
Volume 2, Number 1, June 1997

METRICS NEWS

Journal of the GI-Interest Group on Software Metrics

Measurement

 Assessment Improvement

Editors: R. Dumke, C. Ebert, E. Rudolph, H. Zuse

Otto-von-Guericke-Universität

Magdeburg
The METRICS NEWS can be ordered directly from the Editorial Office (for
address see below).

Editors:

Reiner Dumke
Professor on Software Engineering,
University of Magdeburg, Faculty of Informatics,
Postfach 4120, D-39016 Magdeburg, Germany
Tel.: +49-391-67-18664, Fax: +49-67-12810
email: dumke@irb.cs.uni-magdeburg.de

Christof Ebert
Dr.-Ing. in Computer Science
Alcatel Telecom, Switching Systems Division,
Fr. Wellensplein 1, B-2018 Antwerpen, Belgium
Tel.: +32-3-240-4081, Fax: 32-3-240-9935
email: christof.ebert@alcatel.be

Eberhard Rudolph
Professor on Software Engineering
Hochschule Bremerhaven, FB2 System Analysis,
Mozartstr. 37, D-27570 Bremerhaven, Germany
Tel.: +49-471-26142, Fax: +49-471-207389
email: rudolph@oscar-e.hs-bremerhaven.de

Horst Zuse
Dr.-Ing. in Computer Science
Technical University of Berlin, FR 5-3,
Franklinstr. 28/29, D-10587 Berlin, Germany
Tel.: +49-30-314-73439, Fax: +49-30-314-21103
email: zuse@tubvm.cs.tu-berlin.de

Editorial Office: Otto-von-Guericke-University of Magdeburg, Faculty of Informatics,
Postfach 4120, 39016 Magdeburg, Germany
Technical Editor: Dr. Achim Winkler
The journal is published in one volume per year consisting of two numbers.
The price 1997 for a single copy is DM 30,- for institutions and DM 20,- for private persons
incl. postage handling. All rights reserved (including those of translation into foreign
languages). No part of this issues may be reproduced in any form, by photoprint, microfilm or

any other means, nor transmitted or translated into a machine language, without written
permission from the publisher.
� 1997 by Otto-von-Guericke-Universität Magdeburg. Printed in Germany

EDITORIAL

This is the second issue of a new scientific journal in the field of software metrics and related
quantitative aspects, the

 METRICS NEWS.

The title was chosen to reflect the Journals attempt to summarize recent software metrics
themes as position papers, chosen papers from our metrics workhops, and news (as
information about the software metrics research area in the world, new books and
conferences). The editors are working many years in the software metrics field and are
specialized in measurement frameworks, function point analysis, measurement theoretical
view, and practical applications.

The background of the METRICS NEWS contributors is the GI-interest group on software
metrics founded in 1991. All members from the industry or academia are invited to present
their experience or research results in the area of software quality assurance, software metrics,
process management, software measurement frameworks etc.

The English language was chosen to reflect the international character of our research contacts
and results embedded in European initiatives.

The editors are grateful to the Otto-von-Guericke University of Magdeburg for publishing
this journal.

We hope that the new journal will be helpful to increase the awareness of the importance of
software metrics issues in the improvement of software development processes and products.

The Editors

7. Workshop

SOFTWAREMETRIKEN

des Arbeitskreises Softwaremetriken und des
Arbeitskreises Qualitätsverbesserung

Unser diesjähriger Workshop findet in der Zeit vom 18.09. bis 19.09.1997 an der
Universität in Mannheim statt. Bitte reichen Sie ganze Beiträge (maximal 10 Seiten)
oder zwei- bis dreiseitige Abstracts zu folgenden Themen ein:

�� Praktische Erfahrungen beim Einsatz von Softwaremetriken,

�� Konzeptionen und Anwendungen von Erfahrungs-, Meß- und Projektmanagement-
Datenbanken,

�� Einsatz von Softwaremetriken für die Auswahl von Entwickungsmethoden
(insbesondere objektorientierter Paradigmen),

�� Neue Ansätze der Metrikenvalidation,

�� Stand und Entwicklung von Metriken-Standards,
�
�� Der objektorientierte Entwicklungsprozeß: Analyse, Bewertung und Verbesserung,
�
�� Vorgehensweisen zur kontinuierlichen Qualitätsverbesserung,
�
�� Vorhersagbarkeit objektorientierter Systeme (Schätzverfahren).

Der Workshop ist keinesfalls auf die genannten Themenstellungen beschränkt und soll
darüberhinaus viel Spielraum für Diskussionen und Initiativen geben. Alle Beiträge sollen
dabei als Vortrag oder als Auslage (Pinwand) zur Kenntnis gelangen. Die zum Vortrag
ausgewählten Beiträge werden in einer geschlossenen Form publiziert.

