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EDITORIAL 
 
 
 
 
This is the third issue of a new scientific journal in the field of software metrics and related  
quantitative aspects, the 
 
                                    METRICS  NEWS. 
 
The title was chosen to reflect the Journals attempt to summarize recent software metrics 
trends as position papers, chosen papers from our metrics workhops, and news (as information 
about the software metrics research area in the world, new books and conferences). The 
editors are working many years in the software metrics field and are specialized in 
measurement frameworks, function point analysis, measurement theoretical view, and 
practical applications.  
 
The background of the METRICS NEWS contributors is the GI-interest group on software 
metrics founded in 1991. All members from the industry or academia are invited to present 
their experience or research results in the area of software quality assurance, software metrics, 
process management, software measurement frameworks etc. 
 
The English language was chosen to reflect the international character of our research contacts 
and results embedded in European initiatives. 
 
The editors are grateful to the Otto-von-Guericke University of  Magdeburg for publishing 
this journal. 
 
We hope that the new journal will be helpful to increase the awareness of the importance of 
software metrics issues in the improvement of software development processes and products. 
 
 
 
The Editors 

8th International Workshop on Software Measurement 
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  of the German Interest Group on Software Metrics and the 
 Canadian Interest Group on Metrics (C.I.M.) 

 September 17 and 18, 1998,  Magdeburg, Germany 
 
 
Scope 
 
Software measurement is one of the key technologies to control or to manage the software 
development process. The applicability of metrics, the efficiency of metrics programs in 
industry and the theoretical foundations have been subject of recent research to evaluate and 
improve modern software development areas such as object-orientation, component-based 
development, multimedia system design, reliable telecom-munication systems etc. Our recent 
workshops have been attentive to these concerns. Research initiatives were directed initially to 
the validation of software metrics and their practical use based on critical analysis of the 
benefits and weaknesses of software measurement programs. But up to now the application of 
metrics does still involve the risk of failure. Therefore, it is necessary to exchange the 
experience of successful metrics applications between practitioners and researchers to 
stimulate further theoretical investigations to improve the engineering foundations in software 
development and measurement. We are looking for papers in the area of software metrics and 
software measurement from (but not limited to) the following areas: 

�� Lessons learned from establishing a measurement program in industry  
� (could be successes or failures with post mortems) 

�� Experience reports 

�� Theoretical background and further practical applications of the function point 
method 

�� Metrication of new OO languages or methods such as Java and UML 

�� Metrics data bases and repositories 

�� Development and use of measurement tools 

�� Theory of measurement and its practical implications 
 
 
Program Committee 
 

Alain Abran, University of Quebec, Montreal, Canada 
Katrin Baumann, SAP, Walldorf, Germany 
Reiner Dumke, University of Magdeburg, Germany 
Christof Ebert, Alcatel, Antwerp, Belgium 
Horst Zuse, TU Berlin, Germany 
 

Submissions 
 



 Position Papers 4

Authors should send full papers (max. 12 pages) or abstracts (2-3 pages) by mail, fax or e-
mail by July 15, 1998 to 
 

Alain Abran  Reiner Dumke 
University of Quebec or to Otto-von-Guericke-Universität Magdeburg 
Dept. of Computer Science  Institut für Verteilte Systeme 
C.P. 8888, Succ. Centre-Ville  Postfach 4120 
Montreal (Quebec), Canada H3C 3P8 D-39016 Magdeburg, Germany 
Tel.: +1-514-987-3000  Tel.: +49-391-67-18664 
Fax: +1-514-987-8477  Fax: +49-391-67-12810 
e-mail: abran.alain@uqam.ca  e-mail: dumke@ivs.cs.uni-magdeburg.de 

 
 

Workshop Timetable 
 

Submission deadline: July 15, 1998 
Notification of acceptance: August 15, 1998 
Full paper for publishing in a metrics book: workshop date 
Workshop date: September 17-18, 1998 

 
 
News 
 
For the latest news about the Workshop please see the following Web site: 
 

http://ivs.cs.uni-magdeburg.de/sw-eng/us/ 
 

It is planned to broadcast the conference world-wide by videoconferencing based on Mbone in 
the Internet. 
 
