Position Papers

42)
METRICSNEWS

Journal of the Gl-Interest Group on Software Metrics

N J

M easur ement

Assessment I mprovement

Editors: R. Dumke, C. Ebert, E. Rudolph, H. Zuse

Otto-von-Guericke-Univer sitat

- Position Papers

M agdeburg
The METRICS NEWS can be ordered directly from the Editorial Office (for

address see below).

Editors:

Reiner Dumke

Professor on Software Engineering,

University of Magdeburg, FIN/IVS,

Postfach 4120, D-39016 Magdeburg, Germany
Tel.: +49-391-67-18664, Fax: +49-67-12810
email: dumke@ivs.cs.uni-magdeburg.de

Christof Ebert

Dr.-Ing. in Computer Science

Alcatel Telecom, Switching Systems Division,
Fr. Wellensplein 1, B-2018 Antwerpen, Belgium
Tel.: +32-3-240-4081, Fax: 32-3-240-9935
emall: christof.ebert@alcatel.be

Eberhard Rudolph

Professor on Software Engineering

Hochschule Bremerhaven, FB2 System Analysis,
Mozartstr. 37, D-27570 Bremerhaven, Germany
Tel.: +49-471-26142, Fax: +49-471-207389
email: rudolph@oscar-e.hs-bremerhaven.de

Horst Zuse

Dr.-Ing. in Computer Science

Technical University of Berlin, FR 5-3,
Franklinstr. 28/29, D-10587 Berlin, Germany
Tel.: +49-30-314-73439, Fax: +49-30-314-21103
email: zuse@tubvm.cs.tu-berlin.de

Editorial Office: Otto-von-Guericke-University of Magdeburg, FIN/IVS, Postfach 4120,
39016 Magdeburg, Germany

Technical Editor: DI Erik Foltin

The journal is published in one volume per year consisting of two numbers. All rights reserved
(including those of trandation into foreign languages). No part of this issues may be
reproduced in any form, by photoprint, microfilm or any other means, nor transmitted or
trandated into a machine language, without written permission from the publisher.

Position Papers

© 1997 by Otto-von-Guericke-Universitdt Magdeburg. Printed in Germany

EDITORIAL

Thisisthe third issue of a new scientific journal in the field of software metrics and related
guantitative aspects, the

METRICS NEWS.

The title was chosen to reflect the Journals attempt to summarize recent software metrics
trends as position papers, chosen papers from our metrics workhops, and news (as information
about the software metrics research area in the world, new books and conferences). The
editors are working many years in the software metrics field and are specialized in
measurement frameworks, function point analysis, measurement theoretical view, and practical
applications.

The background of the METRICS NEWS contributors is the Gl-interest group on software
metrics founded in 1991. All members from the industry or academia are invited to present
their experience or research results in the area of software quality assurance, software metrics,
process management, software measurement frameworks etc.

The English language was chosen to reflect the international character of our research contacts
and results embedded in European initiatives.

The editors are grateful to the Otto-von-Guericke University of Magdeburg for publishing this
journal.

We hope that the new journal will be helpful to increase the awareness of the importance of
software metrics issues in the improvement of software development processes and products.

The Editors

' Position Papers

The annual Worshops of the German Interest Group on Software Metrics are related to the
main topics in the area of software quality assurance, software process and product
improvement and software evaluations based on theoretical and practical aspects of software
measurement. Some of the topicsin the last workshop were

the practical experiences in the application of metrics programs in an industrial
environment,

the analysis and use of object-oriented software systems,

the analysis and use of the function point method,

theoretical research of software metrics and metrics validation,

application of metricstools.

The 7" Workshop on Software Metrics was focused on the quality assurance of object-
oriented systems, practical experiences in application of software metrics and theoretical
aspects of metrics as software measures. The following papers have been presented:

Position Papers 5

Sneed, H. (SES Munich)®:
Measuring Reusability of Legacy Software Systems,
Zuse, H. (TU Berlin)?:
The Role of Measurement Theory in the area of Software Measurement,

Schwald, A. (IT Consulting, Munich)?:
Metrics, Poeple and Their Rolesin a Software Project,

Dumke, R. (University of Magdeburg)®:
Quality Assessment of Objekt-Oriented Software Devel opment Methods,

Schmietendorf, A. (Telekom Berlin)®
Metrics of Object-Oriented Software Devel opment Technologies,

Ebert, C. (Alcatel Antwerp, Belgium)®:
Quality Management of Software Process | mprovement,

Foltin, E. (University of Magdeburg)®:
Concepts of Metrics Data Bases,

Wuest, J. (IESE Kaiserslautern)®:
A Unified Framework of Coupling Measurement in Object-Oriented Systems.

Aninteresting panel discussion about the benefits, problems and risks of the metrics use was
another highlight of this Workshop.

The 8" International Workshop on Software M easurement will be held at the University of
Magdeburg and is organized by the German Interested Group on Software Metrics and the
Canadian Software Metrics Interest Group (CIM). The Workshop will be presented in the
MBone Video conferencing service and can be observed worldwide. The Call for Paper will be
published in the next Journal.

Measurement in Physics and Software Engineering

Part |

Horst Zuse, Technische Universitat Berlin

Abstract
In this contribution consisting of three parts we discuss the differences of measurement in physics and
software engineering measurement. Measurement in physics has a very long tradition and the
concepts of measurement there are clear. It is our impression that a comparison of measurement in
physics and software engineering can help to understand the problems in the software measurement
area in a better way.

K eywords

’ Position Papers

Measurement, physics, software engineering.

1 Introduction

Since software engineering measurement is not a well understood science today, we will
introduce some concepts of measurement in physics and compare them with measurement in
the software engineering area. For this reason we discuss some differences of measurement in
physics and software engineering. The genera question is. what is problematic in software
measurement? Can we learn from measurement in physics and can we transform this to
software engineering measurement? In [19] you also can find a more detailed discussion of this
subject.

One basic problem of every science ascribing itself to the characteristic empirical concerns the
meaning of experience. Namely, in the field of empirical science, theories as systems of
statements always refer to what can be experienced, in contrast to mathematics and logic,
where truth can be established independently of the nature of any reality. The function of
experience is therefore considered as a fina test of the validity of these statements called
science. Most scientists today agree upon the fact that observation always implies certain
assumptions, concepts, etc. - in short: that it is conducted by theory.

The question is why is software (engineering) measurement so problematic? One answer may
be, following Roche et a. [12], that software engineering is a highly complex process
producing highly complex products. Moreover, each project and its products tend to be
something of one off in nature, a point highlighted by Schneidewind as a difficulty in validating
a methodology [13]. Other problems are that people do not like to be controlled by software
measures. And, last not least, there is a lack of an intensive education of people in software
measurement regarding both: a theoretical framework for software measurement and a soundly
planning of experiments.

The mgor problem of measurement in software engineering, but also in the area of artificia
intelligence, is a skepticism of using numerical values because there is no satisfaction in the
interpretation the numbers and a semantic of the values is missing. This lack may be true in
some cases, but not generaly. The assignment of smple numbers to hypotheses without
knowing the empirical evidence of these numbersis a mgor mistake. The empirical evidence of
numbers can be characterized, among others, by several empirical conditions and scale types.
Numbers are elements of a scale, that means, they are subject of a homomorphic mapping of an
empirical to a numerical relational system and vice versa. Mostly, these facts are neglected.

Novertheless, we think, today it is widely accepted that software measurement is a valuable
technique for understanding, guiding, controlling and improving software development. It isan
interesting phenomenon that the Measure LOC and the Measures of McCabe [11] today till
are the most used and discussed software measures. The Measure of McCabe was defined for
single module complexity but also for the entire system complexity. The question is il
discussed whether the Measure of McCabe is a good or a bad measure. Another unsolved
guestion is whether the Measure of McCabe can be used as a predictor for software
maintenance attributes. We think the reasons for these discussion are the following: firstly,
there is a lack of education in the area of software measurement, secondly, many people
believe that software measurement is an easy thing, and thirdly, although there exists a proper
theory for software measurement - called measurement theory (see for that Zuse [15], [16],

Position Papers

[17], [18], Bollmann-Sdorra and Zuse [4], Baker et al. [3], Fenton et a. [5], [6]) - only a few
people consider and apply this theory.

Statistical methods are often used in the software measurement area. This is justified because
there are existing many empirical data. It is our view, that a theory of software measurement
and the application of statistical methods support each other.

2 Measurement in Physics and Software Engineering

In Part | only consider some general differences between measurement in physics and software
engineering. Inthe Parts Il and 11 we will demonstrate the differences with examples.

2.1 Measurement in Physics

Measurement in physics has a long tradition. In physics
guantitative laws are more important than qualitative laws.
In physics qualitative laws usually are considered as trivial.
Qualitative laws for the measurement of length, in the form
of the extensive structure, were developed as measurement
has been done successfully some hundred years. The &
problem of measurement of length was not the qualitative conditions. The problem was to
measure length with a high accurateness. In 1824, the English Government via a decree laid
down the length of ayard [7], p.262. A basis for that was the length of a pendulum that had a
period of oscillation of one second. There were a lot of conferences with contradicting
discussions about a normalized length. In 1875 seventeen nations signed a convention about
the measurement of length, and one hundred years later, more than fourty-four nations signed
the contract. Before this time, it held: Jedes deutsche Landchen / hat sein eilgenes Quéantchen /
eigene Male hat / fast jeder deutsche Saat. (Trandation by the author: Every German
country / had is own small quantity / own measures has / almost every German state). The
contracting discussion of length measurement were not based on the question: what is length?
It was a political problem.

In physics, mostly we have facts, which we want to measure. Humans are not directly involved
in this process because the measurement process mostly does not depend on the view of
humans. The discussion of empirical conditions plays a more important role in the social
sciences. For example, considering a resistor, the length, the height, the weight, etc. can be
measured. Empirical or qualitative conditions related to resistors mostly are not considered. In
physics we have standards and a well defined system of units.

In physics, very often density measures are used. The natural law

d=m/V,
where m is the mass, V the volume and d the density, is well known. It has been observed that
the relationship of mass to volume for homogeneous substances is equally. It is independent of

the size. This law was derived by the measurement of mass and volume. Thelawd=m/V isa
guantitative one, while the measurement of mass and volume are based on non-quantitative

Position Papers

assumptions. From physics we know the Law of Pythagoras and the famous formula: ¢ = & +
b’ . We have integers, like the power of two. This is also the case with energy: E = Y% m V2
Here we have V2 and not, for example: v*°. Another example is the formula

s=1gt?

which can be seen as a prediction model. From the Time t, the gravity g then Was s is
predicted. Do we have similar prediction models in software engineering measurement? In the
area of software measurement we do have real numbers in such formulas (not integers as in
physics), and density measures have another behavior in physics than in software measurement.
The dendity in software measurement is not independent on size.

On the Conference in Honor of H.v. Helmholtz and R.D. Luce: Foundations of Measurement:
The Theory of Representability and the Nature of Numbers, Kiel, Germany, November 1994,
the role of numbers in physics was a mgjor topic, as already discussed in [8], [1], [2]. Among
others, the question was discussed whether the numbers are in the physical objects, and the
task of scientist is to find them or to get them out of the objects. This is a very interesting
view, but it would be beyond this book to discuss it more deeply.

2.2 Measurement in Software Engineering

We mean, that the situation in software measurement is differently to physics. In the past,
software measurement mainly was seen from a quantitative view, too. Very often, the well
defined discipline of measurement in physics was stated as a standard or a model for software
measurement. An empirical impact of quantitative conditions or results of measurement was
not discussed, explicitly. That means, the situation of measurement in software engineering
was considered similar to physics. Qualitative conditions and the consideration of scale types
were left out. However, implicitly, authors combined quantitative results with empirical
statements. In 1974, Wolverton [14] did this with the Measure lines-of-code. He assigned the
empirical attribute productivity to the Measure LOC. The requirement of certain conditions for
software measures reflects impact of humans in the area of software measurement.

In the area of software engineering, we use so-called latent variables, like in the social sciences.
Latent variables are such like intelligence or aggressiveness [10], p.122. In software
measurement such latent variables are complexity, maintainability, etc. Maintainability of
software is analyzed with dozens of different measures. For example, all these measures are
used to quantify the term maintainability, but they are measuring different aspects of
maintainability. Length also can be measured with different measures, but these measures can
be derived by admissible transformation from the other ones. It is only the problem of
uniqueness.

Empirical views and measurement also are connected in the 1SO9126 standard. In 1991 the
1SO9126 standard [9] has been established by the 1SO-Organization. The result is the
following:

Position Papers

Functionality Reliability Usability
ISO 9126
Efficiency Maintainability Portability

Figure 2.1: The SO 9126 standard.

1SO9126 was established to characterize the quality of software. It took six years to develop
and define the qualitative statements above. Simplified, we can explain the software quality
attributes as follows.

ouhkhwdPE

Functionality:
Reliability:
Usability:
Efficiency:

M aintainability:
Portability:

Does the software satisfy stated needs.

How often does the software fail?

How easy is the software to use?

How good is the performance of the software?
How easy is the software to repair?

How easy is the software to transport?

These six software quality attribute are attributed with sub-attributes. We illustrate this here.

The task of software measurement is to
characterize the qualitative attributes of the
1SO9126 norm with software measures. Since
there does not exist a unique view, hundreds
of measures were created. Anaogous to
physics, there is the idea whether we can
compare a software quality attribute to a
norm. In physics we are doing this all the time.
Beam scales are used to compare masses of all

ouhkhwdPE

Functionality:
Reliability:
Usability:
Efficiency:

M aintainability:
Portability:

Suitability, Accurateness, Interoperability, Compliance, Security.
Maturity, Fault Tolerance, Recoverability.

Understandability, Learnability, Operability.

Time behavior, Resource behavior.

Analyzahility, Changeability, Stability, Testability.

Adaptability, Installability, Conformance, Replaceability.

kinds. In the area of software measurement, it is more difficult to find the Ur-meter in form of
amodule. In the software engineering area, very often correlation coefficients are used in order
to figure out relationships between variables. This is not the case in physics. Correlation
coefficients are used if the knowledge is poor.

Another important topic are the units. In physics, a well defined system of units exists. The
guestion is whether such a system of units exists in the software measurement area.

[10 Position Papers

In short: software measurement mostly deals with qualitative conditions, while measurement in
physics mostly address the quantitative aspects.
2.3 Measurement in Physics and Software Engineering — Counting

Measurement in physics and in software engineering is based on counting anything. We
illustrate this with the next picture.

Figure 2.2: Wooden boards.

Wooden boards can be counted. We can say: These are 24 wooden boards. We can assign a
unit to them and we aso can say: These are two Dozen wooden boards. That means, we can
transform the numbers and everybody knows what we mean. This transformation of numbers is
well known.

In the software engineering measurement area we also can count objects or entities. The next
picture illustrates this.

Counting Objects

Figure 2.3: Counting of nodes.

In the software engineering area we can count nodes in a flowgraph. The nodes are
representing executable statements in a program. We can count this nodes. We can say: These
program has 24 nodes. We also can assign a unit, for example LOC. We can transform LOC to
KLOC.

However, there are important differences of measurement in physics and in the software
engineering area.

Position Papers 11

Concatenation Operation
RSEQ

R1

T

R2

QT:A

Figure 2.4: Concatenation of two resistors in electrical engineering.
In physics or in electrical engineering we have resistors. In order to measure the resistance of a
resistor we can use an OHM-Meter. If we concatenate two resistors in a sequence, it holds for
the whole Resistor R consisting of R1 and R2 in a sequence the law:

R=R1+R2,

where R is the resstor consisting of both Resistors R1 and R2. We have here an additive law.
The question is whether we have such cases in the software engineering area, too.

P1

P1 P2 8

@ P1oP2
§ P2

5

Figure 2.5: Concatenation of two Flowgraphs P1 and P2 to Flowgraph P1 o P2.

The question is whether we can concatenate, for example, flowgraphs in the same kind as
resistors. If we can do this then the question is whether it holds:

u(P1 o P2) = u(P1) + u(P2)?
We denote with u a measure, for example a complexity measure. The statement P1 o P2 isthe
sequential concatenation of two Flowgraphs P1 and P2 to the sequence P1 o P2. u(P1 o P2)
means the application of the Measure u to the sequence of the Flowgraphs P1 o P2.

In the next edition of this journal we will show that there are existing similar cases in physics
and software engineering measurement, but important differences, too.

[12 Position Papers

References

[1]

[2]

[3]

[4]

[5]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Adams, E. W.; Fagot, R. F.; Robinson, R. E.: On the empirical status of axioms in
theories. of fundamental measurement. Journa of Mathematical Psychology, 7, 1970,
379-409.

Adams, E. W.: On the nature and purpose of measurement. Synthese, 16, 1966, 125-
169. Also in: Lieberman, B. (Ed.): Contemporary problems in statistics. New York:
Oxford University Press, 1971, 74-92.

Baker, A.L.; Bieman, JM.; Fenton, N.; Gustafson, D.A.; Melton, A.; Whitty, R.A.:
NATO Project 0343/88: Formal Foundations of Software Measurement. Report of
1989 Mestings.

Bollmann-Sdorra, P.; Zuse, H.: Prediction Models and Software Complexity Measures
from a Measurement Theoretic View. Proceedings of the 3rd International Software
Quality Conference, Lake Tahoe, Nevada, October 4-7, 1993.

Fenton, N.: Software Metrics. A Rigorous Approach, Chapman & Hall, 1991.

Fenton, N.; Pfleeger, S.: Software Metrics- A Rigorous Approach, Thomson Publisher,
1996.

Fischer, Ernst, Peter: Aristoteles, Einstein & Co. - Eine kleine Geschichte der
Wissenschaft in Portraits. Piper GmbH, Minchen, 1995.

Helmholtz, H. von.: Zahlen und Messen erkenntnisstheoretisch betrachtet. In:
Philosophische Aufsétze. Eduard Zeller zu seinem funfzigjahrigen Doctor-Jubildum
gewidmet. Leipzig: Fues Verlag, 1887, pp. 15-52.

ISO/IEC Standard: 130 9126 Software Product Evaluation - Quality Characteristics
and Guidelines for Their Use, 1991.

Kriz, Jurgen: Methodenkritik Empirischer Soziaforschung - Eine Problemanalyse
sozialwissenschaftlicher Forschungspraxis. Teubner Studienskripten, 1981.

McCabe, T.: A Complexity Measure. |[EEE Transactions of Software Engineering,
Volume SE-2, No. 4, pp. 308-320, December 1976.

Rochester, John; Jackson, Mike: Software Measurement Methods: Recipes for Success.
Information and Software Technology, 1994, Volume 36, No. 3, pp. 173-189.

Schneidewind, Norman F.. Validating Software Metrics: Producing Quality
Discriminators. In: Proceedings of the Conference on Software Maintenance (CSM91),
Sorrento, Italy, October 1991, and in: Proceedings of International Symposium on
Software Reliability Engineering, 1991.

Wolverton, RW.: The Cost of Developing Large-Scale Software. |EEE Transactions on
Computer, Volume C-23, No. 6, pp. 615-636, June 1974. Also in: Tutoria on
Programming Productivity: Issues for the Eighties, IEEE Computer Society, Second
Edition, 1986.

Zuse, Horst; Bollmann, P.: Using Measurement Theory to Describe the Properties and
Scales of Satic Software Complexity Metrics. SIGPLAN Notices, Volume 24, No. 8,
pp.23-33, August 89.

13

Position Papers

[16] Zuse, Horst: Software Complexity: Measures and Methods. DeGruyter Publisher 1991,
Berlin, New Y ork, 605 pages, 498 figures.

[17] Zuse, Horst; Bollmann-Sdorra, Peter: Measurement Theory and Software Measures. In:
Workshops in Computing: T.Denvir, R.Herman and R.Whitty (Eds.): Proceedings of
the BCS-FACS Workshop on Formal Aspects of Measurement, South Bank University,
London, May 5, 1991. Series Edited by Professor C.J. Rijsbergen. ISBN 3-540-19788-5.
Springer Verlag London Ltd, Springer House, 8 Alexandra Road, Wimbledon, London
SW19 7JZ, UK, 1992.

[18] Zuse, Horst: Foundations of Validation, Prediction, and Software Measures.
Proceedings of the AOWSM (Annua Oregon Workshop on Software Metrics), Silver
Fall State Park, Oregon, 1994.