Die Beiträge sind bis zum 18. Juli 1997 an eine der folgenden Adressen bzw. per Email zu
senden:

��Kathrin Baumann, (Leiterin der Arbeitskreises Qualitätsverbesserung),
SAP-AG, Email: kathrin.baumann@sap-ag.de

��Prof. Franz Stetter, (Workshop-Organisation), Universität Mannheim, A5,

68131 Mannheim, Email: fstetter@pi1.informatik.uni-mannheim.de

��Prof. Reiner Dumke, (Leiter des Arbeitskreises Softwaremetriken),

Universität Magdeburg, Fakultät für Informatik, IRB, Postfach 4120, 39016
Magdeburg, Email: dumke@irb.cs.uni-magdeburg.de

 Quantitative Management of Software Process Improvement

Christof Ebert, Alcatel Telecom, Switching Systems Division, Antwerp

Quantitative data is crucial for understanding software development processes and to steer any
reengineering activity. Quantitative management of a software process improvement (SPI)
activity is not much different from managing a project. Unless supported by metrics, it is
impossible to fully understand what is happening and what will be the outcomes of
prospective changes. Quantitative management of SPI is thus concerned with identifying,
measuring, accumulating, analyzing and interpreting project and process information for
strategy formulation, planning and tracking activities, decision-making, and cost accounting.

Although the corporate metrics program has been set up and is maintained as part of the
Division's SPI program, most benefits that we recorded are indeed related to project
management:

�� Improved tracking and control of each development project based on uniform
mechanisms;

�� Earlier identification of deviations from the given targets and plans;

�� Accumulation of history data from all different types of projects that are reused for
improving estimations and planning of further projects;

�� Tracking process improvements and deviations from processes.

Metrics are obviously the key to successfully managing a SPI program because they link the
improvement strategies, pilot results and various process reengineering efforts to the day-to-
day business that after all keeps the company alive.

Appropriate Metrics for Different CMM Levels

CMM Description Metrics
5 Continuous improvements are

institutionalized
Process metrics for the control of process change
management

4 Products and processes are
quantitatively managed

Process metrics for the control of single processes

3 Appropriate techniques are
institutionalized

Defined and established product metrics;
automatic metric collection

2 Project management is established

Defined and reproducible project metrics for
planning and tracking (fault status, effort, size,
progress); few process metrics for SPI progress
tracking

1 Process is informal and ad hoc

Few project metrics (size, effort, faults); however
metrics are inconsistent and not reproducible

Objectives related to individual processes must be unambiguous and agreed by the respective
groups. This is obvious for test and design groups. While the first are reinforced for finding
defects and thus focus on writing and executing effective test suites, design groups are
targeting to delivering code that can be executed without defects. In case of defects they must
be corrected efficiently, which allows for setting up another metric for a design group which is
the backlog of faults it has to resolve.

It is thus important for process metrics to consider different viewpoints and their individual
goals related to promotion, projects and the business. Most organizations have at least four:
the practitioner, the project manager, the department head, and corporate executives. Their
motivation and typical activities differ much and often create confusing goals which at the
worst level are resolved on the practitioner level. Reuse for instance continuously creates
trade-off discussions. When a project incurs expenses due to keeping components
maintainable and to promote their reusability, who pays for it and where is it recorded in a
history database that compares efficiency (e.g. bang per buck) of projects and thus of their
management?

Typical benchmark effects of detecting faults earlier in the life cycle

Defined

3

Repeatable

2

Initial

1

0% 0% 5% 15% 65% 15%
5F/KLOC

1% 2% 7% 30% 50% 10%
3F/KLOC

DesignRequire-
ments

CMM
Level Coding Module

Test
Integration

 +Syst. Test Field

2F/KLOC

2% 5% 28% 30% 30% <5%

The following key success factors could be identified while setting up a globally distributed
metrics program:

�� Start small and immediately. It is definitely not enough only to select goals and metrics.
Tools and reporting must be in line; and all of this takes its time. It must however be
clearly determined what needs to be measured before deciding based on what can be
measured. Use external consultants where needed to get additional experience and
authority.

�� Motivate the metrics program with concrete and achievable improvement goals. Unless
targets are achievable and clearly communicated to middle management and
practitioners they will clearly feel metrics as yet another instrument of management
control. Goals must be in line with each other and on various levels. Business goals
must be broken down to project goals and those must be aligned with department goals
and contents of quality plans. Clearly communicated priorities might help with
individual decisions.

�� Provide training both for practitioners who after all have to deliver the accurate raw

data, and for management who will use the metrics. The cost and effort of training is
often stopping its effective delivery. Any training takes time, money, and personnel to
prepare, update, deliver, or receive it.

�� Establish focal points for metrics in each project and department. Individual roles and
responsibilities must be made clear to ensure a sustainable metrics program that endures
initial SPI activities.

�� Define and align the software processes to enable comparing metrics. While improving
processes or setting up new processes, ensure that the related metrics are maintained at
the same time. Once estimation moves from effort to size to functionality, clearly the
related product metrics must follow.

�� Collect objective and reproducible data. Ensure the chosen metrics are relevant for the
selected goals (e.g. tracking because to reduce milestone delay) and acceptable for the
target community (e.g. it’s not wise to start with productivity metrics).

�� Get support from management. Enduring buy-in of management can only be achieved if
the responsibility for improvements and the span of necessary control are aligned with
realistic targets. Since in many cases metrics beyond test tracking and faults are new
instruments for parts of management this group must also be provided with the
necessary training.

�� Avoid abuse of metrics by any means. Metrics must be "politically correct" in a sense
that they should not immediately target persons or satisfy needs for personal blames.
Metrics might hurt but should not blame.

�� The targets of any improvement program must be clearly communicated and perceived
by all levels as realistic enough to fight for. Each single process change must be
accompanied with the respective goals and supportive metrics that are aligned. Those
affected need to feel that they have some role in setting targets. Where goals are not
shared and the climate is dominated by threats and frustration, the metrics program is
more likely to fail.