 
 
 

MEASUREMENT IN PHYSICS AND SOFTWARE 
ENGINEERING 

 
Part II 

 
Horst Zuse 

University of Southwestern Louisiana1 
2 Rex Street 

P.O. Box 44330 
Lafayette, LA 70504-4330, USA 

 
 
                                                 
1 Horst Zuse is from February 20, 1998 till May 20, 1998 with the University of Southwestern Louisiana, 
Lafayette, Louisiana, as a Visiting Professor. 
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4 Additive Measures 
 
In Part I we finished with the question whether measures in the software measurement area 
assume additivity. Let P1, P2 are flowgraphs with P1, P2 � P, where P is a set of flowgraphs, 
then for many measures holds  
 

u(P1 o P2) = u(P1) + u(P2). 
 
We denote with u a measure, for example a complexity measure. The statement P1 o P2 is the 
sequential concatenation of two Flowgraphs P1 and P2 to the sequence P1 o P2. u(P1 o P2) 
means the application of the Measure u to the sequence of the Flowgraphs P1 o P2. For 
example, the Measure LOC assumes such a property. It holds for LOC 
 

LOC(P1 o P2) = LOC(P1) + LOC(P2). 
 
This is similar to the additive behavior of masses, lengths or resistors, etc.. We illustrate this 
with the next picture. 
 

P1

P2

P1

P2

Additivity

=u

u

u

+

 
Figure 4.1: Additive Measure LOC. If P1 and P2 are arbitrary flowgraphs then it holds 

LOC(P1 o P2) = LOC(P1) + LOC(P2). 
 
In physics such an additive behavior can be found in many cases. For example, masses can be 
combined and the formula of the weights of the two masses is additive. The next picture 
illustrates this. 
 

Mass 2

Mass 1Mass 1

 
Figure 4.2: The weights of masses are additive. 

 
However, in physics we also can find additive and non-additive measures. An example is 
lengths measurement. The next picture illustrates this. 
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a

b

Additivity

u(a o b) = u(a) + u(b)  
Figure 4.3: Lengths measurement is additive if we add two boards to a sequence.  

 
If u is a ruler then it holds: 
 

u(a o b) = u(a) + u(b). 
 
This is a well known property of lengths measurement, but it also holds non-additivity for 
lengths measurement. Let us consider the law of Pythagoras. 
 

a

b

c

Pythagoras
 

Figure 4.4: The Law of Pythagoras. 
 
Considering the law of Pythagoras we do not have additivity. The length of c can be 
determined by the lengths of a and b. It holds 
 

c2 = a2 + b2. 
or 

c = (a2 + b2)½. 
 

In the software measurement area we also have non-additive measures, like the Measure  
 

OV = �E�, 
 
where E is the set of edges in a flowgraph. Let us consider again the sequence of two 
Flowgraphs P1 and P2 written as P1 o P2, then it holds 
 

OV(P1 o P2) = OV(P1) + OV(P2) + 1. 
 
However, there is a big difference of the combination rule of Pythagoras and the Measure OV. 
Let us assume for the lengths of the Boards a and b hold a=5 and b=7, then we get 



 Position Papers 7

 
c2 = (a o b)2 = 52 + 72 = 74.  

 
Assume, that a and b were measured in kilometers. Then we can multiply the numbers with 
1000 to apply the formula for meters. It holds then 
 

10002 c2 =  10002 (a o b)2 = 10002 75 = 10002 52 + 10002 72.  
 
Doing this, the formula of Pythagoras always is true. We are getting the right results in meters. 
We even can delete the 10002 on the left and right side of the equation above and the result is 
still true. We say, the Law of Pythagoras is invariant related to the transformation of the 
lengths a, b and c by any Constant � > 0. More formally we can write: 
 

�
2 c2 =  �2 (a o b)2 = �2 52 + �2 72,  

 
where � > 0. The term �2 can be deleted without any problems. Of course, we expect such a 
behavior of lengths measurement. Let us consider the combination rule 
 

OV(P1 o P2) = OV(P1) + OV(P2) + 1. 
 
Again, we multiply the measurement values of OV() with � > 0. It holds 
 

�OV(P1 o P2) = �OV(P1) + �OV(P2) + 1. 
 
Here, we see a difference. We cannot delete � because there is an additional constant + 1. 
Taking an example, with OV(P1) = 5 and OV(P2) = 7 it holds: 
 

13 = 5 + 7 + 1. 
 