[19] Zuse, Horst: A Framework for Software Measurement. DeGruyter Publisher, Berlin,
Hawthorne, USA, 1997, 755 pages.

[14 Position Papers

Metrics, People and Their Rolesin a Software Project

Andreas Schwald, Munich

Abstract

Technical and commerial goals of a project require the synthesis of multiple goals and different views
within a project. This is important for features which require evaluation based on personal
preferences. The shortcomings of subjective evaluation should be compensated by the application of
objective quality criteria which can be evaluated automatically. This position paper emphasizes the
necessity of complementary views and their articulation by persons in charge of a definite role within
the project. Quality metrics and other measurements are means for rational communication between
persons and groups representing different goals and complementary views. This interaction of views
is indispensable in the synthesis of a common set of accepted goals and their pursuit in the
development and assessment of software.

1 Introduction

Some time after the Olympic Games in Rome (10 gold medals and some 15 others for Italy, 9
gold medals and some 25 others for Germany) two young poeple (german and italian) had a
dispute over the virtues of their nations. The german’s question ,,Who made more medals?
was answered by ,,Gold medals - Italy!”.

This episode shows the importance of clear quantitative criteria for the decison of
controversial issues, and the implications of criteria selection.

For software metrics, this applies to the selection, goa orientation, and interpretation of
criteria, the definition of measurement rules, and their implementation in appropriate tools
supporting collection and analysis of metric data. It is easy to find astonishing examples of
software projects producing obviously useless results without violating the least of the
contractual obligations.

2 Roles, information needs, and measurable properties

.Programers and analysts have a restricted view-point of the software system under
consideration” [8]. This holds true aso for persons representing other roles in a project.
Example: Assessing the degree of completeness of a program component.

While a programmer is improving the performance and user friendliness of his component, the
project manager is not interested in ,,gold plating” (Boehm), since there is strong pressure for
completion in order to fulfil the contractual obligations. A QA person is rightly unwilling to
compromize the specified quality criteriy, while a particular user may be quite happy with a
rather restricted functionality well suited to his or her application.

The restriction to a narrow view according to a particular role is a fundamental surviva
strategy for poeple dealing with complex systems. However, this ,local“ behavior requires
compensation. Team building ams at a group comprising competent poeple which are in

15

Position Papers

charge of specific tasks (e. g. quality assurance or configuration management) and represent
the project goals related to their responsibilities. The qualification these experts and their
personal interest to properly fullfil their assignment will ensure appropriate consideration of
their views in the balance of multiple project goals.

Project goals are established by general quality requirements, standards, and by the consensus
of the interested parties. The project contract documents this agreement, all subsequent
decisions are based on this document. This framework protects and restricts particular views
and goals of interested parties.

In a more detailled view, the balance of project goals is not static. A contract may be
incomplete and subject to changes. Such changes occur due to many different reasons (e. g.
changes of environment, of technical or financial circumstances, new insights, new personnel
or shifts of persond interests and power, deadline pressure). In this process, team members
have different information needs in order to fulfil their tasks and to represent their views.
Striving for the general project goals means collection and comprehension of many specific
informations, and compromising between different views for every level of abstraction and for
every stage of the software process.

This adjustement of goals is vital for the success of a project. It is important to expose
problems to an open discussion. There are logical and persona dependencies between the
goals of a project and the persons defending them. These subjective influences are the driving
forces forces of a project - the may aso act as project impediments in arather destructive way.

This consideration of multiple goals leads to a modification of the well-known GQM paradigm:

| Persons/ goals |

\ \ / \// it
/ \X\ / \\

The selection of metrics should be goa oriented, i. e. satisfy the information needs of
responsible persons. The definition must be objective, i. e. independent from a particular view.
([2]: ,,An objective, or algorithmic, measure is one that can be computed precisely according
to an algorithm. Ist value does not change due to changes in time, place or observer.”) The
well-known tendency to supplement information gaps according to specific habits, interests,
and knowledge must be compensated by continuous adjustment of views which is based on
measurement and driven by the commitment of poeple who are responsible for accepted
project goals.

relevant for

3 Rational Communication

[16 Position Papers

3.1 Principles of rational communication (RC)

[9] discusses principles of rational communication for scientific discourse. ,, Communication
norms are not absolute, they depend on a value (goa). This value is striving for truth - to find
true statements and to establish valid norms. ... If the goal of communication is striving for
truth then certain conditions will hold for the communication. These principles and conditions
are consdered to be necessary conditions for rational communication. Rational
communication is based on interaction among two or more persons using linguistic utterances
referencing an object domain.” This discussion covers severa areas

- Poeple: Several persons are involved.

- Language usage: A ,text” is a sequence of sentences which assumes some background
knowledge. It is possible to infer common consequences from several sentences of a
text (together with the background knowledge and possibly some hypothetical
premises).

- Common base for understanding: The applicability of logic and semantics to the
sentences, and the application of the same set of rules by RC partners is a base for
understanding. Furthermore, the meanings assigned to an expression by the partners of
an RC must overlap. It isimportant to clarify and to discuss implicit assumptions, and to
unmask suggested suppositions. Well founded scientific results should be accepted.
However, in case of conflicting opinions, it is necessary to restrict the communication on
a narrower common base, or to consider such opinions to be hypotheses and to keep in
mind their hypothetical nature.

3.2 RC and Software

These RC principles provide guidance for dealing with different views. The clarification of
implicit assumptions, and clear recognition of hypothetical statements are vital for RC (and for
the success of a project). Enthusiasm without risk assessment may be disastrous. Many
statements related to software are hypothetical, even some empirically based assertions due to
possible errors and unclear interpretations. Some examples.

» Plans (requirements, estimates, specifications, ...) are hypothetical as far as they predict
future events. Within a contract, they are accepted standards.

» Test cases form a sample. Statements on program correctness are hypothetical or
restricted (to formally verified properties).

* A system description for a particular role (e. g. user manual) is incomplete,
complementary information (e. g. internal documentation, code) may be unavailable.

» The complexity of many software products is a reason for information gaps (e. g. for
casua users). Timing restrictions may necessitate decisions based on rather incomplete
information (e. g. preselection of software products).

* A new program version is the result of many fixes, changes, and enhancements.
Therefore, knowledge based on the experience with older versions becomes hypothetical.

» The relationship between measured attribute values (e. g. complexity) and a property of
interest (e. g. effort for and error rates of program changes) is hypothetical, since it
depends also on many other factors.

17

Position Papers

RC may compensate the tendency to narrow judgements, it will explicate the assumptions and
risks of hypothetical statements. Often, this will require a more precise formulation of a
statement, e. g. for ,Program P contains bugs.“ This may be stated more precisely, e. g.:
»According to user U’s report, dated 20-8-97, he experienced five failures of program P's
version 1.8 which was installed on workstation W two weeks ago.” Even this wording relies
on background knowledge, e. g. for the configuration of W and the role of B (normal use,
acceptance test, ...). Inherently imprecise statements like ,,about four weeks* need consistent
interpretation (probabilty and limits of acceptable deviations).

3.3 Approachesto objectivity: quantification and refinement (modeling)

Aiming at objectivity of measurements and assessments (independence from persons,
reproducibility; [2]: ,, The value of an objective, or agorithmic measure does not change due to
changes in time, place, or observer”) is important in order to achieve clear decisions based on
facts which are accepted also by the proponents of conflicting interests. Quantification of
attributes requires precise specification (e. g. ,,100 knvh* instead of ,,enormous speed”, ,,within
two hours* instead of ,as soon as possible’). For complex features, refinements (subgoals,
components, checklists, set of criteria) and modeling are required for the definition of
measurable attributes. [6] emphasizes the importance of models. ,Characterize the
environment to the necessary degree to understand the measurement goals, the experimental
design, and the data interpretation.” The specification of such models is a prerequisite for the
classification and definition of relevant attributes, for the definition of measures, and for
measuring procedures,

Refinement may address different layers and views, e. g. for portability: specification of arange
of platforms, design rules, standards for the use of programming languages and system
interfaces. Refinement does not necessarily imply quantification or a precise definition (e. g.
SO 9126: , Portability: A set of attributes that bear on the ability of software to be transferred
from one environment to the other ... adaptability, installability ...”). Refinement defers the
definition of unclear boundaries to a more detailed level, where it may be easier to clarify some
of the hazy issues. In this way, refinement may clarify the scope and the content of conceptsin
a particular context. Ambiguities exist in colloquial speech and technical language (e. g.
»Specification*). Understanding of diverging interpretations and sufficient commonality are
necessary for cooperation within a project.

Global ratings result from the condensation of informations, typically by the computation of
weighted means of attribute values for components (e. g. ,,90% completion of a program*
derived from ,,70% of modules accepted” and ,30% of modules in test*). Obviously, such
predictions based on statistical results are inappropriate for the identification of error prone or
difficult items which require specia attention. This type of information is appropriate for
poeple in charge of other tasks who are unable to go in the details, and for global statements
on a project or product - e. g. for an acceptance or a purchase decision. Sometimes, global
metrics or quantitative requirements result from bundling quite different attributes or
incongruent wishes of individuals.

Specification, modeling, and quantification are means of rational communication. They may
show the existence of implied assumptions and requirements. The purposes of metrics include

[18 Position Papers

* Propositions on the subject matter which are accepted by the interested parties (valid
standards or facts).

 Indicators for features of interest with respect to agreed or implied project goals
» Measurable goals and requirements

» Measures for project control

Measurement aims at objectivity, not necessarily at precision. Unprecise and hypothetical
statements may be necessary and useful information for preparing and supporting decisions.

4 Useful information
4.1 Decision support

The purpose of information is decision support. The level of precison and safety which is
required and achievable depends on the useful precision for the purpose in question, on
inherent sources of errors, on the precison of mesurements, the effort and time limits for
information gathering. View specific selection and weights of criteria should be explicated,
based on accepted requirements, and support the goals of a project in the whole. Decisions
should be based on true propositions, accepted standards, and well founded hypotheses.
Assessment and monitoring of the risks implied in the acceptance of such hypotheses is an
obvious requirement. Even precise measures may be error prone and open for different
interpretations. Qualification, experience, and goal orientation of experts are indispensable for
the interpretation of software and process measurements.

4.2 Collection and interpretation of software metrics

For severa basic software measures, there are serious definition and measurement problems.
They may depend an subjective views (e. g. self assessment, performance measurement) and
the influences of a particular environment (differences of organization, tools and techniques,
staff etc.). This applies in particular to the identification of early indicators for quality factors
(e. g. reliability, usahility). General experience, insghts from case studies, and statistical
evidence are applied to a new dSituation, which may be different with respect to important
factors. Some important problemareas:

1. Comparability of attributes for measuring similar objects, e. g. size measures (lines of
code, specification elements, pages, diagrams etc.) for texts in different specification and
programming languages.

2. Completeness and accuracy of raw data, e. g. for defects or program failures (definition,
counting of personal errors, flow of defect information) or for the accounting of
resources (e. g. alocation of working hours)

3. Kind of the relationships between attribute measures (e. g. flow graph complexity) and
quality factors (e. g. maintainability, reliability). A property of interest (e g.
maintainability) depends on many other attributes of a program (e. g. complexity of
interfaces) and other influences (e. g. configuration management, documentation quality,
staff availability).

19

Position Papers

4. Measurement of poeple (e. g. performance measurement). Controlled experiments and
daily experience show magor differences of personal performance indicators. However,
task assignment for team members according to individual capabilities may be more
helpful than emphasizing individual peformance differences.

Examples:
(1) A comparison of module complexity metrics [10] based on flow graphs reveals
substantial differences. Different proposals for measuring ,complexity” are
inconsistent even at the ordinal level.

(2) According to (Russel9l), the fault detection rate (#faults/h) is independent from the
ingpection intensity (LOC/h) in a rather wide range (150 to 750 LOC/h). If this
experience from a large project is generaly valid, then reliability predictions based on
the number of faults detected by inspections are rather meaningless.

(3) Portahility is defined by the ratio porting_effort / development effort.

[8] defines a portability measure based on program attributes. portability =
(#statements - #data base accesses*8 - #TP_operations*8 - #file accesses*4 -
#module_calls*2) / #statements

This may be a well designed and validated measure. It obviously excludes many
influences affecting the effort for porting a program, whereas the definition relies on
figures which are estimates rather than measures in the planning stage of a porting
project.

Therefore, software metrics should be used as indicators stimulating in-depth consideration of
features deviating from plans, requirements, or proved experience. ([4], p. 246) ,Perhaps one
of the greatest gaps in our knowledge, and a surprising one, concerns the relationship between
the nature of the software development process and the characteristics, particularly the
operational reliability, of the final product.”

4.3 The benefits of software metrics

In spite of these obvious problems, software metrics - carefully designed, measured and
interpreted with respect to clear goals - provide information which is more precise and more
reliable than other informations on the state of a project or the quality of a product.

o Software metrics are approximations to an objective description of software
characteristics. For some important attributes (e. g. program size, run time) precise
measurement rules are available. For quality characteristics, an approach including
refinement, modeling, measurement of criteria, and calculation of index values may lead
to an understandable and acceptable quantitative assessment.

» Definition of metrics presupposes careful modeling and definition of qualita criteria.

» Metrics focus attention; this may deviate attention from other unprecisely defined quality
characterigtics.

20 position Papers

» Metrics are indispensable for testing and acceptance of a product. They alow clear
statements on the fulfillment of requirements.

» Metrics may clarify quality requirements; this may lead to more redlistic discussions on
software quality.

» The definition of metrics which may be automatically collected is a prerequisite for the
application of measurements to large programs.

» Application of some measurement procedures (e. g. for function points) require in-depth
analysis of the underlying documents. This may lead to clarifications of requirments and
identification of risks.

» Congtructive actions aming at the fulfillment of quantitative requirements may imply
other improvements (e. g. completion of documentation, supplements to the test
environment).

The purpose of a measurement program is a set of metrics related to a set of criteria which
covers the important requirements and risk areas of a project. These metrics serve as a basis
for project planning and control within an organization providing the infrastructure for
measurement collection and analysis. Appropriate use of measurements will take into account
the different views, interests, and capabilities of poeple and organizations involved.

An important application area of software metrics is the analysis of legacy software. According
to [8], the computation of a large number of software measures (of a quality model) resulting
in a program quality profile is an important step for reengineering decisions. Such profiles
contain indicators of problem areas and information which supports estimates.

[3] gives an impressive example of the size of such reengineering problems. ,NSA (National
Security Agency, USA) spends many hundred millions of dollars annualy on software
development and maintenance. ... Pareto’slaw states that 20 percent of the code will contain
80 percent of the problems. Based on the 25 million lines of code formally analyzed to date, we
have found that 10 - 15 percent of the code will have 70 - 80 percent of the problems. For
NSA, Pareto’s law is closer to some 13 percent of the code accounting for close to 90 percent
of the problems, with some 2.5 percent of the total code accounting for close to 90 percent of
the most critical showstopper and functiona disconnect errors. This pathological code must be
identified for risk analysis.”

References

[1] Collins, W., Miller, K., Spielman,B., Wherry, P.. How Good is Good Enough? An
Ethical Analysis of Software Construction and Use. Communications of the ACM, Vol.
37.1, Jan. 1994, p. 81 - 91

[2] Conte, S., Dunsmore, H., Shen, V.. Software Engineering Metrics and Models.
Benjamin/Cummings, Menlo Park, 1986, 396 S.

[3] Drake, T.: Measuring Software Quality: A Case Study. Computer, Vol. 29.11, Nov.
1996, S. 78 - 87

Position Papers

21

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Fenton, N.: Software Metrics - A Rigorous Approach. Chapman & Hall, London, 1991,
337S.

Hetger, Marian (Ed.): Verantwortung, Wissenschaft, Forschung. Festgabe zum
20jahrigen Bestehen des Internationalen Forschungszentrums in Salzburg. Herder-
Verlag, Freiburg, 1981

Rombach, H. D.: Design Measurement: Some Lessons Learned. IEEE Software, Vol.
7.2, March 1990, S. 17- 25

Russell, G.: Experience with Inspection in Ultralarge-Scale Developments. |EEE
Software, January 1991

Sneed, H., Rothardt, G.: Softwaremessung. Wirtschaftsinformatik, Bd. 38.2, April 1996
und SES-Arbeitspapier (Juli 1997)

Weingartner, Paul: Normative Prinzpien und Grenzen rationaler Kommunikation. In [5]
S. 33-58

Zuse, H.: Software Complexity - Measures and Methods. DeGruyter Publisher, Berlin,
1991

2 Position Papers

Metrics of Object-Oriented Software Development Technologies
MOSET

Andreas Schmietendorf, Berlin Devel opment Center, Deutsche Telekom AG

1 [Initial Situation in the Berlin Development Center

Object-oriented software systems are playing an increasingly important role, particularly in the
field of telecommunication applications. The Berlin Development Center aso develops
application systems for the Deutsche Telekom TMN (Telecommunication Management
Network) platform and applications in the field of IN (Intelligent Network). Both types of
applications are already being developed using object-oriented technologies such as object-
oriented modeling in the analysis and design phase, or implementation with, for example, C++
or Smalltalk. The 1SO-9000 accredited Deutsche Telekom development centers recognized
early on the importance of using metrics. Since it was set up in 1992, the Berlin Development
Center has determined an increasing number of metrics such as function points, quantities such
as LOCs, the on-schedule implementation of applications, the percentage of project
management tasks, error statistics, user satisfaction, and business management key data within
the framework of the development projects, and has maintained associated empirical databases.
This is reflected in the current CMM (Capability Maturity Model) level of 3.4 . Above all,
these metrics provide Deutsche Telekom management with a practical control instrument.
Since metrics have, until now, been used predominantly in the field of structured development,
and are to be attributed more to the classical environment, it has been necessary to find suitable
metrics for optimizing the software creation process and also for developments that had been
carried out on an object-oriented basis.

2 Objectivesand Subject Matter of the MOSET Proj ect

The MOSET (Metrics of Object-Oriented Software Development Technologies) research
project is intended to provide a starting point for finding suitable measurement variables which
are actually capable of providing information for software developments that have been carried
out on an object-oriented basis, and which are cost-effective. In order to learn about the use of
metrics in object-oriented software technologies, the best option seemed to be a project which
used a small prototype to investigate all the software development phases. The various project
task groups were to involve project management, quality assurance and product
administration, as well as the actual development of the software from analysis through to
implementation. In brief, the most important objectives are as follows:

» Understanding a software development process that has been carried out on an object-
oriented basis, but not including the introduction and servicing of the software product.

» Application of tools for software development which are aso used by the Berlin
Development Center for implementing customer projects.

» Use of periphera tools such as a verson administration and a tool for generating
documents from the object model.

23

Position Papers

» Evaluating metrics programs which can then also be transferred to the subsequent
software production process at the Berlin Development Center.

» Using the Intranet technology of the Berlin Development Center for providing results to
enable a rapid exchange of information and to stimulate discussion about the results.

 Drawing up a tool-based project plan which defines milestones and contains
corresponding reviews to safeguard the progress of the project.

» Dividing the project into clear implementation units, with modeling and integration
carried out together.

Due to the limited implementation time, a collective brainstorming session to establish the type
of application to be created helped to boost the motivation of the project team. From several
ideas, a database-supported media administration system (2-level client/server architecture)
was chosen for the consultancy department of the Berlin Development Center. This records all
media of the field, orders new media, and enables employees of the consultancy department to
borrow established media. The framework conditions were defined as. use of an RDBMS
based on the SQL server (Windows NT), the executability of the client application under
Windows NT/95, and use of the MS help system. Development was carried out using Rational
Rose for object modeling (OOA/OOD) and MS Visua C++ for coding (OOP). WinWord was
used in conjunction with SoDA to create the documentation for partial generation from the
object model.

3 Edtimated Expenditurefor the MOSET Project

The expenditure should be estimated at the beginning of each project. This is the only way of
determining the implementability, the risks, the necessary resources, and the implementation
date, and, of course, of making a calculation for a quotation. The Albrechts metric is used to
estimate the expenditure at the beginning of the project, whereby values are determined both in
accordance with the classical stipulations (IBM 1979) and also based on the new procedure
introduced by Deutsche Telekom in accordance with IFPUG 4.0 (International Function Point
User Group). This latter procedure takes into account more recent software technology such
as, for example, graphical interfaces, or distinguishing between applications to be newly
developed and expansion projects, but it does not take into account object-oriented software
development. Both procedures yield values which clearly exceed the possibilities of the
MOSET project, whereby the latter procedure produced overal values that were dightly
lower. Since the timeframe of the project was predefined as approx. 6.5 PM, we were able to
carry out a back calculation based on an IBM function point curve which resulted in approx.
100 to 150 function points. There is of course the question as to whether the values
determined are applicable under the conditions of an object-oriented software development
carried out with the aid of class libraries and code generators. When this report was written,
approx. 60 % of the overall application had been implemented, which already casts doubt on
the function point values determined.