�� Communicate success stories where metrics enabled better tracking or cost control. This

includes identifying metrics advocates that help in selling the measurement program.
Champions must be identified at all levels of management, especially at senior level,
that really use metrics and thus help to support the program. Metrics can even tie in an
individual's work to the bigger picture if communicated adequately.

�� Slowly enhance the metric program. This includes defining "success criteria" to be used
to judge the results of the program. Since there is no perfect metrics program it is
necessary to determine something like a "80% available" acceptance limit that allows to
declare success when that is achieved.

�� Don't overemphasize the numbers. It is much more relevant what they bring to light,
such as emerging trends or patterns. After all the focus is on successful projects and
efficiency improvement and not on metrics.

Time Table for Setting up a Corporate Metric Program

Activity Elapsed time Duration
Initial targets set up 0 2 weeks
Creation and kick-off of metric team 2 weeks 1 day
Goal determination for projects and processes 3 weeks 2 weeks
Identifying impact factors 4 weeks 2 weeks
Selection of initial suite of metrics 5 weeks 1 week
Report definition 6 weeks 1 week
Kick-off with management 6 weeks 2 hours
Initial tool selection and tuning 6 weeks 3 weeks
Selection of projects / metric plan 6 weeks 1 week
Kick-off with project teams / managers 7 weeks 2 hours
Collection of metric baselines 7 weeks 2 weeks
Metric reports, tool application 8 weeks continuously
Review and tuning of reports 10 weeks 1 week
Monthly metric-based status reports within projects 12 weeks continuously
Application of metrics for project tracking and process improvement 16 weeks continuously
Control and feedback on metric program 24 weeks quarterly
Enhancements of metric program 1 year continuously

Metrics need to make sense to everybody within the organization who will be in contact with
them. Therefore, the metrics should be piloted and evaluated after some time. Potential
evaluation questions include:

�� Are the selected metrics consistent with the original improvement targets? Do the
metrics provide added value? Do they make sense from different angles and can that
meaning be communicated without many slides? If metrics are considering what is
measurable but don't support improvement tracking, they are perfect for hiding issues
but should not be labeled metrics.

�
�� Do the chosen metrics send the right message about what the organization considers

relevant? Metrics should spotlight by default and without cumbersome investigations of
what might be behind. Are the right things being spotlighted?

�
�� Do the metrics clearly follow a perspective that allows comparisons? If metrics include

ambiguities or heterogeneous viewpoints they cannot be used as history data.

Software process improvement is now a big issue on the agenda of all organizations with
software as a core business. As such it is also a major research topic, that may continue to
grow in importance well into the 21st century. However, some software technologies have a
shorter lifetime and for sure the management attention is focused rather on short-term
achievements with impact to the score card. Unless tangible results can be achieved in the
related short timeframe, interest in SPI will quickly wane.

Current Situation in Software Measurement Frameworks

Reiner R. Dumke
University of Magdeburg, Faculty of Informatics
Postfach 4120, D-39016 Magdeburg, Germany

1 Introduction

Measurement frameworks are in usually embedded in business perspectives such as [11]

�� improving product delivery times,
�� lowering software development costs,
�� minimizing application backlog,
�� improving skills level,
�� assessing the value of consultants and contractors,
�� optimizing the use of new technologies.

A main aspect for a successful application of a software measurement framework is the level
of integration in the software process. Therefore, the existence of a software process model is
an essential requirement for an efficient framework approach. Kinds of process models are
([5], [24]):

�� object management systems (with the software process components: process, office,
environment, resources, and interface; and the principles of co-operative entities on the
basis of the service, object, and item level),

�� environment (tool) integrated facilities (e. g. SPADE),
�� (design) process modelling languages (such as PCTE-based, PML, and SOCCA),
�� formal approaches (temporal logic-based, Petri nets, constraint-based, meta-process

oriented, goal-oriented, etc.).

In this manner, we can establish the informal and formal approaches of software
measurement frameworks.

2 Informal Approaches of Software Measurement Frameworks

The most applications of software measurement are goal-directed, informal approaches such
as the goal question metric (GQM), the factor criteria metric (FCM), the quality function
deployment (QFD), and the AMI (application of measurement in industry) approach [18].
Another kind of measurement frameworks are the process improvement models such as the
CMM (Capability Maturity Model). Of course, the GQM can also be used for process
improvement, but the GQM is a general approach (also for product and resources evaluation
or for special development aspects). The informal approaches of software measurement
frameworks consist of the following general components

�� textual descriptions/questions,
�� rules, "laws" and experience notices,
�� standards.

Textual descriptions including some general remarks on software measurement are ([14],
[23])

�� the ISO 9000-3 standard,
�� the Software Quality Metrics report (FAA Technical Center, New Jersey),
�� the TickIT approach (UK),
�� the BOOTSTRAP quality standard (ESI, Esprit project),
�� the Software Measurement Guidebook (NASA),
�� the Trillium standard (Bell Canada),
�� the AQAP and the DOD STD 2167A (USA military area),
�� the European SPICE project.

An example for the underlying rules in this software (quality) measurement is given in the
NASA Guidebook [21]:

�� establishing a measurement program (including the definition of the goals, the
responsibilities and selecting the measures),

�� core measures (especially the costs, errors, process characteristics, project
dynamics, and project characteristics),

�� operation of the measurement program (use of metrics tools, storing the
measurement values etc.),

�� analysis, application, and feedback (as goal of the software process or product
improvement).