Multiplying the numbers of OV() – not the Constant + 1 – with, for example, � = 5 it follows: 
 

5 13 =5  5 + 5 7 + 1, 
=> 

65 = 25 + 35 + 1. 
 
The second equation is not true although the first equation was true (The left and right side are 
not equally). This shows that there are existing combination rules where we cannot apply the 
multiplication of a Constant � > 0. Coming back to geometry and physics, there we will 
analyze what is going on. The additive property of length and the Law of Pythagoras show us, 
that we have different numerical representations of lengths. We introduced an additive and 
non-additive one. However, everyone agrees, that the length of a o b or the length c of the 
hypothenuse is length measurement. We can walk along the length of a, b or c and nobody 
would say that it is not lengths in the usual sense. For this reason we need a common base for 
lengths measurement, which holds for additivity and non additivity of lengths. This common 
base is the extensive structure for lengths measurement.  
 
Length measurement is based on the following conditions. Firstly, we can compare the lengths 
of two boards. We illustrate this with the next picture. 
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Wooden Boards

a

b
 

Figure 4.5: Lengths of boards can be compared without using a measure. 
 
 
Lengths of boards here is considered from a qualitative view. Boards a and b can be compared 
without a measure. Everyone agrees that Board a is longer than Board b. Of course, we expect 
that a measure realizes that. The size of programs also can be considered from a qualitative 
view without using a measure. 
 
 

Size of a Program

a

b

Program 1

Program 2

 
Figure 4.6: The size of programs also can be compared without using a measure.  

 
 
Everyone agrees that Program 1 is large than Program 2. This is a qualitative view. However, 
behind the lengths of boards or length, generally seen, more is hidden than only the 
comparison. As we showed above, boards can be concatenated. For example, Boards a and b 
are concatenated to Boards a o b. Based on this concatenations the qualitative idea behind 
length is the following: 
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Extensive Structure (modified)

a
b

a a
b

c

a
b

c

a
b

b
a

a b

a b

c

c

a b

c d

.> .=

.>

.>=

.>=

Weak AssociativityPositivity Weak Commutativity

Archimedean AxiomWeak Monotonicity

.=

=>

 
Figure 4.7: Qualitative explanation of lengths. The extensive structure is the name for the 

five qualitative conditions. 
 
Lengths measurement can be explained by the five qualitative conditions above. The 
conditions are qualitative because no measure is involved. The set of the five conditions is 
called an extensive structure. For example, positivity means that having a Board a and Board 
b concatenated to Board a o b is always longer than Board a alone. Weak commutativity is 
clearly lengths behavior. The length of Board a o b is the same as for Board b o a. Or weak 
monotonicity says, that having Board a longer than Board b and adding Board c to both, then 
the length of Board a o c is greater than for Board b o c. The Archimedean condition also is 
easily to understand. Having two arbitrary Boards a and b and adding n-times Board c to 
Board a and Board d to Board b (Board c is longer than Board d), then it will never happen 
that Board a will be less than Board, even it held at the beginning Board a is less than Board b. 
 
We reduced lengths measurement to qualitative conditions. It is a common base for lengths 
measurement. And, the interesting thing is, that agreeing to the qualitative properties above, 
the theorem of the extensive structure says, that there exists an additive measure with exactly 
these properties [1] (We started with this property at the beginning). However, the theorem 
only says, that such a measure exists. This implies, that non-additive measures for lengths also 
can exist. The reader sees at this end, that measurement is more than using measures. 
Measurement is based on qualitative conditions. The qualitative conditions above are valid for 
all kinds of length measurement, independently if we have an additive, non-additive behavior 
of a measure or we measure in km, miles, etc. 
In Part III we will consider software measures from a qualitative view. We will see, that this it 
makes easier to understand the different numerical behavior of software measures. 
 