In accordance with [1], | believe it is necessary to introduce a correction factor which takes
into account the current status of the technology. In the case of object-oriented technology, in
my opinion, the code to be modified and the use of class libraries, which both feature in a
typical object-oriented development, should be taken into consideration. The generated code,

4 Position Papers

and the code frame generated from the object model, or else the use of the class or application
wizard under Visual C++, should also be taken into consideration.

The MOSET project was not intended to question the way in which function points are
determined, but merely to observe, from a critical point of view, their applicability in the
current form available for object-oriented software developments. Once the project is finished,
a follow-up calculation will be made in cooperation with the University of Magdeburg in order
to obtain an initial value for our own function point curve in relation to the object-oriented
development technology used.

In order to redlistically assess the productivity of the project team, and to be able to transfer
the project results to other applications, the relevant initial "know how” was gathered in the
form of a questionnaire. This information, gathered on a voluntary basis, was recorded and
structured as follows:

» General experience of software development and knowledge of object-oriented
modeling, implementation and relational database systems.

» Tool-specific experience such as working with the modeling tool Rational Rose, use of
Visual C++, or the administration and configuration of an MS SQL server.

* Project-related experience such as project management, using a configuration
management system, or working on projectsin ateam.

To keep a log of the dynamic course of the project as regards the time required for each
problem definition, these values were recorded daily by every project member. This means that
in the evaluation, for example, the expenditure ratio in the analysis, design and implementation
phases can be established.

4 Configuration Management and Determining M etrics

Nowadays, the commercial development of applications would be inconceivable without a tool
for version administration/configuration management (CM tool). This type of system supports
the consistent holding of files jointly processed during the course of the software development
project, whereby the type of file used for the setting and administration functions in the CM
tool is less important. Another aspect of using a configuration management is that it supports
the software error handling process.

In the MOSET project, the system ClearCase by Pure Atria was used as the CM tool. The
following illustration shows the dialogs for the version tree of an actua file and the text
comments for the particular version which can be specified when checking in or out.

ClearCase does not offer direct support for recording metrics, but it does however record, in
values, the total number of modifications made to a file, and the number of differences
following a comparison of the two versions within the version tree. Additional values for error
statistics such as, for example, the distinction drawn between versions produced as part of
error processing during acceptance and during normal operation these values must be counted
out given the current status of the product.

25

Position Papers

ﬂlf’:ﬂaliunal Rose - moset.mdl - [Class Diagram: Logical View / Main {read-only}]

] El File Edit View Browse Report Quewy Tools ‘wWindow Help =8| X
D\ (5= g eE ziwlalol 28 L= ool el el =] o
| . Wiiss_Arbeit Wediom Zeitsehrift 1B
j a Use CaseView Fgautor: CString="" Ttitel - Catiing = Tgisbn : Ctring = ™ L}
(3 Logical view Feinstitution : CString = ™ Fajahr: lang =0 Fghett_nr:int=0
+-{_J Companent View Bpwerlag : CString ="
L Deployment View \Q Baprers lona =1 A/
CO_Rom Bardeskriptort : CString = " Telekom_Sehrift
- - i) : CString = ™ -
Bovetrisbsnystem : Coting =" L ;g s ot : Ootring = e} —————] Beautor: Ctiing =

N)

Whestellung_loeschen)
| #bestellung_erfuelien) — Bf°h
i

Handbuch

ptri

File Edit Yiew Tools Window Help

-

E)
e
El

"I History of: ¥:\mo_vob\rose\moset mdl | _ (O] x|
File Edit Filter Display Optionz Help

Diate | User | Event Kind | Mame
@ Labels |
Comment I
0312497 101721 gudlat_d create veision ¥:-\mo_vob\rose\moset. mdl =
‘weitere Abstimmung des Modells mit der Implementation: die Get-Funklionen der Exemplar- und Mutzer-Klassel
fiir die Assoziation mit Ausleihe wurden in eine p igierte und nichtp. igierte Yariante geteilt.l
D as manuelle Nachziehen der von Rose generierten Coderahmen entfallt danit,
03/11/97 15:36:36 gudlat_d create veision ¥:Amo_vob\rose\moset. mdl
D as Modell wurde auf die prototypische Integration der Exemplar und Mutzer Klassen in die Moset &pplikation gel —
Nicht mehr nur die Attribute sondern auch einige Assoziationen wurden mit MFC-Klassen belet.
09/11/97 09:31:33 gudlat_d create vergion V:\mo_vob\rose\moset. mdl
Modell auf MFC umngestellt (z.B. char® -» CSking], einige kosmetische Yeranderungen [Layout
03/08/97 16:35:02 gudlat_d create version V-\mo_vob\rose\moset. mdl
@ Anderunn der Klassenstuktur der GUI-Komponente nachgezogen
09/08/97 08:31:01 audlat_d create version Y-\mo_vob\rose\moset. mdl
Unmlaute aus Funktionsnamen entfemt, Deskriptorattribut von char auf char31* gedndert hd
9 il | »
J @ Mo more events available 100 % 13 Evenl e
i | | 10|
Ready |View: schmietendorf_a_vul |Versions: 12 [Branches: 1 2

EﬂSlalll @ Explorer - V:mo_y... | ¥ Micosoft ‘word - D.. | ¥ Micosoft ‘word - D.. | Eﬂaliuna\ Fluse-mu...l 8 W¥:\mo_vobhiose - .. | T moset mdl - Version ..||@Histmy of: VA |w 12:55

[llustration 1. Version check of a processed file

Booch [2] considers the speed with which classes change to be a good yardstick for measuring
the stability of a software project. He evaluates an initia instability as normal, and considers
the gradual increase in stability as a good sign for a successful software development. The
elimination of a complete class tree in the fina stages, however, is seen as a problem. If the
CM tool is to support the recording of metrics related to this, a corresponding source
file/header file must be created for each class used.

Developers who lack project experience, as is the case with the MOSET project, often do not
immediately accept a CM tool system. Its use as regards the file system is transparent,
however, an overhead when checking in and out of each individua file, which is necessary
when the access changes can not be avoided. It can also make processing tasks more difficult
because the same files are required. The less the developers see themselves hindered by using
the CM tool, the more advisable it is to segment the problems of software development, since
it should be possible to process them independently of each other to a great extent.

In conclusion, | fedl that the following metrics may be able to be determined in conjunction
with a configuration management system:
» Modification statistics (modifications/time unit) for classes of the object model,

* Recording error statistics separately in acceptance and operation,

» Recording the extent of the modifications between the different version statuses,

* A metric for the sensible segmenting tasks that are largely independent of each other.

?6 position Papers

5 TheRequirements of Metrics Programs

The programs used to record metrics are selected according to the following criteria:

The measurement tool should be integrated as far as possible into the tool environment
aready being used.

Only minimal expenditure should be incurred by using the tool to determine the metrics.

Notations chosen previously (Booch or UML) for the object-oriented analysis and design
phase should be reflected in the metrics extracted.

Time-controlled automatic recording of metrics by instrumenting the configuration
management used from the processed files.

The selection of a measuring tool should also heed the question of servicing and
supporting new versions of the development environment used.

A measuring tool should also provide empirical values for the metrics used as an initid
value in order to offer support for an interpretation of the results right from the very

beginning.

Supporting an accumulation of the recorded metrics in an empirical database to be able
to use real experience for the evaluation.

Considering the improvements achieved in the software product by recording and
evaluating metrics.

6 MetricsProgramsfor the Analysisand Design Phase

Object-oriented analysis and design involved the use of the tool Metrics ONE (Alpha Version
1.1) and a Rationa Rose script "Martin Metrics’ to record metrics from a Rational Rose
model (Version 4.0). Hereit is appropriate to examine the details of the first tool named,
because it currently offers the most comprehensive approach for a Rational Rose object model
as regards the metrics determined.

27

Position Papers

Metnics OME - More Claszes Step 3 of 6

Mext, select operation and/ar attibute metrics to be included in the report by first selecting the
desired metricz, then optionally adding threshold values, Ay metnic that exceeds the entered
threzhold will be noted in the output.

- Metiic Threshald
— Operations

. : I_ Watch the average
[Public Operations 4 number of attributes az

Class Metrics ¥ Protected Operations I 3 an indicator of the
- shorage requirements far
1$> Attribiifes ¥ Frivate Operations thie runtime system, as

well 3z any persistent
data store.

#Operations() — Attributes
¥ Public Attibutes

PNR

¥ Protected Attibutes

<l
=1
L8
o
=
E_.
=
i
n

£ 2urick, | Wwieiter » I Abbrechen Hilfe

[llustration 2: Diaog for recording metric classes

The inquiry as to which metrics from the OO model are to be generated takes the form of 5
consecutive dialogs. It is also possible to establish threshold values for each metric, and if they
are exceeded, a specia note of this is made in the Excel tables which are created after the tool
has been executed. These threshold values are retained when the tool is used again, but it is not
possible to store or load them from an empirical database. For example, a threshold value
relating to "multiple inheritance” can be set to ”1” if this cannot be done in the subsequent
implementation, as is the case, for example, under Java. Classes with more than one “super
class’ are marked as such accordingly in the Excel table.

In the version available for the test, the metrics recorded refer to the following diagrams in
accordance with the UML notation:

» Class diagram with the metrics for stereotypes, persistent classes, abstract classes,
inheritance levels, the parent or child classes of a class, dependencies on and to other
classes, public, protected or private operations or attributes,...

» Use case diagram with metrics for abstract use cases, the relation to scenario diagrams,
class diagrams, superordinate parents, subordinate children, dependencies of the uses
cases on the actor,...

» Component diagram with metrics for public classes, implementation classes, sub-
components, generality, instability, afferent and efferent coupling.

An interpretation of the results is offered for the individual metrics as part of help. The other
types of diagram in accordance with the UML notation are not used. In my opinion, at least
metrics from the sequence diagram would be desirable here.

7 MetricsProgramsfor the Implementation

8 Position Papers

The Resource Standard Metrics (RSM) tool by M Squared Technologies, available under MS
DOS, Windows NT and UNIX, offers extensive possibilities for determining metrics related to
C or C++ source code.

Resource Standard Metrics For C & C++
Verson 2.50 (C) 1997 M Sguared Technologies Sat Sep 6 20:32:56
1997
License Type: Shareware Evaluation License

File: NutzerBulk.cpp
Date: Wed Aug 27 12:50:28 1997 File Size: 3867 Bytes

~~ LOC, Keywords and Metrics ~~

LOC ------mmemeeee- CaSE ..ovveeeaiennns 3
Lines of Code (LoC)... 94 bredk 3
Linesof just{ or} .: 16 if e 9
Linesof just (or) .: 0 st 7
Effective LoC (eLoC) .: 78 QOtOoevveenn 0
Lines --- return 1
Blank Lines............ 20 exit() _exit() abort(): 0O, 0,0
Comment Lines......... 19 struct, union.......... 0, O
Total Logical Lines..: 133 class, typedef 0, O
Total Physical Lines .: 129 template, friend...... 0, O
----------- Key Words -- Anaysis ------------
Code Statements;;: 40 #preproc, Macros...... 8, O
#include............... 4 ParenCount (,) 56, 56
#define. 1 BraceCount{,} ... 9, 9
CONSt ool O Bracket Count[,] 14, 14
do, while.............. 0, O ChargLine, Notices..: 30, 20
for v 1 Code, eCode Lines....: 70.7%, 58.6%
switch 1 Comment, Blank Lines.: 14.3%, 15.0%
default 1 Characters, Spaces...: 96.3%, 3.7%

End of File: NutzerBulk.cpp

[llustration 3: Metrics of a C++ source file (rsm -v NutzerBulk.cpp > NutzerBulk.txt)

The source files to be investigated are specified once the RSM command and the
corresponding options, which identify the types of metrics to be determined, and an ASCI| file
for recording the metrics on the relevant command line, have been specified.
The following is a short list of what | see as the most interesting options of the tool’ s variety of
possihilities.

* rsm -v, recording the most diverse code metrics (LOCs, key words,..)

* rsm -a, metricsrelating to the allocation/deallocation of memory

29

Position Papers

* rsm -b, benchmark, resource metrics when executing the RSM application
* rsm -c, cyclomatic complexity according to the definition of McCabe

* rsm -i, recording the C++ class definitions available in the source text

Unfortunately, concrete metrics in relation to object-oriented attributes of the source code are
not yet sufficiently supported. The MOSET project therefore had to rely on another tool which
was used to gather metrics such as the inheritance structure or methods/attribute statistics.

8 Consdering the Performance of the Application

The following should show a metric which can be gathered during the operation of an
application, and its use must be considered within the software development. Company-critical
client/server applications are often operated for the customers by operating companies. Not
least as a result of this fact, a quality agreement is required between the operator and the user
of the software application, as is a method of accounting the actual computer power used. One
way of ensuring that the quality of the performance is monitored as required is to use the API
preprogrammed triggers in the application via ARM - Application Response Measurement.

The objective of application operation should be the preventive monitoring of the performance
provided by application systems. If the user notices bad performance and uses it to measure
implicitly, it is actually too late. The ARM APl heavily advocated by the Computer
Measurement Group, and implemented by companies such as HP, Sun, NCR and IBM since
the end of 1996, permits instrumentation of the application for the response times to be
monitored in relation to defined transactions. To this end, the business transactions to be
surveyed (not to be confused with DB transactions) must be defined within the software
development. In my opinion, these requirements can be recorded in the OOA/D phase as atime
condition in the sequence diagram in accordance with the UML notation.

To identify a transaction which is to be monitored, the functions “arm_getid” and “arm_start”,
for identifying the beginning of a transaction, and “arm _stop”, for signaling the end of a
transaction, are used. This is equivalent to the transaction brackets used with relationd
database systems. If these brackets are used in database systems to ensure that a database
transaction is executed correctly, the ARM “brackets’ are used to measure the response time
in connection with a measuring tool such as HP MeasureWare. The measuring tool collects the
performance data for the transactions instrumented in this way and can, for example, introduce
a warning if response time requirements are not met. These demands must firstly be
incorporated in the database of the measuring tool in the form of thresholds to be defined,
whereby the data from the UML sequence diagram should be used.

9 Practical Experiencesusing a Prototype

In accordance with the experiment already performed by Capers Jones [5] to determine
“Which tools increase productivity ”, a smilar investigation was carried out as part of the
MOSET project during a 3-week introductory phase. We evauated productivity in relation to
consistent software development from analysis right through to implementation under the
conditions of using Rational Rose (OOA/OOD) and MS Visua C++ (OOP). The problem was

Oposition Papers

to develop an interface prototype for Windows 95/NT which has only one main window with
pull down menus for selecting 2 dialogs. The dialogs were to store some elements such as, for
example, pushbuttons, edit boxes and list boxes with very few functionalities such as, for
example, a message box (standard Windows output dialog).

For the solution to be successful, it was imperative that the same code frame generated in the
design phase from the object model under Rational Rose could be used within the
programming. Class definitions and derived objects for all components of the model had to be
visible both in the Rose model (firstly), and then in the Visual C++ source text, i.e. meeting the
requirement of consistency between object model and source code. These demands permitted
neither use of the Visual C++ code generators (application and class wizard), nor use of the
MFC class library, because Rational Rose is currently not capable of representing the classes
generated in this way in a suitable fashion for further processing. (At the time this study was
written, Microsoft had aready announced the availability of the tool Visua Modeller in a3
version, which isto offer this support under the application of Rational Rose.)

Summary of some of the more important results and conclusions:

» The implementation time was approx. 0.88 PM, during which period an object model (class
model and sequence diagrams), the source code (approx. 5000 LOCs) and program
documentation (18 pages) were created. The absolute value of the LOCs, Lines of Code,
(al code lines) can not be transferred to other software developments because many
software product components were omitted here intentionally (e.g. test documentation, user
documentation,...) which would otherwise have caused the LOC value to be considerably
lower.

* |In comparison to similar problems, the implementation time is very good. This can easlly be
substantiated by doing away with class libraries and code generators. On the other hand, the
availability of a consistent model for the subsequent servicing and maintenance of a
software product is a very important factor.

» For consistent software development, attributes of the subsequent implementation tool (e.g.
class libraries) must also be reflected in the modeling. Only then can one speak of a constant
development environment, otherwise changes in media result in a lack of efficiency and
lower quality.

» By using the CAME tool described above, it was aso easy for someone not involved in the
project to check the consistency between the object model and the implementation quite
easily. On severa occasions, by comparing, for example, the classes implemented with the
model classes, deviations were discovered and corrective action was taken.

10 Conclusion

As regards the metrics to be recorded, the project was oriented towards the [3] classification in
relation to process metrics, product metrics and resource metrics. It was clear that in a project
of short duration, with a small number of employees, and a relatively unrelated problem the
absolute values of the recorded process metrics can not be easily transferred to other projects,
or that some measurements, for example, maturity metrics, can not be made effectively at all.
Most of the metrics gathered therefore referred to product metrics and resource metrics simply
because the corresponding measuring tools were available.

31

Position Papers

The relatively low incidence of observing the software measurement by the manufacturer of the
development tool was surprising. Particularly with regard to our requirements (see point 5),
there was no question of tool selection. However, the integrated Visual Basic Script interface
of the Rational Rose modeling tool is very positive and supports, amongst other things, the
creation of individual tools for gathering metrics from the model.

The use of a configuration management tool, which could be used to take subsequent product
measurements on the different version statuses, proved to be highly significant.

The following are some of the metrics that were suggested during the course of the project:

» Due to the difficulty of carrying out consistent software development from analysis through
to implementation, | feel it is necessary that deviations are recorded in the form of metrics.
For example, comparing the objects, attributes and methods of the object model and
implementation could lead to a percentage ratio which reflects the degree of “consistency”.

» As part of the project, the overall application was segmented into small, clear units which
were integrated in the subsequent overal application. It would be advisable to have
increased support in the form of metrics that could show which segmentation granularity is
more expedient or what may lead to additional expenditure.

References

[1] Behrens, C.A.: Measuring the Productivity of Computer Systems Development Activities
with Function Points. |EEE Transactions on Software Engineering, 1993

[2] Booch, G.: Qualitdismale - Fachthema der OBJEKTspektrum 4/94 Seite 53. SIGS
Conferences GmbH, Minchen, 1994

[3] Dumke R.: Softwareentwicklung nach Mal3. Friedr. Vieweg & Sohn Verlagsgesellschaft,
Braunschweig/Wiesbaden: 1992

[4] Dumke R.; Foltin E.; Koeppe R.; Winkler A.: Softwarequalitat durch Mefdtools. Friedr.
Vieweg & Sohn Verlagsgesellschaft, Braunschweig /Wiesbaden: 1996

[5] Jones, C.: Assessment and Control of Software Risks. Y ourdan Press, New Jersey, 1994

2 Position Papers

Quality Assessment of Object-Oriented
Software Development Methods

Reiner R. Dumke, Erik Foltin
University of Magdeburg, Faculty of Informatics

Abstract

The efficiency of software development (i. e. to produce good software products based on an efficient
software process) must be controlled by a quantification of the software development methodologies.
The description of object-oriented (OO) methods or comparisons of some of these methods are
usually given by a listing of their features. These presentations describe the functionality of a
particular development method, but often fail to address quality issues like efficiency, maintainability,
portability, maturity etc. The quantification by means of software measurement needs a unified
strategy, methodology or approach as one important prerequisite to guarantee the goals of quality
assurance, improvement and controlled software management to be achieved. Nowadays, plenty of
methods such as measurement frameworks, maturity models, goal-directed paradigms, process
languages etc. exist to support this idea. This paper describes an object-oriented approach of a
software measurement framework aimed at evaluating OO development methods themselves. It
reasons the applicability of metrics-based evaluation as indicator for the quality assurance of the OO
devel opment process.