The software measurement itself can be divided in the main components [18]

 entities, attributes, relationships between entities and attributes, units,
 scale types, values, properties of values, the origin of values, defining
 measures.

Another approach of the software measurement for the process improvement is described by
Kitchenham [18] in the cycle

 initiate process
 improvement
 program investigate current situation

 establish goals
 decide process change(s)

 make process change(s)

 monitor effect of change

In the same manner, Garmus and Herron [11] define the complete process assessment model
as
 quality data

�� process
�� resources
�� automation
�� business process capability

 software practices improved software
 practices
 quantitative data

�� duration performance level
�� effort
�� size
�� defects

Here, we can see the very general characteristics of these approaches: Reasoning in the wide
and apparently diverse range of topics that cover the software measurement, such as [4] cost
estimation models, productivity models, quality control and assurance, data collection, quality
models and measures, reliability models, performance measurement, and structural and
complexity metrics.

The probably best-known measurement framework is described in the paper of Basili et al [1]
as general aspects of the experimentation in software engineering in the definition of the
experiment (motivation, object, purpose, perspective, domain, and scope), the planning of the
experiment (design, criteria, and measurement), the operation of the experiment (preparation,
execution, and analysis), and the interpretation of the experiment (as interpretation context,
extrapolation, and impact). This framework of software experimentation is a good checklist
for controlling the completeness of an experiment (see also [3]), but it allows for more than
hundred variants of experiments.

In [20] McGregor defines an "Iterative Incremental Metric Model" that requires a refinement
in the application of software metrics. The main thesis in this approach are that

�� a metric can be specified, in terms of what attribute it represents, independent of
any specific implementation of the metric,

�

�� various definitions can be sequenced to provide continuous measurements of an
attribute across the phases in the lifecycle,

�
�� there is an acceptable trade-off between the precision of the calculation of the

value and the availability of an estimate of the value earlier in the lifecycle.

The approach of McGregor also retains the relationship of the measurement framework with
the software process model.

3 Formal Approaches in Software Measurement

Formal approaches for software measurement frameworks can be divided in algebraic
approaches, axiomatic approaches, functional approaches, and rule-based approaches. In
the following we explain some examples of these approaches.

Algebraic approaches of measurement: one example is given by Shepperd in [23] and
includes the general formal description as

�� an algebraic description of the measured model (mod stands for module)
 new: � design
 add: mod � design � design

�� a general description of a metric
� metric: design � nat
�
�� a special description of a concrete metric (e. g. module counting)
� m: mod
� D: design
� metric(new) = 0
� metric(add(m,D)) = 1 + metric(D)

The article gives a full description of a module-based system design metric including the fan-
in and fan-out characteristics.

Axiomatic approaches of measurement: a (classical) axiomatic approach is given by Prather
in [22]. The basic elements are the restricted program constructs of the structured
programming (the sequence, the selection, and the repetition). On this basis a (complexity)
measure was defined as

�� measure(sequence) = term1,
�
�� measure(selection) = term2,
�
�� measure(repetition) = term3 .

The description of the measures includes the value for a simple statement. The value of a
program is derived by the use of the three axioms above.

Another axiomatic approrch is given by Zuse in [25] (see also [26]) based on measurement
theory. The main idea is the definition of an empirical relational system and a numerical
relational system. Software measurement is described as the homomorphism

 object1 �empirical object2 � measure(object1) �numerical measure(object2)

The axioms of the weak order, the (weak) associativity, the (weak) commutativity, the (weak)
monotonicity, and the Archimedean axiom help to determine the scale types of a concrete
software measure. This approach supports the full characterization of a measure including the
correct application of statistical analysis methods.

The axiomatic approach of Fenton in [10] includes

�� a prime-based definition of program components,
�� the metric execution for the sequencing of primes,
�� the metric execution for the nesting of primes.

The software measurement itself is directed at the process, product, and resources. These
components are characterized by internal and external attributes, and the measurement is
divided in assessment and prediction. The areas of software measurement are the cost and
effort estimation, the productivity measures, the quality control and assurance, the data
collection, the quality models and measures, the reliability models, the performance
evaluation, the algorithmic/computational complexity, and the structural and complexity
measures.

Functional approaches of measurement: an example of a functional measurement approach
is COCOMO of Boehm (see also [2]) with the main formula as

 effort = � LOC�

� and � have special values for special project characteristics. The problem is to estimate the
lines of code (LOC). The formula is a summarizing of experience of the software
development effort.

Another functional approach of software measurement is given by Ejiogu in [8] and is based
on the problem refinement in the following manner

 problem definition

 subproblem1 subproblem2 . . . subproblemn

 subsubproblem1 subsubproblem2 . . . subsubprobleml . . .

 . . .

 module1 module2 . . . modulek

The functional approach consists in the definition of the measures as formulas such as height
of the tree, and characterize the monadicity, the entropy, the cohesion and coupling of the
modules, the degree of refinement, the modularity, the maintainability, the test coverage, the
reliability, and the level depended productivity.