 
References 
 
[1] Zuse, Horst: A Framework for Software Measurement. DeGruyter Publisher, Berlin, 

Hawthorne, USA, 1997, 755 pages.  
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RULES OF THUMB FOR YEAR 2000 AND EURO-CURRENCY 
SOFTWARE REPAIRS 

 
Capers Jones, Chairman 

Software Productivity Research, Inc. 
1 New England Executive Park 

Burlington, MA 01803-5005 
 
 

Abstract 
Cost and schedule estimates for the year 2000 repair problem are extremely complex because this 
problem affects not only software but also data bases, test libraries, and hardware devices.  Cost 
estimates for Euro-currency updates are more conventional, but are made more difficult by the fact 
that the work on the unified European currency and the work on year 2000 repairs are being carried 
out on parallel schedules, and hence the two tasks are contending for scarce resources. 
Because many corporations lack estimating tools and estimating expertise even for normal software 
projects, estimating the work of these two massive simultaneous updates is far beyond their 
capabilities.  Indeed, almost half of the U.S. Fortune 500 companies as well as a majority of 
government agencies have discovered that their initial estimates for year 2000 repairs were low by as 
much as 50%.  These informal rules of thumb are not a substitute for a formal cost estimate for either 
problem, but can hopefully awaken software project managers and executives to the fact that the costs 
of these two massive updates should be derived from formal estimates using state-of-the art tools and 
methods. 
 
 
Introduction 
 
Cost estimating for the year 2000 problem is one of the most complex estimating tasks in the 
history of any industry.  The reason why estimates are so difficult is because the year 2000 
problem has some unique aspects which have not been encountered by the software industry 
in the past, and hence there is no historical data available.  The unique aspects of the year 
2000 problem include: 
 
1. Thousands of software applications are affected simultaneously 
2. Not only software but physical devices and data bases must be repaired 
3. Unusual activities such as “triage” must be estimated 
4. Possible damages and litigation expenses must be estimated 
5. Hundreds of programming languages are involved in the problem 
6. Both in-house and outsource work can take place simultaneously 
7. Year 2000 search and repair technologies are new and uncertain 
8. Multiple forms of year 2000 repairs are occurring simultaneously 
9. For some applications, the source code is missing or uncompilable 
 
Overall, the costs for making year 2000 repairs will comprise the largest software expense in 
history.  Indeed, a strong case can be made that the year 2000 costs are the largest single 
business expense of any kind in history. 
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Cost estimating for the European currency updates is a more conventional exercise, but still 
unusually difficult and prone to error.  The reasons why the Euro-currency estimates are 
complicated include: 
 
1. The Euro work and the year 2000 work are occurring simultaneously 
2. Hundreds or thousands of applications are on parallel update schedules 
3. Many applications being updated are poorly structured and hard to repair 
4. Both in-house and outsource work can take place simultaneously 
 
The costs of updating software applications for the unified European currency comprise the 
second largest set of software costs in history, and probably the second largest business 
expense in history. 
 
(The fact that the politicians of the European Union would schedule the introduction of the 
unified European currency so that it is competing with the year 2000 problem for scarce 
software resources is one of the worst public policy decisions in human history.) 
 
The probable outcome of what will occur when the Euro meets the Year 2000 may resemble 
what happened when the Titanic met the iceberg.  The year 2000 problem will slice through 
all of the Euro applications that are not year 2000 compliant, and may well sink the economies 
of the countries within the European Union.) 
 

C o p y rig h t©  1 9 9 7  b y  S P R .  A ll R ig h ts  R e s e rv e d . y 2 k /4

Y e a r  2 0 0 0
ic e b e r g

T h e  E u r o  T ita n ic

T H E  E U R O  S T E A M S  T O W A R D  T H E  Y E A R  2 0 0 0

 
Figure 1:  The Probable Result of the Euro Meeting the Year 2000 

 
The rules of thumb in this article are inadequate for contracts or serious business purposes.  
Their purpose is simply to give executives and project managers a way of judging the 
approximate magnitude of these two massive software problems.  The rules are taken from my 
book, The Year 2000 Software Problem - Quantifying the Costs and Assessing the 
Consequences (Addison Wesley Longman, 1997). 
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The rules of thumb in this article are based on the function point metric, and assume version 4 
of the function point counting rules as published by the International Function Point Users 
Group (IFPUG). 
 
Function points have become the dominant metric for software productivity and quality 
research, and the IFPUG organization and its affiliates in some 20 countries comprise the 
largest software measurement group in the world. 
 