1 Introduction

The benefits of the use of the object-oriented software development techniques are widely
discussed in many papers ([12], [44], [47], [49], [70] etc.). However, most of these
discussions and presentations only enumerate the features of the OO development methods and
programming environments, e. g. in [34] as

Feature OOSA(Embly OMT (Rum- OOSA (Shlaer, OOA (Coad, OOA/D OORA
Name etal.) baugh etal.) Médlor) Yourdon) (Booch) (Firesmith)
Objects Yes Yes Yes Yes Yes Yes
Object classes Yes Yes Yes Yes Yes No
Reationships Yes Yes Yes Yes Yes Yes
Relat. Object

classes Yes Yes No No Yes Yes
Full integrated

submodels Yes No No Yes No No
Aggregation Yes Yes Yes Yes Yes Yes
Gen/Spec Yes Yes Yes Yes No Yes
Interobject

concurrency Yes Yes Yes Yes Yes Yes
I ntraobject

concurrency Yes Yes No No No Yes
Exceptions Yes No No No No Yes
Temporal

conditions Yes No No No Yes No

Position Papers

33

Interaction
details Yes No No No No
Attributes or
methods No Yes Yes Yes Yes Yes
Method clas-
sification No No No Yes Yes
etc.
The presentation by Khan et al. [52] gives the following table of OO features.
OOP language feature C++ Object Pascal Smalltalk CLOS
Abstraction Instance variables Y Y Y Y
Instance methods Y Y Y Y
Class variables Y N Y Y
Class methods Y N Y Y
Encapsulation Attributes public,private public,private private reader,writer
protected accessor
Methods public,private public,private public public
protected
Moduls files units none packages
Inheritance multiple single single multiple
Polymorphism single single single multiple
Generic units Y N N Y
Strongly typed Y Y N optional
Metaclass N N Y Y
Class library (# classes) > 300 <100 > 300 <100

Of course, these features are essential with respect to the implementable semantics of an
object-oriented system. But the enumeration of feature is often not sufficient to explain about
the size, complexity, and quality characteristics of the implemented products or of the
development process itself. We do not find enough information about the process maturity and
process quality that gives reasons for choosing a specific method. Hence, we will discuss some
essential aspects for a metrics-based object-oriented method evaluation [26].

2 Evaluation and Metrication of one OO Method - An Example
2.1 The General Approach

The principal ideas of this measurement framework are given in [24] and are suited to
understand and to quantify the chosen the object-orientated method. A standardized metric set
for OOSE does not yet exist (only a metrics definition standard [45]). Therefore, it is necessary
to define metrics and to analyze them. The validation of this metric set is the main problem in
the application of software metrics. The software measurement is directed to three main
components in the (object-oriented) software development (see also [35])

Position Papers

» the process measurement for understanding, evaluation and improvement of the deve-
lopment method,

» the product measurement for the quantification of the product (quality) characteristics
and validation these measures,

* the resource measurement for the evaluation of the supports (CASE tools,
measurement tools etc.) and the chosen implementation system.

Some main ideas and some short results of an application of the Software Measurement
Laboratory of the University of Magdeburg (SMLAB) is given in the following (see aso
http://irb.cs.uni-magdeburg.de/ sw-eng/us/).

2.2 The Process M easurement

The chosen OO software engineering method is the Coad/Y ourdon approach (described in
[21]). It begins with the transformation of the problem definition into a graphical
representation with an underlying documentation. The documentation contains all information
that cannot be presented in the drawings. The drawings (which are possible in some variants)
and the documentation congtitute the OOA model. In afirst evaluation of this method we can
establish the following goals of the process measurement and the realized activities:

How we can measure the object definition process? This question leads us to the first step
of the software development - the problem statement. We need a computational stored
problem definition to measure the object definition.
My
Hy

\ <HTML>
<HEAD> <TITLE> project title </TITLE> </HEAD>
<BODY>
<H1> section title </H1>
3 text with different fonts
with names and notions

/ with dates

/ with picture relations

6 /DL> <DT> ... description ... </DL>
 file contents

u
134
 or
" list elements
/ or

u
My
U5

" GBODY> SHIMLS

The SMLAB problem definition must be accessible to all members of the software engineering
team and the document itself is an essential source for many outputs such as milestones or an
overview for some administrational purposes. Therefore, we decided for a html file set of the
World-Wide Web Intranet as a living document system. The elements of our problem
statement are a list of contents (as problem description, constraints, given situation, functional
requirements, management requirements (controlling and quality)) and a list of components (as
notions, names, dates, pictures, and (hypertext) relations). An implementation of a
measurement tool to measure the problem definition (PDM) was necessary [38]. A more
detailed list of life cycle metrics typesis given in the following (see also [24]).

Position Papers 35

PROCESS LIFE CYCLE METRICS

¢ Problem definition metrics ¢ Implementation metrics
kinds of problem definitions e generation level
used standards for problem definitions * averagecode quality level
tool-based level e test metrics
stability metrics « performance metrics

+ Requirement analysis and specifi-cation metrics « digtribution level

¢ flow level from the problem definition + Maintenance metrics

average participatory level ¢ error management metrics
team structure ¢ changeability metrics
development methods metrics ¢ extendibility metrics
level of (cost) estimation methods ¢ tuning metrics
integration level ¢ reliability metrics
test cases metrics « configuration control metrics

+ Design metrics
automatization level
knowledge-based level
class) library metrics

® reusability level

How we can measure the OOA/OOD modd itself? The OOA model must be ‘open’ for
measurement. This is the case because the models of the used CASE tool - the ObjecTool - are
stored in a set of files in an interpretable descriptive language. So, the measurement tool
OOM [73] was implemented to measure the OOA model. The evaluation of the OOA step
proved a missing inheritance documentation and a rather small and not very helpful critique
generated by the tool that is only directed to an object/class symbol. Further, the estimation of
effort, costs and quality is not possible in this development phase without prior knowledge
about similar projects (a general problem in the OO software engineering).

m, mg

Ny

n

i documentation

myg class name

| |» attributes

services
// .

The OOD step ensures a full continuity with the OOA step. It extents (or updates) the OOA
model with respect to the chosen implementation environment, i. e. by including libraries for
the redlization of the user interface or data storage engines. The resulting OOD model is the
primary model used later in the maintenance phase. Hence we do not have a method
independent specification. There is also no mechanism provided to relate the design to the
object-oriented implementation (programming) system. Therefore, some form of browsing the
OOP system is required in the OOD phase. To support this activity we have implemented the
OOC tool for browsing in the Smalltalk class library [68]. In general it is necessary to
guantify the management activities based on the following metrics [24].

mg

\ subject

m,

—

PROCESS MANAGEMENT METRICS

6 position Papers

L4

Project Management Metrics:
* milestone metrics
O number of milestones
O number of proved requirements per
milestone
O controlling level metrics
e risk metrics
O probability of resources availa-hility
O probability of the requirements
validity
O risk indicators (long schedules,
inadequate cost estimating, excessve
paperwork, error-prone modules,
canceled projects, excessve schedule
pressure, low quality, cost overruns,
greeting user requirements, excessve
time to market, unused or unusable
software, unanticipated accep-tance
criteria, hidden errors)
O application risk metrics
« workflow metrics
O walkthrough metrics
O tracesbility metrics
0 variance metrics
¢ controlling metrics
0 szeof control elements
O sructure of control elements
0 documentation level
O tool application level
* management database metrics
0 dataquality metrics
O management data complexity
0 datahandling level (performance
metrics)
0 visualization level
0 safety and security metrics

Quality Management Metrics:
e customer satisfaction metrics
0 characteristics Size metrics
O characterigtics structure metrics
O empirical evaluation metrics
0 data presentation metrics
e review metrics
O number of reviewsin the process
O review level metrics
0 review dependence metrics
O review structure metrics
O review resources metrics
¢ productivity metrics
0 actua vs planned metrics
O performance metrics
0 productivity vs. quality metrics
« efficiency metrics
O timebehavior metrics
O resources behavior metrics
O actua vs planned metrics
¢ quality assurance metrics
0 quality evaluation metrics
O error prevention metrics
0 measurement level
0 dataanalyssmetrics
Configuration Management Metrics:
« change control metrics
0 szeof change
0 dependencies of changes
O changeinterval metrics
O revisonsmetrics
« version control metrics
O number of versions
O number of versions per customer
O verson differences metrics
O releasesmetrics (version of
architecture)
0 datahandling level

How we can measure the OOP system? Here we must choose a special OOP system or an
OOP language. The ObjecTool is intended to support C++ or Smalltalk implementations. The
evaluation of this phase indicates that a direct re-engineering of the OOD based on experience
of the OOP is not supported by the tool.

M, M,

countAllSubclasses : aClass
'count all subclasses and point it into a stream’

| subs |
M / subs := aClass allSubclasses.

8 'without the metaclasses'
subs := subs reject [:sub |sub isMeta]. \

/ " subs size M,

M7
M
M, >

Therefore it is very likely to introduce maintenance problems at this stage. The knowledge of
the existing OOP systems or libraries is one of the main obstacles for an efficient OO software

Position Papers 87

engineering. The measures added in this development phase are mainly code measures. For the
quality measurement of the process we use the development complexity (see [DKFW 96]) to
assess the used methods and tools and their structure. Other measures (performance etc.) have
not been included in this first approach of development complexity evaluation. The
measurement tools used in this sample evaluation were implemented in the same method and
programming language to reduce development complexity. We have implemented a C++
measurement tool [56] in C++ and a Smalltalk measurement extension [Heckendorff 95]. The
given description of the process measurement is a good example for the method understanding.
Some missing tools for the completion of an measurable OOSE method on this basis have been
designed and implemented. In general, the following measures help to quantify the maturity of
the development process [24].

PROCESS MATURITY METRICS

+ Organization metrics

personal structure metrics (characterigtics of the development teams and hierarchy, CSCW level, staff experience)

management metrics (existence or level of the project, quality and configuration management)
+ Resources, personnel and training metrics

development team metrics (experience, efficiency, flexibility)

training’ s metrics (cycles of courses, necessary enrollments)

availability of computer resources

brainstorming metrics
+ Technology management metrics

evaluations of the technology level

technology replacing metrics
+ Documented standards metrics

standards application metrics (IEEE, ANSI, national etc.)

number of used standards (for documentation, life cycle, reviews, and maintenance)
+ Processcontrolling metrics

¢ management support metrics

productivity metrics

efficiency metrics

process quality metrics

actual vs. planned metrics (especialy error estimation etc.)

traceability measures
+ Data management and analysis metrics

data management level (metrics data base, eval uation techniques etc.)

use of statistical methods metrics

visualization level metrics

2.3 The Product M easurement

For product measurement the measure mutations were anayzed, for example the number of
notions/names in the problem definition (#notions/names) was related to the number of defined
classes in the OOA/OOD model and in the implementation. Other measurements relate
adjectives/adverbs to class attributes or variables, verbs to the classes services or methods and
dates/constraints to the model documentation and implementation. We can see the essential
approach in analyzing the mutations of the p, m, and M measures. According to [46], the
evaluation of the product quality in every development phase is defined as comprehensihility,
clarity and usability of the problem statement on the basis of the measures use frequency,
availability, size and structure; the completeness, conformity and feasibility for the OOA/OOD
phase based on measures consistency, performance, size and structure; and the
understandability, stability and effort for the OOP phase on the basis of measures testahility,
size, structure and reusability. Most of these measures are based on an ordinal scale and can
therefore be used to classify the achieved quality. The general metrication of the software
product is summarized in the following table[24].

8 position Papers

Size Metrics:
number of elements
O linesof code

O number of documentation pages

0O etc
development metrics
O number of test cases

O consumption of resources metrics

size of components
O number of modules/objects
O average size of components
Architecture Metrics:
components metrics

O number of (language) paradigms

O pat of standard software

O qudity level
architecture characteristics

O opensystemlevel

O integration level
architecture standard metrics

O used standards metrics

O pat of standardization

Structure Metrics:

component characteristics

O number of structure elements

O part of component per structure element

O average connection level
structure characteristics
O composition level
O decomposition level
O component coupling metrics
O treestructure metrics
psychological rules metrics
O orientation for structure width
O orientation for structure depth
O visudization level
Quality Metrics:
functionality metrics
suitability
accuracy
interoperability
compliance
security

O

I s |

2.4 The Resource M easurement

PRODUCT METRICS

reliability metrics
0 maurity
0O fault tolerance
O recoverability
usability metrics
O understandability
O learnability
O operability
efficiency metrics
O time behavior
O resource behavior
maintainability metrics
O andyzability
0O changeability
0 stahility
testability
portability metrics
0 adaptability
O instalability
O conformance
O replaceability

Complexity Metrics:

computational complexity metrics
agorithmic complexity
informational complexity
data complexity
combinatorial complexity
logical complexity
functional complexity

logical complexity metrics
structural complexity
flow complexity
entropic complexity
cyclomatic complexity
essential complexity
topologic complexity
harmonic complexity
syntactic complexity
semantic complexity
perceptiona complexity
organizationa complexity
diagnostic complexity

ooOooogoo

=]

psych

OoOooooooogoooo

One essentia aspect in the introduction of OO software engineering are the initial measures of
the chosen resources (CASE tools, measurement tools programming environment etc.). In
accordance with our validation aspect we can quantitatively evaluate the usefulness of the
chosen object-oriented programming system. The evauation of C++ or Smalltak/V for
Windows for example shows functional characteristics and we can expect a lot of maintenance
effort. The metrication aspects of the software development resources are given in the

following [24].

RESOURCES METRICS

Position Papers

Personnel Metrics:

4 programming experience metrics
¢ programming language experience
¢ development methods experience
¢ management experience
4 communication level metrics
* teamwork experience

¢ communication hardware/ software level

« persona availability
4 productivity metrics

¢ dzeproductivity

« productivity statistics

¢ quality vs. productivity
¢ team structure metrics

« hierarchy metrics

¢ team stability metrics

Software Metrics:
+ performance metrics
* method productivity

¢ programming language productivity
¢ development environment level

2.5 Conclusions

¢ paradigm metrics
¢ development method trends
¢ programming languages trends
¢ paradigm quality

+ replacement metrics
* leve of software portability
« software development complexity

Hardware Metrics:

+ performance metrics
« computer performance
* network performance
* benchmarks
¢ performance profile
+ reliability metrics
¢ MeanTimeto Failure (MTTF)
¢ Mean Time Between Failure (MTBF)
¢ MeanTimeTo Repair (MTTR)
¢ Mean Recurrence Time (MRT)

Mean Waiting Timein Error States (MWTE)

+ availability metrics
¢ timeavailability
e security congraints
* local availability

39

Briefly stated, the metrication of a development method has to include the definition/
application of (object-oriented) software metrics for the elements/components of the method as
well as the workflow of the requirements/elements along the development phases and life cycle
activities. A simplified description is given in the following based on the experience from our

SMLAB project [29].

Note, that the presentation covers only the evaluation of the product structure and

architecture metrication aspects.

"0 position Papers

Problem definition (PD)
(as HTML document system):

verbal text T

Oy
Shh s: <HTML>
<HEAD> <TITLE> project title </TITLE>
</HEAD>
<BODY>
611y e <HI> section title /H1>
2 text with different fonts
- T ith names and notions
/ with dates
bing / with picture relations
Sl /051_» <DT> ... description ... </DL>
 file contents
Nied / or
on list elements
4 or
Ops / ..
Op, </BODY> </HTML>

notions adjectives verbs ~—_ = _—

PD/OOCA
/ | \ OOA model in the Coad/Yourdon approach specification
specif. (drawing element): indicators
classes attributes seryices

sm

5
smg

Ny

n

m, class name

|, attribates

/ | 7 services

i

tm, m,

sm,

sm,

1
\ subject
tm,

5

designed classes,

attributes, services OOD modéel in the same approach
organiz. (the same drawing el ement):

cl., attr., serv.

impl. classes .

_— attr., serv. Implementation in Smalltalk
reused (a class method):

cl.a.s. newcl. attr.

indicators

countAllSubclasses : aClass
‘count all subclasses and point it into a stream'
| subs |
subs := aClass allSubclasses.
'without the metaclasses'

subs := subs reject [:sub |sub isMeta). } \
“ subs size

4

Position Papers

In afirst approximation the following indicators are used to characterize the aspects typical to
OO0 software engineering in the given development method. The specification indicators

as

 class definition indicator (CDI) as
number of defined classes per number of notions,
(CD|SMLAB: 002)
 attribute definition indicator (ADI) as
number of defined attributes per number of adjectives or predicates,
(AD|SMLAB: 003)
* service definition indicator (SDI) as
number of verbs or adverbs per number of defined services,
(S:)|SMLAB: 006)

The design indicators as

* class modification indicator (CM1) as

number of organizational classes per number of all designed classes,
(CN“SMLAB = 033)

 attribute modification indicator (AM1) as

number of organizational attributes per number of all designed attributes,
(AN“SMLAB: 022)

» service modification indicator (SM1) as
number of organizational services per number of all designed services,
(SVHSMLAB: 021)

And the implementation indicators as

» classimplementation indicator (Cll) as
number of new implemented classes per number of designed classes,
(C| |SMLAB = 031)
 attribute implementation indicator (All) as
number of new implemented attributes per number of designed attributes,
(A| |SMLAB = 051)
» service implementation indicator (Sl1) as
number of new implemented services per number of designed services,
(S |SMLAB = 022)

41

We want to stress the point that these indicators are intended to reflect relations over all
development phases in a special workflow manner, both for the characterization of the product
type (degree of the class reuse, for instance) and of the process efficiency (i. e. degree of the

automatization).

3 Recent Work in OO Software M etrics

*2 position Papers

3.1 General Approaches

The recent work in software measurement for object-oriented software development can be
subdivided in:

o datigtical analysis of elements of an object-oriented development system
(Smalltalk-80) by Rochache [77]; of a C++ communication system by Szabo and
Khoshgoftaar [53]; or for different metrics and different C++ libraries and Eiffel
programs by Abreu and Melo [3],

* metrics set definitions by Abreu and Carapucain [1] for C++ with the two vectors
category (design, size, complexity, reuse, productivity, and quality), and
granularity (system, class, and method); by Binder in [9] as a set of C++ metricsto
measure encapsulation, inheritance, polymorphism, and complexity; or by Arora et
a. in [5] for real-time software design in C++, by Dumke et al. in [DFKW96] for
al phases of the object-oriented development, and by Lorenz and Kidd in [66] asa
metrics set that can be used for the C++ language and Smalltalk,

* OO aspect measurement by Ott et al. in[7] or by Lee et al. in[61] or by Hitz and
Montazeri in [44] or by Han et a. in [40] of class coupling and cohesion; or by
Bieman in [58], John in [50], and Pant et a. in [72] to measure reusability, or by
Chung et a. [18] to measure the inheritance complexity, or to support object-
oriented testing (Chung and Lee in [19]) and maintenance (Lejter in [63]),

» information theoretical approaches like the measure of conceptual entropy by
Dvorak in [31] or the cognitive approach by Henderson-Sellers et al. in [43] with
the landscape idea along the method routes or the learnability aspects in the use of
classlibrariesin [62], and

» validation of enclosed approaches by Chidamber and Kemerer in [17] as an
approach of metrics definition based on a measurement theoretical view (with
“’viewpoints’ as empirical evaluation), the extension of these measures by Li et al.
in [65], the (algebraic) analysis approach of Churcher and Shepperd in [20], and
the investigations of Zusein [89] and [90].

The grey areas in the following simplified object-oriented software development scheme
indicate the shared existing metrics approaches.

object-oriented object-oriented object-oriented
problem analysis and design implementation
definition specification O OOoP
00D | | |

O

Position Papers

OO0OA | | |
| | existing class
hierarchies or
organizational libraries
information ©

43

existing OOP
system

a >

3.2 Metricsfor OO Systems

For a narrowly-focused presentation of the existing OO metrics we use our general metrics

classification [24] as

PROCESSMETRICS

PRODUCT METRICS

RESOURCESMETRICS

Maturity Metrics

- organization metrics

- resources, personnel and
training metrics

- technology management

metrics

- documented standards

metrics

- process controlling metrics

- data management and

analysis

Management Metrics

- milestone metrics

- risks metrics

- workflow metrics

- controlling metrics

- management data base

metrics

- quality management metrics

- configuration management

m.