A further functional approach of measurement is the function point method of Albrecht (see
also in [16]) that was based on the (weighted) assessment of

 outputs, inquires, inputs, files, and interfaces

for every (software) component and the final calculations with an adjustment factor to the
final function points. In further experiments function points have been mapped to the effort of
the software product development.

Rule-based approaches of measurement: one example of this approach is given by Hausen
in [13] and is based of the definition of rules for the given (software) product in the form

 IF predicate1 predicate2 . . . predicatel activity estimationexpert predicate

 THEN volumecomponent predicate

where the rules are defined for the component as activities, objects, functions, data,
procedures, and variables. In the same manner quality rules related to the special software
components have been established.

Another "rule-based" approach consists of formal language rules by Jacob and Cahill in [15]
as attribute grammar approach. The metrics rules are defined in the attributes and the
underlying semantic functions. Such attributes are for example

 statement counting: p � statementincrement scount

 decision counting: p � if-statementincrement dcount
 p � while-statementincrement dcount
 etc.

The semantic function includes the final execution of the defined metric (for example as a
multi-dimensional form etc.).

4 Statistical Analysis of Measurement Data

A statistical analysis approach can be characterized by the following general scheme of
Evanco and Lacovara for the data collection and analysis [34]:

 Software Development Environment Data
 Development (e.g. requirements volatility, reuse capabilities)
 Organization
 Project Data (e.g. faults, maintenance effort)

 Software
 Project Utilities Project
 Code, Design Artifacts Software Data
 Software Analyzer Base
 Artifacts

The applicable statistical methods are given in the following table (see also [12]).

Type of methodology Application
Ordinary least squares regression models Subsystem defects or defect densities
Poisson models Library unit aggregation defect analysis
Binomial analysis Defect injection probabilities
Ordered response models Defect proneness
Proportional hazards models Failure Analysis incorporating software

characteristics

In order to use statistical methods it is necessary to know the scale type of the measurement
data. For the correlation methods we must guarantee the following relations

scale type correlation coefficient
ordinal scale type Kendall or Spearman correlation
interval scale type Pearson or multiple correlation
ratio scale type Pearson, multiple, and variance

Other approaches include the use of classification methods such as pareto classification,
factor-based discriminant analysis, fuzzy classification or neural network approaches ([7],
[17]).

Note, that an essential aspect of the (statistical) measure analysis is given by the metrics
validation as a statistical or application validation and as a predictability validation [23].

5 Benefits and Weaknesses of Informal and Formal Measurement Approaches

The problem of the use of informal approaches in general is the break between the
(subdivided) quality aspects and their quantification, e. g. in the GQM

 goal 1 goal 2 . . . goal n

 question 1 question 2 . . . question m

 b
 software development paradigm r

 the kind of the software development product e
 the measurement characteristic of the metric a
 the missing empirical data for metric validation k

 metric 1 metric 2 . . . metric l

This situation is also given in the AMI, CMM, ISO 9000 and the other informal approaches. A
general description of this "break" can also be seen in the following validation schema of
software measurement application in the grey area [6].

 software develop- measurement theoretical view
evaluation (empi-
 ment component model (statistical analysis) model
rical) criteria

 numerical S C A L E empirical
 relative relative
 design
 documents flow graph ESTIMATION goal tree
costs

 drawings call graph factor-criteria
effort
 CALIBRATION tree
 charts text schemata
grade
 cause and effect
 source code structure tree ADJUSTMENT diagram
quality

 test tables code schemata CORRELATION decision trees
actuality

 etc. etc. etc.
etc.

 abstraction metrication VALIDATION metrication
abstraction
 (tool-based) (expert’s
report)
 internal metric external metric
 measure

The weakness of the evaluation part in the measurement frameworks results in different kinds
of empirical evaluations as:

1. (vague) expertise’s,

2. defining limits (warning or dangerous values),

3. (ordinal) empirical evaluations,

4. (full) empirical function (e.g. function points etc.).

In most applications only the first and the second kind of the empirical evaluation are used.

A summarized overview of advantages and shortfalls of formal approaches is given in the
following table.

approach benefits weakness
algebraic a well-defined metrics algebra no independence of the de-

velopment paradigm
axiomatic an exact definition of the metrics

characteristics
only a few practicable results

functional compact definition of experience problem in their use for new de-
velopment paradigms

rule-based a well-defined metrics language only a few empirical evaluations
Some measurement and evaluation frameworks problems in general are (see also [19] and
[26]): no experience for modern or new paradigms, no support for adjustments, no
characteristics of the given or used (acquisited) software, no exact knowledge about the
applied metrics.

References

 [1] Basili, V.R.; Selby, R.W.; Hutchens, D.H.: Experimentation in Software Engineering. IEEE

Transactions on Software Engineering, 12(1986)7, pp. 733-743
 [2] Boehm , B.W.: Software Risk Management. IEEE Computer Society Press, 1989
 [3] Bourque, P.; Maya, M.; Abran, A.: A Sizing Measure for Adaptive Maintenance Work

Products. Proc. of the IFPUG Spring Conference, Atlanta, April 22-26, 1996
 [4] Bush, M.E.; Fenton, N. E.: Software Measurement: A Conceptual Framework. Journal of the

Systems and Software, 12(1990), pp. 223-231
 [5] Daskalantonakis, M.K.: A Practical View of Software Measurement and Implementation

Experiences Within Motorola. IEEE Transactions on Software Engineering, 18(1992)11, pp.
998-1010

 [6] Dumke, R.; Foltin, E.; Koeppe, R.; Winkler, A.: Measurement-Based Object-Oriented Software
Development of the Software Project "Software Measurement Laboratory". Preprint 1996,
University of Magdeburg (40 p.)

