 28(2023)2

 Measurement in the World-Wide Web 78

 Computer Measurement
 Group (CMG)

http://www.cmg.org

 Software Engineering
 Institute (SEI)

 www.sei.cmu.edu/measurement/

Software Productivity Research
(SPR)

http://www.spr.com/

McCabe & Associates

http://www.mccabe.com

Software Measurement News 28(2023)2

 79 Measurement in the World-Wide Web

SQS Gesellschaft für
Software-Qualitätssicherung

http://www.sqs.de

Quantitative Software Management
(QSM)

 http://www.qsm.com/

 Fraunhofer Institute for
Experimental Software Engineering
 (IESE)

 https://www.iese.fraunhofer.de/

National Institute of Standards
 and Technology (NIST)

https://www.nist.gov/el

Software Measurement News 28(2023)2

http://www.sqs.de/

 Measurement in the World-Wide Web 80

SOFTWARE MEASUREMENT INFORMATION

 Software Measurement
 Bibliography

See our overview about software metrics
and measurement in the Bibliography at

 https://fg-metriken.gi.de/bibliographie/

including any hundreds of books and papers

Bibliography Structure:

Software Measurement & Wikipedia

Help to qualify the software measurement knowledge and intentions in the world wide web:

Software Measurement News 28(2023)2

 81 Measurement in the World-Wide Web

Software Engineering Body
 of Knowledge (SWEBOK)

http://www.swebok.org

Project Management Body
 of Knowledge (PMBOK)

http://www.pmbook.org

Software Measurement News 28(2023)2

SOFTWARE MEASUREMENT NEWS

VOLUME 28 2023 NUMBER 2

CONTENTS

Announcements …... 2
 Andreas Schmietendorf, Jens Heidrich:

 Workshop KI-Szenarien im Zeitalter von ChatGPT & Co......……………….……….….... 2

 Reiner R. Dumke: SML@b News ………………………………………………….……………... 4

Conference Reports ...… 5
 Reiner R. Dumke (Edt.):

 Report on the IWSM-Mensura-2023 …………………………………………..……….. 5

 Jens Heidrich:

 Summary of the 17th International Conference on Software and System Processes ……..17

Community Reports ...… 24

 Jean-Marc Desharnais: COSMIC Certification 2022 – 2023 …………………………………….. 24
 Alain Abran: Estimation Challenge committee Annual Report ..25
 K. R. Jayakumar: COSMIC Awards 2023 ……………………………………………………….….26
 Luigi Buglione: GUFPI-ISMA News ……………………………………………….………………...29

News Papers..… 30

 Charles Symons:
 Resolving the historical confusion about the meaning of software size and its use

for project effort estimation………………………………………………………………….....… 30
 Sandro Hartenstein, Sidney Leroy Johnson, Andreas Schmietendorf:
 Towards a Fast Cost Estimation Supported by Large Language Models …..……….……… 46

New Books on Software Measurement…...... 66

Conferences Addressing Measurement Issues......................….... 71

Metrics in the World-Wide Web .. 74

ISSN 1867-9196

	CONTENTS
	Alain Abran
	Jens Heidrich
	Reiner Dumke
	Andreas Schmietendorf
	Abstract
	1. Introduction
	2. State of the Art
	2.1. Important terms
	2.2. Related Studies

	3. Concept
	3.1. Capabilities of AI
	3.2. Experiment
	3.3. Results

	4. Conclusion
	6. Appendix
	6.1 Generic Software Model by ChatGPT
	6.2 Requirements by ChatGPT
	6.3 Legacy Measurement
	6.4. FUR Mapping by ChatGPT
	6.5. CFP Measurement by ChatGPT
	6.6. FUR Mapping and CFP Measurement by trained ChatGPT

	Cloud Computing Enabled Big-Data Analytics in Wireless Ad-hoc Networks (Wireless Communications and Networking Technologies)
	VOLUME 28 2023 NUMBER 2
	CONTENTS