Life Cycle Metrics

- problem definition metrics

- requirement analysis and
specification metrics

- design metrics

- implementation metrics

- maintenance metrics

Size Metrics

- elements counting

- development size metrics

- size of components metrics
Architecture Metrics

- components metrics

- architecture characteristics
- architecture standards metrics
Structure Metrics

- component characteristics
- structure characteristics

- psychological rules metrics
Quality Metrics

- functionality metrics

- reliability metrics

- usability metrics

- efficiency metrics

- maintainability metrics

- portability metrics
Complexity Metrics

- computational complexity
metrics

- psychological complexity
metrics

Personnel Metrics

- programmer experience
metrics

- communication level
metrics

- productivity metrics

- team structure metrics
- Software Metrics

- performance metrics

- paradigm metrics

- replacement metrics
Hardware Metrics

- performance metrics

- reliability metrics

- availability metrics

Based on the recent work on OO metrics, we can establish the following metrics to evaluate
the OO products and the processes including some empirical evaluations.

* position Papers

Position Papers

Process maturity metrics: (0)
Process management metrics. (4)

person-days per class (PDC)
class <40 [66])

change dependency between classes
(CDBC) (transparency principle [44])
cognitive complexity (CCM) (case study
based [14])

time to fix the known errors (TKE) in
minutes (minimizing principle [41])

(product

Process life cycle metrics: (10)

conceptual specificity (OOCM)
(difference principle [31])
conceptual consistency (OOCM)
(difference principle [31])
conceptual distancy (OOCM)
(difference principle [31])
number of scenario scripts (NSS)

(transparency principle [66])

unit repeated inheritance (URI) testing
(test coverage Cn, n>2 [Church 94])
number of methods overridden (NMO)
(transparency principle [66])

number of methods inherited (NMI)
(transparency principle [66])

number of methods added (NMA)
(transparency principle [66])

number of modifications requests (MR)
(minimizing principle [41])

time to implement modifications (TMR)
(minimizing principle [41])

Product size metrics. (17)

number of abstract classes[27]

number of object/classes [27]

total number of (class/instance) attributes
(NIV, NCV [66])

total number of (class/instance) serviced
methods (NOM, [65]; NIM,NCM [66])
(Smalltalkiniia = 22* #classes [60])
number of object connections [27]
number of message connections [27]
number of the subclasses [27]

number of the subject domains [27]
code/text lines of method [27]

length of attribute name [24]

number of ADTs defined in a class
(DAC) (transparency principle [65])

45

number of semicolons in a class (SIZE1)
(case study [65])

number of attributes + number of local
methods (SIZE2) (case study [65])
number of root classes (case study = 3

[59])

e number of key classes (NCK)
(completeness principle [66])

e number of support classes (NSC)
(completeness principle [66])

* number of subsystems (NOS)
(transparency principle [66])

Product architecture metrics. (2)

e verbatim reuse (VR) (optimization
principle [8])

* generic reuse (GR) (optimization

principle [58])

Product structure metrics. (22)

average number of attributes per class
[27]

average number of services per class (not
more than 20 [66])

average number of object connections
per class [27]

average number of message connections
per class [27]

maximal depth of the inheritance (DIF)
(applica-tioniiia 3[17])

method hiding factor (MHF) (initial 19,6
% [2])

attribute hiding factor (AHF) (initial 79,7
%[2])

method inheritance factor (MIF) (initial
735%[2])

attribute inheritance factor (AlIF) (initial
56,2%[2])

polymorphism factor (POF) (initial 6,5
%[2])

coupling factor (COF) (initial 10,8 %
[2])

number of children (NOC) (initial 0.9
[16])

coupling between object classes (CBO)
(applicationinitia 1.3 [16])

response for a class (RFC) (initial 10
[16])

lack of cohesion (LCOM) (initial 4.1
[16])

*6 pogition Papers

average code/text lines of methods
(Smalltalk/Viniia = 3 [87], Smalltalk=8,
C++=241[66])

strong functiona coheson (SFC)
(exampl€sero 0.18 [7])

|-based coupling (ICP) (exampl€semo
[61])

|-based cohesion (ICH) (exampl€semo
[61])

strength of cohesion as part of operations
that apply one ADT domain (case study
in C++: 26% [40])

method coupling (non-coupling (nc),
concealed coupling (cc) (only directly
operation use), partial coupling (pc)
(also general operation use), open
coupling (oc) (also domain use) case
study in C++: nc=20%, cc=10%,
pc=45%, oc=25% [40])

locdity of data (LD) (transparency
principle [44])

* percentage of commented methods
(PCM) (transparency principle [66])
» problem reports per class (PRC)
(empirical criteria [66])
Product complexity metrics. (8)
o weighted method per class (WMC)
(initial 10[17])
» weighted attribute per class (WAC)
(method evaluation case study [79])
* leveraged reuse (LR) (optimization
principle [8])
* subjective assessment of complexity
(SC) (ordinal: 1...5[41])
* message passing coupling (MPC)
(transpa-rency principle [64])
e number of tramps (NOT) (method
evaluation case study [79])
o operation complexity (OC) (case study
=785[19])
 attribute complexity (AC) (case study =
2.2[15])

 computing cohesion (CH) (maximum= 1 Resource personnel metrics: (1)
[Wech 96]) classes per developer (CPD) (empirical
Product quality metrics. (6) criteria [66])
e understandability (= average number of Resource software metrics: (2)
attributes per class, average LOC per « paradigm related development time

method) (maximum reducing [6]) (case study: OO vs. procedural [62])

* average length of « violations of the law of demeter (VOD)
classed/attributes/methods names (method evaluation case study [79])
(general mnemonic aspects) Total number of OO metrics: 72

» test order for class firewal (CFW)
(case study: 192 stubs per test order
[57])

* number of known errors (KE) during
testing (minimizing principle [41])

3.3 Conclusions
The charts below characterize the facilities and the situation in the OO metrics area. Note, that

the charts provide only an approximate overview about the metrics situation. We use pc for the
process metrics, pr for the product metrics, andrs for the resources metrics.

System Model Granularity

for the class icon for the drawings/ for the whole system
scenarios ‘ ‘

Position Papers ar

N
—__/ -
Hmetrics #metrics Hmetrics
50 —— 50 —— 50 —4—
40 —— 40 —— 40 —_
30 - 30 - 30 —_
20 {1 20 | 20 —_
10 _| 10 _| 10 _{
[|
pc pr rs pc pr rs pc pr rs
Life Cycle Phase Related
OO0OA OO0OD OOP
#metrics Hmetrics #metrics
50 —— 50 —— 50 ——
40 —— 40 —— 40 —_
30 - 30 - 30 —_
20 {1 20 | 20 —_
10 _| 0 _[10 1
n I - - 1
pc pr rs pc pr rs pc pr rs
Measurement Area Related
(model-based) metrics (empirical-based) measures
#metrics Hmetrics
50 —— 5 T
40 —— 0 ——
30 - 30 ——
20 1 20 ——
10 _| 10 4
| | I |
pc pr rs pc pr rs

Furthermore, we can establish the following general characteristics of OO software metrics:

* most of the metrics are not language independent (some of them are especialy
C++ related),

"8 position Papers

most of the OO metrics are metrics and not measures (they are relations or
guotients of OO characteristics),

» theempirical evaluations are divided into

[0 not available (only feashility test of the metric for intuitive (quality)
aspects),
agenera principle of minimizing or maximizing,
case-study-based as sample initial values,
experience-based as classification or evaluation values for a quality *’area’’,
unit including ratio scaled forms,

I B A

» comparing the metrics set with our product metrics classification tree yields a lack
of knowledge especially in the following areas
[very few documentation metrics,
O rare architecture metrics,
O only afew empirical evaluations for the quality-oriented metrics are given;

* some metrics are given in functional form (#methods = 22 x #classes) or tuple
form (understandability = (average #attributes, average L OCethod)),

» the OO metrics are defined for different kinds of development components but
not for monitoring the development process over time,

» the metrics are mostly used for an assessment but not for measurement-based
controlling,

* ingenera, the given OO metrics are not really object-oriented themselves.

Last but not least the following quote on the general situation in software measurement also
applies to the OO metrics area [75]: ‘’Researchers, many of whom are in academic
environments, are motivated by publication. In many cases, highly theoretical results are never
tested empirically, new metrics are defined but never used, and new theories are promulgated
but never exercised and modified to fit reality. Practitioners want short-term, useful results.
Their projects are in trouble now, and they are not always willing to be a testbed for studies
whose results won't be helpful until the next project.”’ Based on this experience, we defined an
object-oriented measurement framework that will be described in a short manner in the next
section.

4 A General Object-Oriented M easurement and Evaluation Framework
We define a genera software measurement framework with the following components (see
also [24], [29], [28]):

4.1 Measurement Choice

This step includes the choice of the software metrics and measures from a general metrics
class hierarchy (including the process, product, and resources measurement) with the

49

Position Papers

following contents (derived from an analysis of the SQA literature and standards) (see aso
3.2).
Software Metrics

process metrics product metrics resources metrics
maturity life cycle size Ztecture guality personne hardware
management structure complexity software

(see above for detailed classification)
The second part in the measurement choice is the definition of an object-oriented software
metric as a class/object in the Coad/Y ourdon approach manner with the default contents as

» attributes: the metrics value characteristics, and

* services: the metrics application algorithms.

4.2 Measurement Adjustment

The adjustment is related to the experience (expressed in values) of the measured attributes for
the evaluation. The adjustment includes the metrics validation and the determination of the
metrics algorithm based on the measurement strategy.

The strategy can be model-based measurement (e. g. metrics based on the control flow graph;
service form: count, execute), direct measurement (such as execution time, storage size,
service form: read the (operating) system dates and/or execute), evaluations (as classfication
of tools, or process level identification; service form: evaluate), and estimations (as formula-
based execution of software characteristics; service form: estimate). In estimation the software
measurement results are comprised in the estimation formula.

The following table gives an overview of the validation problem.

software develop- measurement theoretical view
evaluation (empi-
ment component model (statistical analysis) model

rical) criteria

0 pogition Papers

design |
documents flow graph
costs
drawings call graph’
effort
charts text schemata)
g1ade
source code structure tree
quality _
AN N
test tables code schemata
actuality
etc. | etc. |
etc.

SCALE empirical
. relative
ON classification tree
™ AN
factorrcriteria
[ON tree
cause and effect
ADJUSTMENT diegam
o
CORRELATION decision tree
€etc.

@ @aﬂon

abstraction

metrics

(internal) metfics

VALIDATION __ hetriGtion >

measures

The steps of the measurement adjustment are

 the determination of the scale type and the unit,

the determination of the initial values of the metrics based on prior experience or
an assessment,

the use of these values as favorable values for the evaluation of the measurement
component,

The measurement adjustment in our example is realized by the Prolog metrics tool (PMT) [55]
and in the Smalltalk measure extension [42] in the following way. The tool starts with an
evaluation of a chosen piece of software (in Smalltalk a part of the system itself). The obtained
measures are used as initial empirical evaluation criteriato define ‘acceptable’ quality. Hereisa

51

Position Papers

simple example to further explain the idea of measurement adjustment. An application of a Java
CAME tool [74] for JAVA “’standard’’ libraries gives the following selected results:

» average number of methods in a JAVA class:. 10,

» average lines of code of a JAVA class method: 11.4,

» average number of parameters per method: 1.3.
This values can be used as evauation criteria (limits) for a ‘good’ Java application. One Java
application of our Measurement Laboratory (a measurement data base interface [37]) can be
described in a classical manner with the following values:

« total lines of JAVA code: 1320,

* JAVA classes: 25,

» average number of methods per class: 12,

» average number of parameters per method: 0.88,

» average lines of code per methods: 4.04, etc.
In general we see a conformity of our Java application with the evaluation criteria.

4.3 Measurement Migration

The migration includes refinement and the tracing of the metrics ‘mutations’ throughout the
development phases for the given development paradigm, e. g. metrics splitting or
transforming for different levels of granularity. Thus we define metrics as ‘quality agents’ in
the software development process. The activities of these agents are reasoning on the software
development complexity [29] that is based on the product or project dependency, the
development methodology dependency, the basis software dependency, the devel opment team
dependency, the company area dependency, and the time dependency of the developed
software components.

It is necessary to cover both directions in the measurement and evaluation paradigm for all
components. An example that is described in [23] is

phase: Problem OO0 analysis OO design OO implementation
definition

Number Of Nupiber Of
NumberQ

P2 position Papers

Notions SpecClasses DesgnClasses
ImplClasses

It shows an adaptive metric class NumberOfClasses for the primary phases of an OO
development. In the same manner ‘traces from adjectives and predicates to the
NumberOfAttributes or from verbs and adverbs to the NumberOfServices can be defined.

Further, it is necessary to repeat the determination of the ‘environmental’ metric values in time
intervals to alow for a tuning of the favorableValues and their conditiona variations as
validityConstraints to guarantee the achievement of selected quality aspects. Note, that the
migration may require a repetition of the adjustment step.

4.4 Measurement Efficiency

This step includes the instrumentation or the automatisation of the measurement process by
tools. It requires to analyze the algorithmic character of the software measurement and the
possibility of the integration of tool-based ‘control cycles in the software development
process.

The acronym of our framework is measurement choice, adjustment, migration, and efficiency
(CAME). We use the same acronym (with another meaning) for the tools supporting our
framework [22].

A digest of this framework is given in the next figure. It includes the extension of the metric
class to include the facilities necessary to evaluate object-oriented software development.

M easur ement Choice: Lthe static backaground |

(" SoftwareMetricClass
metrics attributes which
confents the valule aspects choice from the general metrics
metrics services for handling class hierarchy
the metrics valuesin the

\—measurement framework _J
M easur ement Adjustment: Lthe empirical evaluation |

SoftwareMetricClass
value measur e char acteristics
scaleType
validity aspects unit

Position Papers

initialValue

favorableValues

execute
count
estimate
evaluate
adjust
assess

M easur ement Migration:

\

value
scaleType
unit

migration aspects

L initialValue

/f SoftwareMetricClass

valueMutations

favorableValues
validityConstraints

\\

adjust
assess

\
\\ tune

tracking

execute/count ...

kinds of metric calculation

53

the behavior model

7

M easur ement Efficiency:

services functionality:

// SoftwareM etricClass \
value

scaleType

unit
valueMutations
initial Value
favorableValues
validityConstraints
execute/count ...
adjust

assess

tune

tracking
transform

=

EE—————— Message

connection

| the supporting tools

execut value \
count the
estimatey initialVaIue/
eval uat
adjust the favorableValues

tune the favorableVal ues and the validityConstraints

tracking the valueMutations
transform the value (with unit and/or scaleType)
present the value by display or indicate

5 Process Evaluation of Chosen OO Software Development M ethodologies

5.1 Evaluation Foundations

assess the value relating to the favorableVal ues and the
validityConstraints in the scaleType and the unit

The evaluation includes the general product, process and resources measurement aspects for

the OO development methods themselves as

¢ OO method product evaluation:
* gize
 architecture,
 structure,

>4 Position Papers

e quality (functionality, reliability, usability, efficiency,
portability),
» complexity;
¢ OO method process support evaluation:
* maturity,
* management (project, quality, configuration),
» lifecycle
¢ OO method resource evaluation:
» personnd (team structure),
» software (paradigm, replacement).

maintainability,

On the other hand we must consider the general components of an OO development

methodology as (see also [47], [69], [85] and [82])
* theoretical foundations,
» symbols and techniques,
o (CASE) tools,
» standards.

Hence, we must consider the following main areas for a metrication of an object-oriented

development methodology:

0000
00O

4 7 bility of the symbols and notations
.00
.-00
OOoD OO0- [T ?
* the tool support level
T ?
OOP / __\—— ? e the standardization level
Thediscusson in [80] inciudes thar ~activity- Mernodologies focus on modeling

workflow evaluation local evaluations evaluation background

* thelevel and the uniformity of the
? theoretical foundations

* the uniformity and general applica-

activities instead of modeling the commitments among people’” and that *’ advanced workflow
management systems allow mobile clients”’. First workflow measurement ideas can be found in

[32]. However, they are aimed at only one issue - the complexity.

A recent description of local evaluations is given in section 3 of [51]. Metrics related to the
text (size and readability) are also used in the specification and design phases [54]. Loca
evaluations may be considered as the ‘' classical’’ measurement approach. A general concept is

55

Position Papers

given in [12] and [13]. The main idea of this approach is the technology delta principle. The
framework includes the following phases related to a given (exemplary) result:

evaluation framework evaluation result example

candidate technology(ies

Descriptive
Modeding
Phase policy enforcement

Experiment communication
Design Phase O

experiments and
evaluation criteria

interface
management)
Experimental operating
Evaluation Phase system
I
technol ogy assessment @ rcTE
O CcORrRBA

The background evaluation should be used as indicator for the evaluation of all aspectsin the
software process.

In following we will discuss the workflow evaluation based on so-called quality agents with
the ingredients of the local and background evaluation aspects.

5.2 Software Quality Agents

The quality agent was based on the idea of the (mobile) intelligent agent in the area of
distributed systems and networks. Mobile agents are computational processes which are

6 pogition Papers

capable of moving from node to node around a network [4]. They may be considered as a
natural extension of the object-oriented programming philosophy to include features which are
tailored to distributed control.

Whereas a mobile agent helps to manage the performance of the network processes, the quality
agent controls the software product or process qudlity in a given software development
environment. The idea of the software quality agent is opposite to the total quality
management (TQM, see [69]) which want to address the quality assurance in a wholeness
manner. The TQM has practice relevance for assessment, whereas software agents are suitable
for the process controlling. The quality agent has the following characteristics

* it incorporates quality knowledge as a set of metric¥measures based on the
measurement choice step of our framework,

» decision rulesfor the action or reaction of the agent based on the empirical (initial)
evaluation values of the chosen metrics (as result of the measurement adjustment
step) are defined,

* it is able to navigate in the software development environment based on the
measurement migration step of our framework,

* it provides visualization/presentation forms based on the measurement efficiency
step.

The (product) quality aspects based on 1SO 9126 [46] are used as a guide for empirical
evaluation. The product functionality and reliability and the process maturity and life cycle
aspects are controlled by the requirement workflow agents. These agents include the duality
of the functionality as characteristic of the implemented product and the given development
method. The product maintainability and portability, the process management and the resource
personnel and software aspects should be served by the complexity workflow agents.
Complexity means software development complexity as described above. A visudization is
given in the following figures which include examples of development components (OOA
model, OOD review, and C++ program) with their different polygons related to severa
complexity aspects.

devel opment
time related

team related OD review
(extension of the i) methodology related| (extension polygonc: +
given team of the given mathod set)
C++ program

< polygoncop
company relat
(use of extern product/project related

componertts) (kinds of applications)
OOA modéd basis software related polygonooa
(variance

The product size, structure, architecture, usability, efficiency and complexity, the process
management and the resource software performance aspects should be described by the
component workflow agents. These agents observe the specification, design and
implementation components defined by the used development method. In the following table
we define the concrete agents contents and characteristics for the development paradigm
evaluation.