 [7] Ebert, C.: Evaluation and Application of Complexity-Based Criticality Models. Proc. of the
Third International Software Metrics Symposium, March 25-26, Berlin, 1996, pp. 174-185

 [8] Ejiogu, L.O.: Software Engineering with Formal Metrics. QED Technical Publ., 1991
 [9] Evanco, W:M:; Lacovara, R.: A Model-Based Framework for the Integration of Software

Metrics. The Journal of Systems and Software, 26(1994), pp. 77-86
[10] Fenton , N.: Software Metrics - a rigorous approach. Chapman & Hall, 1991
[11] Garmus, D., Herron, D.: Measuring the Software Process - a practical guide to functional

measurements. Prentice-Hall Publ., 1996
[12] Han, K.J.; Yoon, J.; Kim, J.; Lee, K.: Quality Assessment Criteria in C++ Classes.

Microelectronics Reliability Journal, 34(1994)2, pp. 361-368

[13] Hausen, H.: A Rule-Based Approach to Software Quality Engineering. in: Fenton/Littlewood:
Software Reliability and Metrics, Elsevier Publ., 1991, pp. 48-68

[14] Henderson-Seller, B.: OO Metrics Programme. Object Magazine, October 1995, pp. 73-95
[15] Jacob, P.; Cahill, T.: Software Product Metrics as Attributes in an Attribute Grammar. Proc. of

the 2ICSQ, October 1992, Research Triangle Park, USA, pp. 40-49
[16] Jones ,C.: Applied Software Measurement. McGraw-Hill, 1991
[17] Khoshgoftaar, T.M.; Szabo, R.M.: ARIMA models of software system quality. Proc. of the

Annual Oregon Workshop on Software Metrics, April 10-12, 1994, Oregon
[18] Kitchenham, B.: Software Metrics - Measurement for Software Process Improvement. NCC

Blackwell Publ., 1996
[19] Kitchenham, B.; Pfleeger, S.L.; Fenton, N.E.: Towards a Framework for Software

Measurement Validation. IEEE Transactions on Software Engineering, 21(1995)12, pp. 929-
944

[20] McGregor, J.D.: Managing metrics in an iterative environment. Object Magazine, October
1995, pp. 65-71

[21] NASA : Software Measurement Guidebook. Maryland, 1995
[22] Prather, R.E.: An Axiomatic Theory of Software Complexity Measure. The Computer Journal,

27(1984)4, pp. 340-347
[23] Shepperd, M.: Foundations of Software Measurement. Prentice Hall Publ., 1995
[24] Warboys, B.C. (Ed.): Software Process Technology. Proc. of the EWSPT’94, Springer Publ.,

Lecture Notes on Computer Sience 772, 1994
[25] Zuse , H.: Software Complexity - Measures and Methods. de Gruyter Publ., 1991
[26] Zuse, H.: A Framework of Software Measurement. to be published

An email information

Fernando Brito e Abreu, INESC - MOOD Project Leader, Lisbon, Portugal

We are actively working on MOODKIT G2 (second generation) which is radically different
from previous on (G1). Among the improvement is the ability of metrics capture either by
forward (from models in a CASE TOOL) or reverse engineering (from source code in several
OO languages). MOODKIT G2 relies on an intermediate OO design language named
GOODLY (a Generic Object Oriented Design Language? Yes!).

The GOODLY language is up and running! A GOODLY specifications hypertext browser
with high traceability capabilities and several source code examples that were generated with
MOODKIT G2 (under construction) are now available at our web site. This bowser will soon
show the calculated MOOD metrics values. The MOOD set is being currently reviewed and
expanded.

The MOOD Project WWW server is located at the following address:

http://albertina.inesc.pt/ftp/pub/esw/mood

Please use a browser that supports frames (e.g. Netscape 2.0 or later releases).

PRODUCT STATUS AVAILABILITY
 GOODLY specifications parser and linker Ready available on request
 GOODLY specifications browser Ready use it in the web
 GOODLY to Smalltalk converter 2 nd week May (forecast)
 Smalltalk to GOODLY converter 2 nd week May (forecast)
 Eiffel to GOODLY converter 3 rd week May (forecast)
 OMT (ParadigmPlus) to GOODLY converter 3 rd week May (forecast)
 MOOD metrics extraction from GOODLY code 4 th week May (forecast)
 Java to GOODLY converter 4 th week May (forecast)
 C++ to GOODLY parser 2 nd week June (forecast)
 Object Pascal (Delphi) to GOODLY parser 4 th week June (forecast)

The MOOD team is waiting for your feedback and your cooperation plus!

The MOOD (Metrics for Object Oriented Design) metrics originated from the PhD research
work carried out by Fernando Brito e Abreu, enriched by contributions of many others, either
originated within the MOOD team or organization where MOOD project team is hosted, see
our central web site (http://www.inesc.pt).

The MOOD project is an academic project, not a commercial one! The only thing we ask from
you is to share with us the results you got with our tools and your constructive contributions
on improving and/or extending the MOOD metrics set. In particular we seek cooperation with
reals industrial projects where process data (schedules, effort, defect reports, etc.) are
available, in order to construct empirical validation studies, as well as academic theoretical
validations ones.