Position Papers

57

Efficiency Metric)
components: doc’s, charts,
code, library, repository etc.

gina method description)
favorableValues: m
service: count of components

numberOfCharts

(Product Architecture, Com-

plexity Metric)

charts: ERM, Petri Nets,
State Trans., DFD etc.

values: 0,1,2,...,n
scaleType: ordina
initialValue: m (see above)
favorableValues: m
service: count of charts

number Of Symbols
(Resource Software Metric)

symbols: class/object icons,
structural icons etc.

values: 0,1,2,...,n

scaleType: ordina

initialValue: m (from the ori-
gina method description)

favorableValues: m

service: count of symbols

numberOfRules
(Process Management Metric)

rules: statementsfor the de-
finition of the components

values: 0,1,2,...,n
scaleType: ordina
initialValue: m (see above)
favorableValues: m
service: count of rules or
development principles

valueMutations. may be
changed from one deve-
lopment phase to another

validityConstraints. some
of the counting compo-
nents require a continuity
aong the devel opment
phases

Softwar e Agent Choice Adjustment Migration Efficiency
Requirement kindsOf Requirements values. 0,1, ..., 4 valueMutations: reduction evaluation level:
Workflow (Process Life Cycle, Product scaleType: ordina dongthelifecyce - monolithically,
Agent Functionality Metric) initialValue: 4 validityCongtraints: full - differently
kinds:‘functiond’, ‘quality’, favorableValues: <3: no pro- functiona requirements re- presentation: four
‘system’ (platform: hard- and | ject, =3 (ind. ‘funct.’): in- duction in the spec. phase, bars with colored
software), “control” (project complete, = 4: complete system requirement reduc- part of the requi.
planning) service: count of kinds tion in the design phase reduction
tracesOf Requirements values. [0, 4] valueMutations. quotient evaluation level:
scaleType: ordina should remain constant (=1) - passing,
(Product Reliability Metric) initialValue: 1 validityCongtraints: amis- - interrupting
favorableValues: 4 (ided) sing requirement indicates presentation:
traces: #requirements bet- service: execute median requ. asingularity; milestones colored indication,
ween two related phases passing of the 4 types above are the measurement points of the anomalies
storageOfRequirements values: [0, 4] valueMutations: can be evaluation level:
scaleType: ordina changed dong the life cycle - verba /textud,
(Process Maturity Metric) initialValue: 1 validityCongtraints: the sto- - formal/andlyzable
favorableValues: 4 (ided) raged requirements obtain presentation: sto-
storage: #requirementsin service: execute the median of the | aongthe life cycle ahigher rage attributing of
acomputationa form storage requirement kinds dongthe | topologica binding to the the method com-
lifecyde method components ponents
Complexity similarityOfMethods values: ‘continuous’,'similar’, valueMutations: the simila evaluation level:
Workflow ‘transferable’, ‘stand done’ rity can change aong the - approach related,
Agent (Product Portability Metric, scaleType: ordina lifecyce - components rela-
Resource Software Replace- initialValue: ‘stand done’ validityConstraints: the esti- ted
ment Metric) favorableValues: ‘similar’ mated val ues are depended presentation:
methods: SA, OO, Petri Nets, service: estimate the change on the given tools and tech- estimation per dev-
ERM, JSD etc. to the new (OO) methodology niques of the new method elopment phase
varianceOfPlatforms values:‘fixed','various, free’ valueMutations. can be evaluation level:
scaleType: ordina changed dong the life cycle -computer related,
(Resource Metric) initialValue: “fixed' validityConstraints: the -architecture related
platforms: mainframe, PC, favorableValues: ‘free’ (ideal) value ‘fixed isasoidea presentation:
WS, distributed etc. service: evaluate method dep. if it is given before gppropriate
kindsOf Applications values: ‘defined’, ‘free’ valueMutations: can be evaluation level:
scaleType: ordina changed dong the life cycle - paradigm related,
(Product Architecture Metric) initialValue:’ free validityConstraints:‘ defined’ - resource related
favorableValues: ‘free’ can aso be favorable in the presentation:
application: IS, Red-time etc. service: eval uate method dep. given environment gopropriae
changingOf Teams values: ‘splitting’,’ indiffer- valueMutations: can be evaluation level:
ently’, ‘reducing changed dongthe life cycle - temporary group,
(Resource Personnel Metric) scaleType: ordina validityConstraints: - permanent group
initialValue: ‘indifferently’ the find vaue is the maxi-
teams: spec., test, quaity etc. favorableValues: ‘reducing mum of the estimation du- presentation:
service: estimae ringthelife cycdle gopropriate
differingOf Components values: 0,1,2,...,.k valueMutations. can be evaluation level:
scaleType: ordina changed dong the life cycle - intern implemen-
(Process Management Metric) initialValue: 0 validityConstraints: ted or planned,
favorableValues: 0 the fina vaue results from - extern (impl./pl.)
components: (trademarked) service evaluate method de- cumulative phases related presentation:
tools, (involved) standards etc. pendent vaues gppropriate
Component number Of Components values: 0,1,2,...,n
Workflow scaleType: ordina
Agent (Product Structure, Usability, initialValue: m (from the ori-

evaluation level:
opposite com-
ponents,

- similar com-
ponents

presentation:
distance presen-
tation depending
on the similarity

uring the life cycle

5.3 Methodology Related Evaluations

8 pogition Papers

As a first application we used these agents to assess OO development methods. We have
chosen seven well-known OO development methods. The assessment includes a typical class
icon from each method to give a small impression of the features. Then we present the metrics
values of the particular method. The first assessed method is the Coad/Y ourdon approach
OOA [21] with the development steps OOA, 00D, and OOP.

classicon

class connections
whole-part object

i

/
(undetl Gg))

docunpdntation
class nam¢

____attributes/ /

/~

services

NN

TT

phases. OOA, OOD, OOP
steps per phase: 5 OOA, 4 (human
interface, task,

data, problem domain
OOD, code

frame generation
service description: verbal, state transition
diagram

| ‘ .
subjects

component)

guantitative method characteristics

Requirement workflow:

» kindsOfRequirements. 2 (‘functional’,
‘system’; monolithically)

» tracesOfRequirements. PD - OOA: 0,
OOA- OOD: 2, OOD-OOP: 1,
median: 1

o dtorageOfRequirements:. median: 1
(textual)

Complexity workflow:

» gmilarityOfMethods. ‘stand alone

» varianceOfPlatforms. ‘various (PC,
Unix-WS)

» kindsOfApplications: ‘free

» changingOfTeams:. ‘indifferently’

o differingOfComponents. 2 (OS,0O0P
language)

Component workflow:

* number OfComponents. 5 (doc,
drawing(s), tem-plates, critiques, code
frames)

 numberOfCharts. 2 (classes, state
transition dia- gramm)

* numberOfSymbols: 7 (3 boxes, 4
connections)

» numberOfRules: 67 (principles)

The next one isthe OOD method of Booch [10] with the following characteristics.

classicon
class connections
(uses, instantiates, inherits,
metaclass)

N

|

attributes

services

]

subclass

diagrams. object (symbols for main
program,

Position Papers

specification, subprogram, package, task
and
generic forms), state trangtion, system
process,
system block, timing and module
guantitative method characteristics

Requirement workflow:

» kindsOfRequirements. 2 (‘functional’,
‘system’; monolithically)

» tracesOfRequirements. PD - OOA: 0,
OOA- OOD: 2, OOD-OOP: 1,
median: 1

» storageOfRequirements:
(textual)

Complexity workflow:

o gmilarityOfMethods: ‘similar’ to modul
concept

median: 1

59

 varianceOfPlatforms: ‘various

» kindsOfApplications: ‘free

» changingOfTeams:. ‘indifferently’

o differingOfComponents. 2 (OS, OOP
language)

Component workflow:

» numberOfComponents. 3 (doc.,chart(s),
code)

* numberOfCharts. 6

e numberOfSymbols. 30 (13 boxes, 17
connec-tions)

* numberOfRules. 4 (genera activity
descriptions)

The approach from Robinson et a [76] is defined as hierarchical object-oriented design
(HOOD). An assessment of this method is given in following.

classicon

class (hierarchy) connection

hvd
7 N

kind class name

meassal
connectl service

class diagram as. class hierarchy (HDT),
class intern structure and class refinement

kernel: program design language (PDL)

software requirement document (SRD) for
functio-

nal consistency
requirement to object)

(relational table:

guantitative method characteristics

Requirement workflow:

» kindsOfRequirements. 2 (‘functional’,
‘system’; monolithically)

» tracesOfRequirements. PD - OOA: 0,
OOA- OOD: 2, OOD-OOP: 2
median: 1.3

» storageOfRequirements:
(SRD, analyzable)

Complexity workflow:

* gmilarityOfMethods. ‘stand alone

o varianceOfPlatforms. ‘fixed (Ada
related)

» kindsOfApplications: ‘free

» changingOfTeams. ‘indifferently’

 differingOfComponents. 2 (OS, Ada)

Component workflow:

» numberOfComponents. 6 (SRD, doc.,
class dia-gram(s), design tree, PDL
codes, Ada code)

* numberOfCharts. 2(object diagram,
design tree)

* numberOfSymbols: 6 (1 structured Box,
5 con-nections)

» numberOfRules; 21 (9 general and 12
specia principles) and 54 keywords of a
PDL

median: 1.3

50 position Papers

For the approach of Wirfs-Brock et al [88] - defined as responsibility-driven design (RDD) -

we obtain the following assessment.

classicon

Subsystem |
classn
attributes

servifgs+—

1%

transactipn

classn
attriby

[conddes—

message

connection

class cooperation
diagrams. class hierarchy (with the class
relations:
is-kind-of, is-analogous-to, is-part-of),
class co-
operation (with:
knowledge-of, de-
pends-upon), Venn diagram for the
responsibili-
ties

is-part-of, has

quality rules for the design: suitable number
of classes, subsystems and responsihilities

guantitative method characteristics

Requirement workflow:

» kindsOfRequirements. 3 (‘functional’,
‘systerm’, ‘quality’; differently)

» tracesOfRequirements. PD - OOA: 0,
OOA- OOD: 3, 0OO0OD-OOP: O0;
median: 1

» storageOfRequirements:
(textual)

Complexity workflow:

» gmilarityOfMethods: ‘transferable’

 varianceOfPlatforms: ‘free

» kindsOfApplications: ‘free

» changingOfTeams:. ‘indifferently’

» differingOfComponents. 3 (OS, OOP
language, Venn diagram)

Component workflow:

* number OfComponents. 3 (doc.,
chart(s), code)

* numberOfCharts. 3 (hierarchy, class,
Venn)

e numberOfSymbols: 11 (6 boxes, 5
connections)

* numberOfRules: 26

median: 1

The Shlaer/Méllor approach ([81] OOSA) is based on the idea of an object as an entity used in

the ERM paradigm.

classicon

entity name

1

diagrams. data flow diagram (DFD), entity
relation-

ship diagram (with the typical types of
relations)

and an additional class hierarchy diagram

no restrictions for OO

guantitative method characteristics
Requirement workflow:

Position Papers

kindsOfRequirements: 2
(‘functiona’,’ system’;

monolithicaly)

tracesOfRequirements. PD - OOA: 2,

OOA- OOD: 2, OOD-OOP: O:
median: 1.3

storageOfRequirements: median: 1
(textual)

Complexity workflow:

smilarityOfMethods:. ‘ continuous
varianceOfPlatforms: ‘various
kindsOfApplications. ‘defined’
base)

(data

61

changingOfTeams: * splitting’
differingOfComponents: 3 (OS,
programming language, SA technique)

Component workflow:

number Of Components: 3
(doc.,diagram(s), code)
numberOfCharts. 3 (hierarchy, ER,
DFD)

numberOfSymbols. 13 (2 boxes, 11
connec-tions)

number OfRules: 28

The Jacobson approach OOSE [48] defines several types of simple classes. The assessment of
this method is given in following.

classicon symbols for the
object diagram:
functional represen- class name
tation:
/
varialjles valugs
/ \ i ntpl' ect
operations implementation

userelations

kinds of models: requirements, analysis, design,
object, interaction,

implementation, test

transition diagram

coj ect

diagrams. use cases,

design, state

guantitative method characteristics

Requirement workflow:

kindsOfRequirements. 3 (as use cases,
without ‘control’; differently)
tracesOfRequirements. PD - OOA: 3,

OOA- OOD: 3, OOD-OOP: 3;
median: 3
storageOfRequirements: median: 3
(textual)

Complexity workflow:

similarityOfMethods:. ‘transferable’
varianceOfPlatforms: ‘various
kindsOfApplications. ‘free

changingOfTeams: ‘indifferently’
differingOfComponents. 3 (0OS, OOP
language, state transition diagram
(SDL))

Component workflow:

number Of Components: 5 (models)
number OfCharts: 5 (diagrams)
numberOfSymbols.26 (18 boxes, 1
symbol, 7 connections)

number OfRules: implicite description

62 position Papers

Last but not least, the representation used in the OMT approach by Rumbaugh et a [78] is
similar to the representation of the Coad/Y ourdon approach. The method assessment is given

in following.

classicon

inherited associated
T |

T

class name

attributes

services

Ta?
aggr ordered
gation

overlapping
inheritance

diagrams. class diagram (including the
ERM faci-

lities), state trandtion diagram,
data flow

diagram

guantitative method characteristics

Requirement workflow:

kindsOfRequirements: 2
(‘functiona’,’ system’; monolithically)
tracesOfRequirements. PD - OOA: 2,
OOA- OOD: 2, OOD-OOP: 2
median: 2

storageOfRequirements: median: 2
(textual)

Complexity workflow:

similarityOfMethods:. ‘similar’
varianceOfPlatforms: ‘various
kindsOfApplications. ‘free
changingOfTeams: ‘indifferently’
differingOfComponents. 3 (0OS, OOP
language, SA methodology)

Component workflow:

number Of Components: 3 (doc,
model(s), code)

numberOfCharts. 3 (object, dynamic,
functio-nal)

numberOfSymbols. 19 (8 boxes, 11
connec- tions)

number OfRules: 59

Of course, the evaluation is subject to refinement and therefore open for discussion. The
following charts provide a summarization of these evaluations to compare the chosen OO
development methods. Note, that this evaluation is only an assessment, useful as start point of
the use of software quality agents. The ‘' marked points denote the ‘ideal’ values of the given

aspects.

Position Papers 63

Requirement workflow

trace storage

The outer circle in the following chart describes the method related ‘ideal’ vaues of the
software development complexity aspect.

Complexity workflow

similarity

continuous

variance

kinds

1 H
N various

1 H
1

3 [
v [
HEE

The quantitative evaluations of the method components are put together in the next chart.

b4 Position Papers

70 T

60 +

50 +

40 |

30 +

#components

20 +

10 -

Component wor kflow

30

7

] ooa
00D
HOOD
59 | [LJRDD
[l cosa
[J oosE

2 omT

5 , 6 5 6 5
3,,33°3 ,0,33°3
NI En=} =

components

charts

symbols

rules

The empirical evaluation of the component workflow values depends on the (psychological)
experience in the software development in general (usually presented in simple rules like: a
maximum number of three levels or parts, not more than seven elements etc.).

5.4 Evaluation of Further OO Techniques

The first evaluated OO technique are the Design Patterns [39]. The essential objective of this
technique is to improve the software design and implementation by formalizing the experience
of OO applications in the abstract notion of patterns. The improvement aspects are
 reducing of product architecture components (by means of standardization),
* increasing the process efficiency in the life cycle,
» using experience for a better process maturity,
* decreasing the structural complexity in the software design,
* increasing of the resource personnel productivity in general.

The following table describes the defined patterns with their design aspects and their
characteristics that can vary (in parentheses).

composite object gets
created)

of an object)

Scope Creational Purpose Structural Purpose Behavioral Purpose
Class Factory Method | Adapter (class) | Interpreter (grammar
(subclass of object that|(interfaceto anobject) |and interpretation of a

isinstantiated) language)

Template Method

(steps of an algorithm)
Object Abstract Factory | Adapter (object) [Chain of
(families of product | (interface to an object) | Responsibility (object
objects) that can fulfill arequest)
Builder (how a|Bridge (implementation| Command (when and

how a
fulfilled)

request is

Position Papers

65

Prototype (class of|Composite (structure|lterator (how an

object that is|and composition of an|aggregate' s elements are

instantiated) object) accessed, traversed)

Singleton (the sole| Decorator Mediator (how and

instance of aclass) (responsibilities of an|which objects interact
object without sub-|with each other)
classing)

Facade (interface to a
sub-system)

Memento (what private
information is stored
outside an object, and
when)

Flyweight (storage

costs of objects)

Observer (number of
objects that depend on
another object; how the
dependent objects stay
up to date)

Proxy (how an object is
accessed; its location)

State (states of an

object)

Strategy (an algorithm)

Vigtor (operations that
can be applied to
object(s) with-out
changing their class(es))

On the other hand, these patterns are related among themselves in their application in an OO
software system. The following chart gives an overview of these relationships.

56 position Papers

Memento
saving state
. of iteration
Builder d Adapter

avoiding
Iterator

hysieresis Bridge
2771[17721'{7,Iﬂg

children

adding
responsibilities composed -
o objects using Command
Composite
Decorator ;
sharing " defining Winine
composites adding P defning
()pe/‘</:mx
Flyweight Visitor
defining
grammar

creating
composites

changing skin
versits guis

operations
sharing
strategies Interpreter ‘ Chain of Responsibility I
sharing
terminals
Strategy i
sharing Mediator complex
states
states dependency
management
Observer
State

defining
algorithm’s

steps
Template Method often uses
Prototype Factory Method
configure factory
dvnamically

implement using

adding

Abstract Factory

single

instance
single Facade

. instance

Singleton ¢

The application of our method evaluation is described in a short form in the following
* design patterns are atypical approach of solution by example,

» the application of design patterns follows the TQM idea in a constructive manner
(in order to reduce the analysig/evaluation effort, to keep quality),

 theinfluence of this approach to our software agents are the followings
[the kindsOfRequirements are extended by the implicit keeping of special
quality aspects,
[the design pattern method is similar to the OMT (similarityOfMethods),
0 the number OfRules are reduced by an dominant use of these patterns.

The design patterns are mainly an architecture related approach supporting software
development.

Position Papers

67

The second (not only OO related) approach is the Component-Based Software Engineering
(CBSE) [11]. The basic idea is the practice of composing software by combining self
developed parts with so-called components of-the-shelf (COTS) with the permanent underlying
guestion ‘make or buy’ of software components. The CBSE is not really an OO approach, but
it involves the general idea of an (instantiated) object. The genera characteristics of the CBSE
are that [Brown 96, p. 8] the components

“are ready ‘off-the-shelf’, whether from a commercial source (COTS) or re-used
from another system;

have significant aggregate functionality and complexity;

are self-contained and possible execute independently;

will be used ‘asis’ rather than modified;

must be integrated with other components to achieve required system
functionality.”’

CBSE defines five types of components (with an increasing level of vishility). The following
table explains these types of components together with characteristics of related metrics [28].

(known interface; flexible adaptation | metrics for interoperability; simple kinds of
(e.g. with mediator, trandator etc.)) |architecture metrics

state of components characteristicsfor metrication
off-the-shelf components unknown/undefined interface; includes
(COTy the general problem of the estimation of the
characteristics of commercial software
gualified components interface metrics; information hiding aspects
(interface defined)
adapted components metrics for standardization of classes,

assembled components ‘full’ use of architecture metrics; quantifi-
(possihility of integrationin a cation of the general infrastructure (opera-
given architecture) ting system, data base system etc.)
updated components metrication of the infrastructure (architec-

(adaptation to given infrastructure) | ture, platforms, methods, enterprise goals,

‘peopleware’, environments etc.)

In relation to our software agents we can establish the following influences and evaluation

aspects

the use of components keep the application of al kindsOfRequirements for a
chosen functionality, but provide no insight into quality and maintenance (as
control aspect of the requirements),

the tracesOfRequirements and the storagesOfRequirement in the CBSE include
uncertain evaluation partitions,

the smilarityOfMethods depends on the kind of the component design (see the
variants of components in the table above),

the differingOfComponents is the most significant effect in the CBSE and a special
form of increasing the software development complexity,

besides this, the CBSE does not produce a considerably different evaluation.

The CBSE is a typical software architecture related approach. The objective is to clarify the
benefits and the risks of the use of existing software products.

58 pogition Papers

The third approach is the Common Object Request Broker (CORBA) [71] from the Object
Management Group (OMG). This approach supports the implementation of distributed
systems and is a kind of so-called Middleware. The general overview about the CORBA
elements is shown in the following chart of Brown [12].

Elements of the OMA/CORBA

is-a
>» Component
Integration

Document
and Tool
Integration

Software
Environment
Integration

Interworking
Object
Technolgies

problem
context

problem
context

problem
context

compelitor

Object-Oriented
System Design
and Specification

Interprocess
Communication

competitor

ToolTalk

problem
context

The acronyms are. PCTE (Portable Common Tool Environment; an object management
mechanism), OLE (Microsoft’s Object Linking and Embedding), OMA (Object Management
Architecture), DCE (Distributed Computing Environment of the Open Systems Foundation
Group (OSF)), RPC (Sun's Remote Procedure Cadl), and ToolTalk (a communication
mechanism). The main component OMA includes
» the Applications Objects. these object are specific and not subject of
standardization by the OMG,
» the Common Facilities: these facilities are objects that provide useful but less
widely-used functionality, e. g. electronic mail, naming service, copy and delete of
objects etc.,

69

Position Papers

» the Common Object Services (COS): these services are widdly applicable services, e. g.,
transactions, event management, general supports, printer service, security and safety
service, and persistence and

» the Object Request Broker (ORB) for communication between the components above.

The communication between these components is readlized with the middleware CORBA
among the Object Request Broker that is responsible for all the mechanisms required to find
the object implementation for a (client) request. Supports of the ORB are
 the Interface Definition Language (IDL) for the definition of the server operations
that generate the so-called IDL-stub (including access routines), the interface
repository (provides persistent objects in a form available at runtime), the 1DL
skeleton (including language mapping) and the implementation repository (contains
information that alows the ORB to locate and activate implementations of
objects),
» theinter-ORB protocols for the interoperability (including the Internet and general
gateways),
* thelanguage mapping facilities (especially for supporting C, C++, and Smalltalk),
» the integration facilities as Basic Object Adapter (BOA) for object embedding and
the Object Database Adapter (ODA) for data base embedding.

According to our methodology evaluation, we can establish the following effects of the
CORBA approach:

» the genera evauation is similar to the CBSE (see above), because CORBA can be
considered as a special kind of component-based development (chosen
functionality as kindsOfRequirements; some uncertainties in relation to the
tracesOfRequirements and storagesOfRequirements; the similarityOfMethods is
given by a language-oriented interface definition form (IDL) to the general PDL
paradigms),

* on the other hand, we can establish a smilarity to the design patterns as
standardization of (here distributed) system functionalities and we can assume a
continuity of some implemented qualities,

» the kindsOfApplications are reduced, but we can see an increasing of the
differingOfComponents,

» the numberOfComponents are increased, because CORBA is a middleware that
requires an additional methodology for software production.

Note, that CORBA is aso an architecture related approach to implement distributed and
heterogeneous systems.

The fourth considered approach is the Unified Modeling Language (UML) [83] [84]. The
development of UML began in October 1994 and is an unification of the Booch's OOD, the
OMT, and the Jacobson’s OOSE method. The method goals are

» to mode systems (and not just software) using object-oriented concepts,

» to establish an explicit coupling to conceptual as well as executable artifacts,

* to address the issues of scale inherent in complex, mission-critical systems,

* to create amodeling language usable by both humans and machines.

Oposition Papers

The UML defines eight types of diagrams. the use case diagram, the class diagram, the
behavior diagrams (state diagram, activity diagram, sequence diagram, and collaboration
diagram), the implementation diagrams (component diagram and deployment diagram).

Class diagrams

State diagrams
Use cases diagrams v <4D
<

A% \
Collaboration diagrams

Nt

N

Sequence diagrams /
1 [

diagrams

\4

A

\4

A

Y VY

A

Component/deployment diagrams

A

Activity diagrams

-

H

B

i@é

®

A

Position Papers

71

UML is avisual modeling language not a programming language and is based on the diagrams
above and a semantic definition [84]. For special constraints in UML can be used an Object
Congtraint Language (OCL) specification form.

The UML methodology is a good example of an evaluation process in the three steps as (a)

the separate evauation of the three source methods, (b) a methods evaluation summary, and

(c) a(separate) UML evaluation. The evaluation of the UML is given in the following
Requirement workflow:

kindsOfRequirements:. 3 (‘functional’, ‘system’, ‘quality’;
differently)
tracesOfRequirements:. PD-OOA: 3, OOA- OOD: 3,

OOD - OO0FP: 3; median: 3
storageOfRequirements. median: 3 (textual)

Complexity workflow:

similarityOfMethods:. ‘similar’

varianceOfPlatforms: ‘various

kindsOfApplications. ‘free

changingOfTeams: ‘indifferently’

differingOfComponents: 4 (OS,0O0P language, two other methods)

Component workflow:

numberOfComponents: 4 (models, diagrams, language, code
frames)

number OfCharts. 8

number OfSymbols. 35 (18 boxes, 17 connections)

number OfRules. implicit principles

The following table shows a simplified overview of these evaluations.

metric | OOD | OOSE | OMT | O(min) | O@max) | UML
Requireme workflow
nt
kindsOfRequ. 2 3 2 2 3 3
tracesOfRequ. 1 3 2 1 3 3
storagesOfRequ 1 3 2 1 3 3
Complexit workflow
y
smilarityOfMet | similar transferabl | smilar |transferab| similar similar
h. e le
varianceOfPlatf | various various various | various various various

2position Papers

kindsOfApplic. free free free free free free
changingOfTea | indifferentl | indifferentl | indifferen | indiff. I ndiff. indiff.
ms y y tly
differingOfCom 2 3 3 3 2 4
p.

Componen workflow [(no no max)

t min,
number OfComp 3 5 3 4 4
number OfChart 6 5 3 4 8
S
number OfSymb 30 26 19 25 35
ols
number OfRules 4 ca. 20 59 28 implicit

Note, that the average of ‘min’ and ‘max’ is related to the ‘weakest’ and ‘best’ in the ordinal
manner. On the other hand, there is only few experience with the UML in practice.
6 Conclusions

Every company must perform the decision about the use of new software development
methods. However, we can establish the following situation about software development
methodologies:

1. the description of a new development method of a method/tool distributor

includes al (possible) benefits of this method and starts in general with a lack of
tool supporting, no support for paradigm changing, and with a lot of ‘motivation’ for a
maximal spread in the marketing;

the description of a development method in the literature according to the
comparison of different (OO) methods usualy includes a comparison of the
features and does not address maintenance, porting, and quality issues.

Our paper includes a first analysis of the following software process evauation aspects and
characterigtics:

the aspects and approaches of software measurement in general,

the short description of the current situation in the object-oriented software metrics
research area,

the definition of a software measurement framework that is opposite to the general
TQM approach and is based on the idea of intelligent/mobile agents in computer
networks,

the first application of this framework to evauate OO software development
methods, especially with respect to the requirements, the so-called software
development complexity, and the counting of the methods symbols, charts etc.

In this manner we can define in a first approximation the ‘idea’ development method with the
following characteristics

aconsideration of all requirements (especially the ability to store and trace);

Position Papers

73

» alow software development complexity with a similarity of the method (e. g. with
migration supports from the old method to the new one), with a minimum of
platform changing (e. g. with support for the portability), with no restrictions to
the application area, with clear statements to the necessary team set and structure,
and with a clear description of the external components required;

» acounting of the different components of a method for a characterization of their
usability (the empirical evaluations are still necessary).

In our evaluation process, we have also seen one typical effect in the software measurement:
the realization of the measurement starts with the definition of the measured components and
leads to a clear understanding of the considered area that should be a necessary premises.

Further investigations are directed on the implementation of really workflow agentsin a Java-
oriented software development environment.

7 Glossary

AC

ADI
AHF

AlF

All
AMI
BOA
CAME

CAME

Attribute Complexity:

sum of the attribute values of a
class;

based on the evaluation: Boolean
or integer (0), char (1), redl (2),
array (3-4), pointer (5), record,
struct (6-9), file (10)
Attribute Definition Indicator
Attribute Hiding Factor:

sum of all vishle/usable attributes
of al classes divided by 4l
attributes of all classes

Attribute | nheritance Factor:

sum of al inherited attributes in all
classes

Attribute Implementation Indicator

Attribute Modification Indicator

Basic Object Adapter

Measurement Choice, Adjustment,
Mi-gration and Efficiency

Tool Computer Assisted Software

Measurement and Evaluation Tool

CASE

CBO

CBSE

CCM

CDBC

CDI
CFW

Computer Aided Software
Engineering
Coupling Between Object classes:

the number of other classes to
whichit is coupled

Component-Based Software
Engineering

Cognitive Complexity Model:

sum of chunk understanding,
complexity

and difficulty of tracing

Change Dependency Between
Classes:

the potential amount of follow-up
work

to be done when a server class is
being
modified

Class Definition Indicator

Class Firewadl: the set of classes
that could

be affected bay changes to a
special class;

4 Position Papers

CH
Cll
CLOS
CMI
COF

the test order is the topological
sorting of

the CFW graph
dependence relation

Computing Cohesion

Class Implementation Indicator
Common LISP Object System
Class Modification Indicator
Coupling Factor:

maximum possible number of
couplingsin all classes

including the

CORBA Common Object Request Broker

COS
COTS
CPD
DAC
DCE
DIT

GR

HOOD
HTML
ICH

ICP

IDL
KE
LCOM

LD

Archi-tecture

Comon Object Services
Components Off-The-Shelf

Classes Per Developer

number of ADTs defined in aclass
Distributed Computing Environment
Depth of Inheritance Tree:

the maximum length from the node
to the

root of thetree

Generic Reuse: reuse by generic
functions/ macros

Hierarchical Object-Oriented Design
Hypertext Markup Language
|-based cohesion:
information flow-based, message
argument related, internal count
|-based coupling:
information flow-based, message
function related, external count
Interface Definition Language
number of Known Errors
Lack of Cohesion in Methods:

the set of instance variables used
by the method

Locadlity of Data:
the sum of the non-public and
inherited
protected
divided by
the sum all variables of aclass

instance variables

LR

MHF

MIF

MPC

MR
NCM
NCV
NIM
NIV
NKC
NMA
NMI
NMO
NOC

NOM
NOS
NOT

NSC
NSS
oC

Leveraged Reuse: reuse by method
inheri-tance

Method Hiding Factor:
sum of all visible/callable methods

of al methods divided by the
number of al methods of all
classes

Method I nheritance Factor:

sum of all inherited methods in all
classes

Message Passing Coupling:
number of send-statements defined
inaclass

number of modifications requested

Number of Class Methods

Number of Class Variables

Number of Instance Methods

Number of Instance Variables

Number of Key Classes

Number of Methods Added

Number of Methods Inherited

Number of Methods Overridden

Number Of Children:

the number of
subclasses

Number Of Methods
Number Of Subsystems
Number of Tramps.

number of extraneous (not referred
to

by the method body) parameters
Number of Support Classes
Number of Scenario Scripts
Operation Complexity:

sum of the method values for a

class

based on the empirical evaluation
as

null (0), very low (1-10), low (11-
20),

nominal (21-40),
very

high (61-80), extra high (81-100)

immediate

high (41-60),

Position Papers

OCL
ODA
OLE
OMA
OMG
OMT
0[O
OOA
0O0C
OOCM

00D
OOP
OORA

OOSA
OO0SD
OOSE

ORB
oS
OSF
PCM
PCTE

PD
PDC
PDL
PDM
PMT

PRC
RDD
RFC

Object Constraint Language

Object Database Adapter

Object Linking and Embedding
Object Management Architecture
Object Management Group

Object Modeling Technique
object-oriented

Object-Oriented Analysis
Object-Oriented classes Comparison

Object-Oriented Conceptud
Modeling is based on entropy
measures for the OOA relating to
class hierarchy as specificity (class
refinement), as (semanticaly)
consstency and (semantically)
distance

Object-Oriented Design

Object-Oriented Programming

Object-Oriented Requirements
Analysis

Object-Oriented Systems Analysis

Objet-Oriented Software Design

Object-Oriented Software
Engineering

Object Request Broker

Operating System

Open Systems Foundation

Percentage of Commented Methods

Portable Common Tool
Environment

Problem Definition
Person-Days per Class
Program Design Language
Problem Definition Metrics Tool
Prolog Metrics Tool
Polymorphism Factor:

actual number of possible different

poly-

morphic situations
Problem Reports per Class
Responsibility-Driven Design
Response For a Class:

the response set for aclass

RPC

SDI
SFC

Sl
SIZE1
SIZE2

SMI

SMLAB

SOA
SRD
TKE

TMR
UML
URI

VOD

VR

WAC

WMC

75

Remote Procedure Call
Subjective assessment of Complexity
provided by the system developer
in ordinal integer scale
Service Definition Indicator
Strong Functional Cohesion:
the token of the data dlices divided
by
al datatokensin aprogram
Service Implementation Indicator
number of semicolonsin a class

number of attributes + number of
locd

methods in aclass
Service Modification Indicator

Software M easurement
Laboratory of the University of
Magdeburg

Software Quality Assurance
Software Requirement Document

Time to fix Known Errors in
minutes

Time to implement Modifications
Unified Modeling Language
Unit Repeated Inheritance:

a set of class hierarchy regions
with the

Euler's
reducing

the OO test cases
Violations of the Law of Demeter:
coupling between classes in both
directions (as minimizing)
Verbatim Reuse: reuse of library
compo-nents
Weighted Attributes per Class:
number of attributes weighted by
their
size
Weighted Methods per Class:
sum of the (McCabe) complexities

region number 2 for

6 position Papers

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

Abreu, F.B.; Carapuca, R.: Candidate Metrics for Object-Oriented Software within a
Taxonomy Framework. Journal of Systems and Software, 26(1994), pp. 87-96

Abreu, F. B.; Goulao, M; Esteves, R.: Toward the Design Quality Evaluation of Object-
Oriented Software Systems. Proc. of the Fifth International Conference on Software
Quality, Austin, October 23-25, 1995, pp. 44-57

Abreu, F. B.; Melo, W.: Evaluating the Impact of Object-Oriented Design on Software
Quality. Proc. of the Third International Software Metrics Symposium, March 25-26,
Berlin, 1996, pp. 90-99

Appleby, S.; Steward, S.: Mobile software agents for control in telecommunications
networks. BT Technl. Journal, 12(1994)2, pp. 25-34

Arora, V. et a.: Measuring High-Level Design Complexity of Real-Time Objet-Oriented
Systems. Proc. of the Annual Oregon Workshop on Software Metrics, June 5-7, 1995,
pp. 2/2-1 - 2/2-11

Barnes, G.M.; Swi, B.R.: Inheriting software metrics. JOOP, Nov./Dec. 1993, pp. 27-34

Bieman, JM.; Ott, L.M.: Measuring Functional Cohesion. |IEEE Transactions on
Software Engineering, 20(1994)8, pp. 644-657

Bieman, JM.; Zhao, J.X.: Reuse Through Inheritance: A Quantitative Study of C++
Software. Software Engineering Notes, August 1995, pp. 47-52

Binder, R.V.: Design for Testability in Object-Oriented Systems. Comm. of the ACM,
37(1994)9, pp. 87-101

Booch, G.: Object Oriented Design. The Benjamin/Cummings Publ., 1991
Brown, A.W.: Component-Based Software Engineering. |IEEE Computer Society, 1996

Brown, A.W.; Wallnau, K.C.: A Framework for Evaluating Software Technology. |EEE
Soft-ware, September 1996, pp. 29-49

Brown, A.W.; Wallnau, K.C..: A Framework for Systematic Evaluation of Software
Technologies. in: Brown, A.W.. Component-Based Software Engineering, |IEEE
Computer Society Press, 1996, pp. 27-40

Cant, S.N.; Henderson-Sellers, B.; Jeffery, D.R.: Application of cognitive complexity
metrics to object-oriented programs. Journa of Object-Oriented Programming, July-
August 1994, pp. 52-63

Chen, J.Y.; Lu, JF.: A new metric for object-oriented design. Information and Software
Technology, 35(1993)4, pp. 232-240

Chidamber, S.R.; Darcy, D.P.; Kemerer, C.F.: Managerial Use of Object Oriented
Software Metrics. University of Pittsburgh, Graduate School of Business, Working
Paper Series #750

Chidamber, S.R.; Kemerer, C.F.: A Metrics Suite for Object-Oriented Design. |IEEE
Transactions on Software Engineering, 20(1994)6, pp. 476-493

Chung, C. et a.: A Metric of Inheritance Hierarchy for Object-Oriented Software
Complexity. Proc. of the Fifth Int. Conf. on Software Quality, October 23-26, Austin,
1995, pp. 255-266

Position Papers

77

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Chung, C.M.; Lee, M.C.: Object-Oriented Programming Testing Methodology. Int.
Journal of Mini and Microcomputers, 16(1994)2, pp. 73-81

Churcher, N.I.; Shepperd, M.J.: Towards a Conceptual Framework for Object-Oriented
Software Metrics. Software Engineering Notes, 20(1995)2, pp. 68-75

Coad, P,; Nicola, J.: Object-Oriented Programming. Prentice-Hall Inc., 1993

Dumke, R.: CAME Tools - Lessons Learned. Proc. of the Fourth Internationd
Symposium on Assessment of Software Tools, May 22-24, Toronto, 1996, pp. 113-114

Dumke, R.: Software Quality Measurement in Object-Oriented Software Development.
in: Muellerburg/Abran: Metrics in Software Evolution, Oldenbourg Publ. Germany,
1995, pp. 179-199

Dumke, R.; Foltin, E.; Koeppe, R.; Winkler, A.: Measurement-Based Object-Oriented
Software Development of the Software Project ‘’ Software Measurement Laboratory’’.
Preprint Nr. 6, 1996, University of Magdeburg (40 p.)

Dumke, R.; Foltin, E.; Koeppe, R.; Winkler, A.: Softwarequalitdt durch Mef3tools.
Vieweg Publ., 1996

Dumke, R.; Foltin, E.; Winkler, A.: Measurement-Based Quality Assurance in Object-
Oriented Software Development. Proc of the ECOOP 95, Dublin, 1995, pp. 315-319

Dumke, R.; Kuhrau, 1.: Tool-Based Quality Management in Object-Oriented Software
Development. Proc. of the Third Symposum on Assessment of Quality Software
Development Tools, Washington D.C., June 7-9, 1994, pp. 148-160

Dumke, R.; Winkler, A.: Management of the Component-Based Software Engineering
with Metrics. Fifth Int. Symposium on Assessment of Software Tools, Pittsburgh, June
2-5, 1997, pp. 104-110

Dumke, R.; Winkler, A.. Object-Oriented Software Measurement in an OOSE
Paradigm. Proc. of the Spring IFPUG’ 96, February 7-9, Rome, Italy, 1996

Dumke, R.; Zuse, H.. Software Metrics in Object-Oriented Software Development.
(German) in: Lehner: Die Wartung von Wissensbasierten Systemen. Haensel Publ.,
Germany, 1994, pp. 58-96

Dvorak, J.: Conceptual Entropy and its Effect on Class Hierarchy. IEEE Computer,
June 1994, pp. 59-63

Ebert, C.: Complexity Traces - An Instrument for Software Project Management. Proc.
of the 10th Annual Conf. on Application of Software Metrics and Quality Assurance in
Industry, Amsterdam, 1993, Chapter 17 (13 p.)

Ebert, C.; Dumke, R.: Software-Metriken in der Praxis. Springer Publ., 1996

Embley, D.W.; Jackson, R.B.; Woodfield, S.N.. OO Systems Analysis: Is |t or lsn't It?
|EEE Software, July 1995, pp. 19-33

Fenton, N.; Pfleeger, S.. Software Metrics - A rigorous & practice approach. Chapman
& Hall Publ., 1997

Fetcke, T.. Software Metrics in Object-Oriented Programming. (German) Diploma
Thesis, GMD Bonn/TU Berlin, 1995

Fix, A.: Conception and Implementation of a Measurement Data Base for Distributed
Use. Diploma Thesis, University of Magdeburg, July 1996

8position Papers

[38]

[39]
[40]

[41]

[42)
[43)
[44]
[45)
[46]
[47)
[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Foltin, E.: Implementation of a problem definition measurement tool PDM. Technical
Report, University Magdeburg, 1995

Gamma, E. et a.: Design Patterns. Addison-Wedley Publ., 1995

Han, K.J; Yoon, JM.; Kim, JA.; Lee, K.W.: Quality Assessment Criteria in C++
Classes. Microelectron. Reliability, 34(1994)2, pp. 361-368

Harrison, R.; Samaraweera, M.R.; Lewis, P.M.: Comparing programming paradigms.
an evaluation of functional and object-oriented programs. Software Engineering
Journal, 11(1996)4, pp. 247-254

Heckendorff, R.: Design and Implementation of a Smalltalk Measurement Extension.
Diploma Thesis, University of Magdeburg, 1996

Henderson-Sellers, B.: Object-Oriented Metrics - Measures of Complexity. Prentice Hall
Inc., 1996

Hitz, M.; Montazeri, B.: Measuring Product Attributes of Object-Oriented Systems.
Proc. of the ESEC’ 95, Sitges, Spain, 1995, pp. 124-136

|IEEE Standard for a Software Quality Metrics Methodology. |EEE Publisher, March
1993

ISO/IEC 9126 Standard for Information Technology, Software Product Evaluation -
Quality Characteristics and Guidelines for their Use. Geneve 1991

Jacobson, I.: A confused world of OOA and OOD. JOOP, September 1995, pp. 15-20
Jacobson, I.: Object-Oriented Software Engineering. Addison-Wesley Publ., 1992
Jones, C.: Gapsin the object-oriented paradigm. IEEE Computer, June 1994, pp. 90-91

John, R.; Chen, Z.; Oman, P.. Satic Techniques for Measuring Code Reusability. Proc.
of the Annual Oregon Workshop on Software Metrics, June 5-7, 1995, pp. 3/2-1 - 3/2-
26

Kaschek, R.; Mayr, H.C.: A Characterization of OOA Tools. Proc. of the Fourth
International Symposium on Assessment of Software Tools, May 22-24, Toronto, 1996,
pp. 59-67

Khan, E.H.; Al-Adi, M.; Girgis, M.R.: Object-Oriented Programming for Structured
Procedure Programmers. |EEE Computer, October 1995, pp. 48-57

Khoshgoftaar, T.M.; Szabo, R.M.: ARIMA models of software system quality. Proc. of
the Annual Oregon Workshop on Software Metrics, April 10-12, 1994, Oregon

Kitchenham, B. A.; Walker, JG.: A guantitative approach to monitoring software
devel opment. Software Engineering Journal, January 1989, pp. 2-13

Kompf, G.: Conception and Implementation of a Prolog Measurement and Evaluation
Tool.(German) Diploma Thesis, University of Magdeburg, July 1996

Kuhrau, I.: Design and Implementation of a C++ Measurement Tool. Diploma Thesis,
University of Magdeburg, March 1994

Kung, D.C. et a: Class firewall, test order, and regression testing of object-oriented
programs. JOOP, May 1995, pp. 65

Position Papers

79

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]
[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]
[77]

Kurananithi, S.; Bieman, JM.: Candidate Reuse Metrics for Object-Oriented and Ada
Software. Proc. of the First Int. Metrics Symposium, May 21-22, Batimore, 1993, pp.
120-128

Lake, A.; Cook, C.: A Software Complexity Metric for C++. Proc. of the Fourth Annual
Workshop on Software Metrics. Oregon, March 22-24 1992, 15 p.