ISBSG - A worldwide Software Measurement Initiative

The ISBSG (International Software Benchmarking Standards Group) had its origins in the
work performed by the Australian Software Metrics Association (ASMA) in software
benchmarking. In 1990, a Special Interest Group in ASMA met to develop a practical industry
standard for quantifying the output from software projects. This led to the establishment of a
repository of data on Australian projects in 1992.

The success of this initiative created considerable international interest. In June 1994, the
software metrics organisations of New Zealand (SMANZ), the United Kingdom (UFPUG),
and the United States (IFPUG), together with ASMA, formed ISBSG. Later other metrics
organisations (for instance from Canada, Germany, France) became involved. The ASMA
model was used for a de facto international standard. Through ISBSG, the various
associations and their members can collect and share data to facilitate international
benchmarking. The actual fourth release of the Benchmarking Repository contains data
collected from 396 projects from 14 countries.

The ISBSG Repository is based on the following principles:

�� Practitioner Driven and Practitioner Accessible: Each IT-organization, whether they
are members of their respective national metrics organisation or not, may contribute to
the ISBSG Repository and use the services of ISBSG.

�� Independence from vested business and research interests whenever they are liable to
compromise the objectives of the Repository.

�� Integrity of the Repository data must be maintained through the application of rigorous
procedures.

�� Confidentiality of the contributors.
�
The establishment of the ISBSG Repository has made it possible to offer the industry a
number of services:

�� The Repository itself can be used as an alternative to In-house metrics databases
�� A Project Benchmarking Profile Report is sent back to the contributor. It compares the

submitted project with others of the same class within the repository
�� Best Practice Networking is available for contributors
�� Organisational Benchmarking is available to organisations to compare themselves

against similar organisations
�� ISBSG Releases (reports on the ISBSG Repository)
�� Customised Analysis and Reports

ISBSG is working permanently to increase the value of the services offered. At around nine
month intervals interested members meet at the ISBSG workshop. At the last workshop, held
in conjunction with the IFPUG’97 Spring Conference, two research contracts with the
Monash University (Australia) and the Université du Québec à Montréal (Canada) have been
initiated.

If you want to learn more about the ISBSG initiative or how to contribute to the ISBSG
Repository please see http://www.bs.monash.edu.au/asmavic/isbsg.htm.

SMLab’s WorldWideWeb Project

The Software Measurement Laboratory of the University of Magdeburg was established to
support the Software Metrics efforts of the (local) IT community and to conduct university
research and education. As a service for the public, SMLab maintains a Website to inform
about new devlopments and to provide a world-wide discussion platform.

In the position paper Current Situation in Software Measurement Frameworks beginning on
Page 11 of this issue, the author mentions a break between the quality aspects and their
quantification with metrics. For the Software Metrics field, a science that is largely dominated
by empirical results, conducting experiments and analysing the results is a critical and
important step toward the formation of valid models.

In order to provide an overview about experimental results the Software Measurement
Laboratory has added a summary of software measurement experiments to its Web-site. The
more than fifty eperiment descriptions are grouped in

�� Software Process Experiments (Process Maturity, Process Management, and Process
Life Cycle Experiments)

�� Software Product Experiments (Size, Architecture, Structure, Quality, and Complexity
Experiments)

�� Software Resource Experiments (Personnel, Software, and Hardware Experiments)

"Classical" Experiments as Halsteads Experiments to the definition of his "Software Science"
are included as well as more recent experiments on Object Oriented Programming or World
Wide Web design. For every experiment, a reference for further reading is provided. The
Software Measurement Laboratory invites you to contribute your experience and experiment
to make your results accessible to the software engineering community.

Another point of interest for the practitioner in the software metrics field is the application of
Computer Assisted Measurement and Evaluation (CAME) Tools. Based on a general software
measurement framework the Web Site contains a short description and evaluation of the better
know measurement tools used in the European market.

Some sample on-line applications are available to demonstrate the capabilities offered by
hypermedia technologies.

The Web-Site of the Software Measurement Laboratory can be found at:

http://irb.cs.uni-magdeburg.de/se/

Abran, A.; Dumke, R.; Lehner, F.: Software Metrics
Gabler-Verlag, Wiesbaden, 1997

This book contains all presentations of the 1996 workshop of the GI-interest group on
software metrics. It will be available by the end of June 1997.

Kitchenham, B.: Software Metrics-Measurement for Software Process
Improvement
NCC Blackwell Publ., 1996

This book explains how software measurement can be used to support software process
improvement by providing objective methods of characterizing process capability and
evaluating the effect of process changes.

This Book sets out an approach to the formel validation of measures and the theory of
statistical data analysis for students. It also contains, for practitioners, many examples of the
use of real data in real projects.

Poulin, J.S.: Measuring Software Reuse

Addison-Wesley, 1997 (195 p.)

With the techniques in this book, you will have the tools you need to design a far more
effective reuse program, prove its bottom-line profitability, and promote software reuse within
your organization. Measuring Software Reuse brings together all of the latest concepts, tools,
and methods for software reuse metrics, presenting concrete quantitative techniques for
accurately measuring the level of reuse in a software project and objectively evaluating its
financial benefits.

�� Third Australian Conference on Software Metrics 1996 (ACOSM 96)
The third Australien Conference on Software Metrics 1996 (ACOSM 96) took place
in Melbourne / Australia from Tuesday November 19 to Thursday, November 21,
1997. About fifty people did join the conference in the very impressive Hotel Sofitel
in downtown Melbourne. The conference was organized by the Australian Computer
Society (ACS).
The objectives of the conference were Breaking Performance Barriers.
The first day was a tutorial day. P. Goodman gave a tutorial about the
implementation of a software metric program, and C. Symons presented a
comparison of the traditional Function Point Method and the MARK II Method.
On Wednesday, C. Symons gave a keynote presentation of the future of size
measurement and Brian Henderson-Sellers followed with a keynote presentation of
research ideas and practical experiences of object-oriented measurement. On
Thursday, Horst Zuse presented fundamental concepts of measurement in a keynote
presentation.
Other speakers came from New Zealand, Norway, UK, and - of course - Australia.
My personal impression is that the companies in Australia, but also the universities,
are very active in improving software quality by quantitative methods of software
engineering.

�� First Euromicro Working Conference on Software Maintenance and
Reengineering,

� March 17-19, 1997, Berlin
�
�

�� Fourth International Software Metrics Symposium
� March 1997, Boston (incl. with the ICSE’97)

�
�

�� 3rd International Conference on Reliability, Quality & Safety of
Software-Intensive Systems (ENCRESS’97)

� May 29-30, 1997, Athens, Greece
�
�

�� Fifth International Symposium on Assessment of Software Tools and
Technologies

� June 3-5 1997, Pittsburgh
�
�

�� European Software Control and Metrics Conference
was continued after the Wilmslow (May 1996) Conference

�� Seventh International Conference on Software Quality in New Orleans
(ICSQ'97)

� October 1997, New Orleans
�
�

�� metrics themes are also discussed in the yearly OOIS, ECOOP and ESEC
conferences

Other Information Sources and Related Topics

�� http://rbse.jsc.nasa.gov/virt-lib/soft-eng.html
 Software Engineering Virtual Library in Houston

�� http://www.mccabe.com
 McCabe & Associates

�� http://www.sei.cmu.edu
 SEI Pittsburgh

�� http://dxsting.cern.ch/sting/sting.html
 STING: News Browser, Glossary Search, Projects and Measurement Tools at

 CERN

�� gopher://gopher.cs.tut.fi/11/pub/src/software-eng/metrics
 C Metrics Package

�� http://www.spr.com/
 Software Productivity Research, Capers Jones

�� http://fdd.gsfc.nasa.gov/seltext.html
 SEL-Homepage

�� http://www.qucis.queensu.ca/Software-Engineering/Cmetrics.html
 Queens University of Canada

�� http://www.esi.es
 ESI Spain

�� http://saturne.info.uqam.ca/labo_Recherche/lrgl.html
 University of Quebec

�� http://www.SoftwareMetrics.com
 IFPUG Information by David Longstreet

�� http://www.utexas.edu/coe/sqi/
 Software Quality Institute, University of Texas at Austin

�� http://wwwtrese.cs.utwente.nl/�vdberg/thesis.htm
 Klaas van den Berg: Software Measurement and Functional Programming

�� http://www.inesc.pt/index-eng.html
 Metrics for Object Oriented Design (MOOD) Project Team and the
 ftp://albertina.inesc.pt/pub/esw/modd
 MOOD-Server

�� http://divcom.otago.ac.nz:800/com/infosci/smrl/home.htm

�� http://www.irb.cs.uni-magdeburg.de/se/
 Software Meßlabor der Universität Magdeburg

�� http://www.cs.tu-berlin.de/�zuse
 Arbeitsgruppe Softwaremetriken

�� http://www.sbu.ac.uk/�csse/publications/OOMetrics.html
 Object-Oriented Metrics

�� http://www.sbu.ac.uk/�csse/ami.html
 ami - Application of Metrics in Industry

�� http://www.dfn.de/�atw/bmbf/foerderprogramme/swt/SWT.html
 Initiative zur Förderung der Software-Technologie in Wirtschaft, Wissenschaft

 und Technik

�� http://www.iso.ch/9000e/forum.html
 The ISO 9000 Forum

�� http://ceswww.utexas.edu/sqi
 Software Quality Institute (SQI)

�� http://www.tiac.net/user/pustaver/
 The Software Quality Page

�� http://www.theriver.com/qa-inc/
 Quality America, Inc's Home Page

�� http://www.ele.vtt.fi/docs/aslehti/magaz_z.htm
 A primer for total quality in software development

�� http://www.nist.gov/quality_program/
 NIST Quality Program

�� http://www.quality.org/qc/
 Quality Resources Online

�� http://www.almaden.ibm.com/journal/sj33-1.html
 IBM Systems Journal - Software Quality

�� http://freedom.larc.nasa.gov/spqr/spqr.html
 Software Productivity, Quality, and Reliability N-Team

News Groups

�� news:comp.software-eng

�� news:comp.software.testing

�� news:comp.software.measurement

METRICS NEWS

VOLUME 2 1997 NUMBER 1

CONTENTS

Editorial ... 3

Call for Paper at the 7th Software Metrics Workshop 5

Position Papers ... 7

Initiatives ...21

New Books on Software Metrics ..25

Metrics including Conferences ...27

Software Metrics in the World-Wide Web29

ISSN 1431-8008