Lalonde, W.; Pugh, J.: Gathering metric information using metalevel facilities. JOOP,
March/ April, 1994, pp. 33-37

Lee, Y.; Liang, B.; Wu, S.; Wang, F..: Measuring the Coupling and Cohesion of an
Object-Oriented Program Based on Information Flow. Proc. of the ICSQ’'95, Slovenia,
pp. 81-90

Lee, A.; Pennington, N.: The effects of paradigm on cognitive activities in design. Int.
Journal of Human-Computer Studies, (1994)40, pp. 577-601

Leter, M.; Meyers, S.; Reiss, S.P.: Support for Maintaining Object-Oriented Programs.
| EEE Transactions on Software Engineering, 18(1992), pp. 1045-1052

Li, W.; Henry, S.: Maintenance Metrics for the Object-Oriented Paradigm. Proc. of the
First Int. Software Metrics Symposium, May 21-22, Baltimore 1993, pp. 52-60

Li, W.; Henry, S.; Kafura, D.; Schulman, R.: Measuring object-oriented design. JOOP,
July-August 1995, pp. 48-55

Lorenz, M.; Kidd, J.: Object-Oriented Software Metrics. Prentice Hall Inc., 1994

Lubahn, D.: The Conception and Implementation of an C++ Measurement
Tool.(German) Diploma Thesis, University of Magdeburg, March 1996

Lubahn, D.: The OOC tool description. Technical Report, University of Magdeburg,
1994

Marciniak, J.J.: Encyclopedia of Software Engineering. Vol. | and Il, John Wiley &
Sons, 1994

Moser, S.; Nierstrasz, O.: The Effect of Object-Oriented Frameworks on Developer
Productivity. |IEEE Computer, September 1996, pp. 45-51

The Common Object Request Broker: Architecture and Specification. Revison 2.0,
Mass., July 1995

Pant, Y.; Henderson-Sellers, B.; Verner, JM.: Generalization of Object-Oriented
Components for Reuse: Measurement of Effort and Sze Change. JOOP, May 1996, pp.
19-31

Papritz, T.: Implementation of an OOM tool for the OOA model measurement.
(German) Technical Report, TU Magdeburg, July 1993

Patett, |.: Implementation of a JAVA metricstool. (German) Diploma Thesis, University
of Magdeburg, 1997

Pfleeger, S.L.; Jeffery, R.; Curtis, B.; Kitchenham, B.: Satus Report on Software
Measurement. |EEE Software, March/April 1997, pp. 33-43

Robinson, P.J.: Hierarchical Object-Oriented Design. Prentice Hall Inc., 1992

Rocache, D..: Smalltalk Measure Analysis Manual. ESPRIT Project 1257, CRIL,
Rennes, France, 1989

Oposition Papers

[78]

[79]

[80]

[81]

[82]

[83]
[84]

[85]

[86]

[87]

[88]

[89]

[90]

Rumbaugh, J. et a.: Object-Oriented Modeling and Design. Prentice Hall Publ., 1991

Sharble, R.C.; Cohen, S.S.: The Object-Oriented Brewery: A Comparison of Two
Object-Oriented Devel opment Methods. Software Engineering Notes, 18(1993)2, pp. 60-
73

Shet, A. et a.: Report from the NSF Workshop on Workflow and Process Automation in
Information Systems. Software Engineering Notes, 22(1997)1, pp. 28-38

Shlaer, S.; Méllor, S.J.. Objektorientierte Systemanalyse. Hanser Publ., 1996 (Original:
1988)

Tepfenhart, W.M.; Cusick, J.J.: A Unified Object Topology. |IEEE Software, January
1997, pp. 31-35

Unified Modeling Language - Summary. version 1.0.1, Santa Clara, USA, March 1997

Unified Modeling Language - Glossary & Notation Guide. version 1.0, Santa Clara,
January 1997

Wasserman, A.l.: Tool Integration in Software Engineering. Lecture Notes in Computer
Science, Volume 467, 1988, pp. 137-149

WEelch, L.R.; Lankala, M.; Farr, W; Hammer, D.K.. Metrics for quality and concurrency
in object-based systems. Annals on Software Engineering, 2(1996), pp. 93-119

Wilde, N.; Huitt, R.: Maintenance Support for Object-Oriented Programs. IEEE
Transactions on Software Engineering, 18(1992), pp. 1038-1044

Wirfs-Brock, R.; Wilkerson, B.; Wiener, L.: Object-Oriented Design. Englewood Cliffs
Publ. 1990

Zuse, H.: Foundations of the Validation of Object-Oriented Software Measures. in:
Dumke/Zuse: Theory and Practice of Software Measurement (German). DU-Publ.,
1994, pp. 136-214

Zuse, H.: The Software Measurement Framework. to be published

81

Position Papers

An email information

Fernando Brito e Abreu, INESC - MOOD Project Leader, Lisbon, Portugal

We are actively working on MOODKIT G2 (second generation) which is radically different
from previous on (G1). Among the improvement is the ability of metrics capture either by
forward (from modelsin a CASE TOOL) or reverse engineering (from source code in several
OO0 languages). MOODKIT G2 relies on an intermediate OO design language named
GOODLY (a Generic Object Oriented Design Language? Yes!).

The GOODLY language is up and running! A GOODLY specifications hypertext browser with
high traceability capabilities and several source code examples that were generated with
MOODKIT G2 (under construction) are now available at our web site. This bowser will soon
show the calculated MOOD metrics values. The MOOD set is being currently reviewed and
expanded.

The MOOD Project WWW server islocated at the following address:
http://abertina.inesc. pt/ftp/pub/esw/mood

Please use a browser that supports frames (e.g. Netscape 2.0 or later releases).

PRODUCT STATUS AVAILABILITY
GOODLY specifications parser and linker Ready available on request
GOODLY specifications browser Ready use it in the web
GOODLY to Smalltalk converter 2 nd week May | (forecast)
Smalltalk to GOODLY converter 2 nd week May | (forecast)
Eiffel to GOODLY converter 3 rd week May | (forecast)
OMT (ParadigmPlus) to GOODLY converter 3 rd week May | (forecast)
MOOD metrics extraction from GOODLY code 4 thweek May | (forecast)
Javato GOODLY converter 4 th week May | (forecast)
C++to GOODLY parser 2 nd week June | (forecast)
Object Pascal (Delphi) to GOODLY parser 4 th week June | (forecast)

The MOOD team is waiting for your feedback and your cooperation plus!

The MOOD (Metrics for Object Oriented Design) metrics originated from the PhD research
work carried out by Fernando Brito e Abreu, enriched by contributions of many others, either
originated within the MOOD team or organization where MOOD project team is hosted, see
our central web site (http://www.inesc.pt).

The MOOQOD project is an academic project, not acommercia one! The only thing we ask from
you is to share with us the results you got with our tools and your constructive contributions
on improving and/or extending the MOOD metrics set. In particular we seek cooperation with
reals industrial projects where process data (schedules, effort, defect reports, etc.) are
available, in order to construct empirical validation studies, as well as academic theoretical
validations ones.

2 Position Papers

| SBSG - A worldwide Softwar e M easur ement | nitiative

The ISBSG (International Software Benchmarking Standards Group) had its originsin the
work performed by the Australian Software Metrics Association (ASMA) in software
benchmarking. In 1990, a Special Interest Group in ASMA met to develop a practical industry
standard for quantifying the output from software projects. This led to the establishment of a
repository of data on Australian projects in 1992.

The success of thisinitiative created considerable international interest. In June 1994, the
software metrics organisations of New Zealand (SMANZ), the United Kingdom (UFPUG),
and the United States (IFPUG), together with ASMA, formed ISBSG. Later other metrics
organisations (for instance from Canada, Germany, France) became involved. The ASMA
model was used for a de facto international standard. Through ISBSG, the various associations
and their members can collect and share data to facilitate international benchmarking. The
actual fourth release of the Benchmarking Repository contains data collected from 396
projects from 14 countries.

The ISBSG Repository is based on the following principles:

» Practitioner Driven and Practitioner Accessible: Each I T-organization, whether they
are members of their respective national metrics organisation or not, may contribute to
the ISBSG Repository and use the services of ISBSG.

* Independence from vested business and research interests whenever they are liable to
compromise the objectives of the Repository.

* Integrity of the Repository data must be maintained through the application of rigorous
procedures.

» Confidentiality of the contributors.

The establishment of the ISBSG Repository has made it possible to offer the industry a number
of services:

» The Repository itself can be used as an alternative to In-house metrics databases

» A Project Benchmarking Profile Report is sent back to the contributor. It compares the
submitted project with others of the same class within the repository

» Best Practice Networking is available for contributors

» Organisational Benchmarking is available to organisations to compare themselves
against smilar organisations

» |SBSG Releases (reports on the ISBSG Repository)

» Customised Analysis and Reports

| SBSG is working permanently to increase the value of the services offered. At around nine
month intervals interested members meet at the | SBSG workshop. At the last workshop, held
in conjunction with the IFPUG’ 97 Spring Conference, two research contracts with the Monash
University (Australia) and the Université du Québec a Montréal (Canada) have been initiated.

If you want to learn more about the | SBSG initiative or how to contribute to the ISBSG
Repository please see http://www.bs.monash.edu.au/asmavic/isbsg.htm.

SMLab’sWorldWideWeb Project

83

Position Papers

The Software Measurement Laboratory of the University of Magdeburg was established to
support the Software Metrics efforts of the (local) IT community and to conduct university
research and education. As a service for the public, SMLab maintains a Website to inform
about new devlopments and to provide a world-wide discussion platform.

In the position paper Current Stuation in Software Measurement Frameworks beginning on
Page 11 of thisissue, the author mentions a break between the quality aspects and their
guantification with metrics. For the Software Metrics field, a science that is largely dominated
by empirical results, conducting experiments and analysing the resultsis a critical and
important step toward the formation of valid models.

In order to provide an overview about experimental results the Software Measurement
Laboratory has added a summary of software measurement experiments to its Web-site. The
more than fifty eperiment descriptions are grouped in

» Software Process Experiments (Process Maturity, Process Management, and Process
Life Cycle Experiments)

» Software Product Experiments (Size, Architecture, Structure, Quality, and Complexity
Experiments)

» Software Resource Experiments (Personnel, Software, and Hardware Experiments)

"Classica" Experiments as Halsteads Experiments to the definition of his "Software Science"
are included as well as more recent experiments on Object Oriented Programming or World
Wide Web design. For every experiment, areference for further reading is provided. The
Software Measurement Laboratory invites you to contribute your experience and experiment
to make your results accessible to the software engineering community.

Another point of interest for the practitioner in the software metrics field is the application of
Computer Assisted Measurement and Evaluation (CAME) Tools. Based on a general software
measurement framework the Web Site contains a short description and evaluation of the better
know measurement tools used in the European market.

Some sample on-line applications are available to demonstrate the capabilities offered by
hypermedia technologies.

The Web-Site of the Software Measurement Laboratory can be found at:
http://ivs.cs.uni-magdeburg.de/sw-eng/ug/

Lehner, F.; Dumke, R.; Abran, A.: Software M etrics - Resear ch and
Pracitce in Softwar e M easur ement

Gabler-Verlag, Wiesbaden, 1997 (232 p.)

This book contains all presentations of the 1996 workshop of the Gl-interest group on
software metrics and of the Canadian Group (CIM) in September in Regensburg. It isa
collection of theoretical studiesin the field of software measurement as well as experience
reports on the application of software metricsin Canadian, Austrian, Belgian and German

Position Papers

companies and universities. Some of these papers and reports describe new software
measurement applications and paradigms for knowledge-based techniques, maintenance service
evaluation, factor analysis discussions and neural-fuzzy applications. Others address the object-
oriented paradigm and discuss the application of the Function Point approach to an object-
oriented design method, the evaluation of the Java development environment, the analysis of
quality and productivity improvements of object-oriented systems, as well as the definition of
the metrics of class libraries. Other papers offer a different perspective, presenting a software
measurement education system designed to help improve the lack of training in this field, for
example, or they include experience reports about the implementation of measurement
programs in industrial environment.

|SBN: 3-8244-6518-3

Moore, J.W.: Software Engineering Standards- A User’'sRad M ap
|EEE Computer Society, 1998 (296 p.)

This book gives a general overview about the software engineering standards - their
background and benefits. Therefore, it also includes the software metrics standards such as
SO 9000 et a. and the IEEE-1061-92 (metrics) standard.

Pigoski, T.M.: Practical Software M aintenance - Best Practices for
Managing Your Softwar e | nvestment

John Wiley & Sons, Inc., 1997 (384 p.)

The author discusses the software maintenance from a process view and a process
improvement strategy. Therefore, the software maintenance is presented as a part of software
process quality supported by a metrics program. Pigoski describes in chapter 14 the software
maintenance metrics and in chapter 15 the experiences in this area. The presentations are
helpful for software practitioners and include essential examples of metrics applications.

Poulin, J.S.: M easuring Softwar e Reuse
Addison-Wedley, 1997 (195 p.)

With the techniques in this book, you will have the tools you need to design a far more
effective reuse program, prove its bottom-line profitability, and promote software reuse within
your organization. Measuring Software Reuse brings together all of the latest concepts, tools,
and methods for software reuse metrics, presenting concrete quantitative techniques for
accurately measuring the level of reuse in a software project and objectively evaluating its
financial benefits.

85

Position Papers

Putnam, L .H.; Myers, W.: Controalling Softwar e Development
|EEE Computer Society, 1996 (79 p.)

This book discusses in a short from the role of process productivity metrics base on size
estimation. The authors give an overview about the software process evaluation and its
improvement.

Zuse, H.: A Framework of Software M easur ement
de Gruyter Publ., Berlin New York, 1997 (755 p.)

This book describes a framework for software measurement from a theoretical, practical and
educational view. The main idea is the application of the measurement theory on the area of
software measurement.

The book is written in nine chapters and includes exercises for ateaching in software
measurement. The chapters describe the software measurement aspect, the history of software
measurement, the theoretical foundations from theoretical and practical view, especially the
object-oriented software measures, the discussion about the properties and validation, and
helpful remarks for a successful application of software measures.

The book includes a CD ROM that include a demo tool for software measurement education
based on more than thausend references and metrics.

|SBN 3-11-015587-7

0 2"4 Euromicro Working Confer ence on Softwar e M aintenance and
Reengineering (CSMR),
March 9-11, 1998, Florence, Italy

[0 Empirical Assessment & Evaluation in Software Engineering (EASE),
30" March - 1% April 1998, Saffordshire, U.K.

[Fourth International Conference on Achieving Quality in Softwar e,
31 March - 3 April 1998, Venice, Italy

[1 Softwar e Quality M anagement (SQM),
6-8 April 1998, Amsterdam,Netherlands

6 position Papers

[1 Softwar e M easurement (FESM A),
6-8 May 1998, Antwerp, Belgium

[I Eleventh Inter national Software Quality Week,
26-29 May 1998, San Francisco, USA

[J Evaluation and Evaluation Resear ch in Information Systems,
June 5, 1998, Linz, Austria

(I Ninth Inter national Symposium on Softwar e Reliability Engineering
(ISSRE),

4-7 November 1998, Paderborn, Germany

[] metrics themes are also discussed in the yearly OOIS, ECOOP and ESEC
conferences

Other | nformation Sources and Related Topics

http://rbse.jsc.nasa.gov/virt-lib/soft-eng.html
Software Engineering Virtual Library in Houston

* http://www.mccabe.com
McCabe & Associates

* http://lwww.sai.cmu.edu
SEI Pittsburgh

* http://dxsting.cern.ch/sting/sting.html
STING: News Browser, Glossary Search, Projects and Measurement Tools at
CERN

» gopher://gopher.cs.tut.fi/11/pub/src/software-eng/metrics
C Metrics Package

* http://lwww.spr.com/
Software Productivity Research, Capers Jones

87

Position Papers

» http://fdd.gsfc.nasa.gov/seltext.html
SEL-Homepage

* http://lwww.qucis.queensu.ca/Software-Engineering/Cmetrics.html
Queens University of Canada

* http://lwww.es.es
ESI Spain

» http://saturne.info.ugam.ca/labo_Recherche/lrgl.html
University of Quebec

* http://lwww.SoftwareM etrics.com
IFPUG Information by David Longstreet

* http://lwww.utexas.edu/coe/sqi/
Software Quality Institute, University of Texas at Austin

* http:/lwwwtrese.cs.utwente.nl/Ovdber g/thesis.ntm
Klaas van den Berg: Software Measurement and Functional Programming

* http://lwww.inesc.pt/index-eng.html
Metrics for Object Oriented Design (MOOD) Project Team and the
ftp://albertina.inesc. pt/pub/esw/modd
MOQOD-Server

» http://divcom.otago.ac.nz: 800/com/infosci/smrl/home.htm

* http://ivs.cs.uni-magdeburg.de/sw-eng/us/
Software Mefdlabor der Universitét Magdeburg

* http://lwww.cs.tu-berlin.de/(lzuse
Arbeitsgruppe Softwaremetriken

* http://lwww.sbu.ac.uk/csse/publicationOOM etrics.html
Object-Oriented Metrics

* http://lwww.sbu.ac.uk/csse/ami.html
ami - Application of Metricsin Industry

* http://lwww.dfn.de/Catw/bmbf/foerder programme/swt/SWT .html
Initiative zur Forderung der Software-Technologie in Wirtschaft, Wissenschaft
und Technik

* http://lwww.iso.ch/9000e/forum.html
The 1SO 9000 Forum

* http://ceswww.utexas.edu/sqi
Software Quality Ingtitute (SQI)

* http://lwww.tiac.net/user/pustaver/
The Software Quality Page

* http://www.theriver.com/qa-inc/

8 position Papers

Quality America, Inc's Home Page

* http://lwww.ele.vtt.fi/docg/adehti/magaz_z.htm
A primer for total quality in software development

* http://lwww.nist.gov/quality_program/
NIST Quality Program

* http://lwww.quality.org/qc/
Quality Resources Online

* http://www.almaden.ibm.com/journal/g 33-1.html
IBM Systems Journal - Software Quality

» http://[freedom.larc.nasa.gov/spqr/spqgr.htmi
Software Productivity, Quality, and Reliability N-Team

News Groups

* news.comp.software-eng
* news.comp.software.testing

* news comp.software.meawrement

METRICSNEWS
VOLUME 2 1997 NUMBER 2
CONTENTS
o [0 = T 3

AN a1 T0 B (g Ter< 0 0 1= o | AT 5

Position Papers

POSIION PAPE'S ..o 7
New Books 0n Softwar @ MEtriCSccccevevciveeiiiiie e 77
Conferences addressing M etricS ISSUESccccveeeeviiiieeeeciiiieeeeenn, 79
Software Metricsin the World-WideWeb ..., 81

89

| SSN 1431-8008

O position Papers