A few rules of thumb are based on the older “lines of code” (LOC) metric and some rules are 
given using both LOC and function points.  With some 500 programming languages involved 
in the year 2000 problem, and many other kinds of non-coding work as well, the LOC rules 
are not safe for anything but yielding very approximate ranges.  In particular, LOC metrics are 
not safe for: 
 
�� Hardware repairs 
�� Data base repairs 
�� Litigation preparations 
�� Repairs in languages such as Visual Basic 
 
The LOC rules in this article are derived from languages such as COBOL and C, and should 
not be used for object-oriented languages, program and application generators, visual 
languages, or other non-procedural languages. 
 
 
Rules of Thumb For Year 2000 Repair Estimation 
 
Accurate cost estimating for year 2000 repairs is extremely complicated, since it involves 
software repairs, data base repairs, test library repairs, tools purchases, hardware upgrades, 
contracts, and a host of other factors. 
 
For the past 50 years, software cost estimates have almost always erred in one direction:  they 
are too low.  The year 2000 problem is following this same classic pattern.  A majority of 
large corporations have found that their initial year 2000 repair estimates are too low, often by 
more than 50%. 
 
�� If you depend upon date field expansion, you can approximate the overall calendar period 

from the start of your “triage” to achieving a fairly good level of year 2000 compliance by 
raising the overall size of your portfolio in function points to the 0.3 power.  This rule of 
thumb will give the approximate time period in calendar months.  For example a portfolio 
of 100,000 function points raised to the 0.3 power indicates a calendar period of 31.6 
calendar months to move from triage to compliance. 

 
�� If you depend exclusively upon windowing, bridging, and other forms of “masking” for 

your year 2000 repairs, raise the size of your portfolio to the 0.25 power instead of the 0.3 
power.  For example a portfolio of 100,000 function points raised to the 0.25 power 
indicates a calendar period of 17.8 calendar months to move from triage to compliance via 
making rather than true date field expansions. 

�  
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�� If you operate in an IBM mainframe environment and can utilize object-code interception 
for year 2000 repairs, then raise the size of that portion of your portfolio to the 0.2 power 
instead of the 0.3 power which would be used for date field expansion.  For example a 
portfolio of 100,000 function points utilizing primarily object-code interception would 
need about 10 calendar months to move from triage to compliance (assuming that object-
code interception works well enough to be termed compliance). 

 
�� If you started year 2000 repairs in or before 1996 with date field expansions as your main 

strategy, expect your total expenses for achieving year 2000 compliance to approximate 
30% to 50% of your typical annual budget for your company’s software organization. 

 
�� If you started year 2000 repairs in 1997 with a mix of date field expansions and 

windowing or bridging or some other masking method, expect your total expenses for 
achieving year 2000 compliance to approximate 40% to 60% of your typical annual 
budget for your company’s software organization. 

 
�� If you start year 2000 repairs in 1998, expect your total expenses to absorb more than 50% 

of your annual software budget for 1998 and about 75% for 1999 unless you are fortunate 
enough to be able to use object-code interception or some other temporary masking 
method.  (You may not finish on time however.). 

 
�� In the absence of any other data, assume that year 2000 repairs will take at least 4 to 6 staff 

months of effort on the part every software employee in your company for a mix of date 
field expansion and masking. 

 
�� Assume that 50% of the applications in your portfolio are dormant and do not need 

repairs, and 50% are active applications which do need repairs. 
  
�� Assume that the source code is missing or uncompilable for about 15% of the aging legacy 

applications in your active portfolio, so either replacement or object-code repairs will be 
necessary. 

 
�� Assume that “dead code,” comments, and blank lines in your applications, for which you 

should not have to pay repair costs, totals 30% of the total volume of physical lines in 
every application undergoing year 2000 repairs. 

 
�� Assume that the amount of code in your active applications which needs repair is about 

5% to 10% of the total code measured in physical lines. 
 
�� Assume that your initial software year 2000 repairs using date field expansion and based 

on the number of lines of code needing repair (5% of the total) will proceed at a rate of 
1500 lines of code per staff month, or 15 function points per staff month. 

�  
�� Assume that “top gun” experts can achieve double the nominal rate of 1500 lines of code 

or 15 function points per month, but that novices will achieve only half of the nominal 
rate. 

 
�� Assume that you will need at least one full-time year 2000 repair specialist for every 2,500 

function points (roughly 250,000 source code statements) in your active portfolio if you 
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have 24 months in which to accomplish year 2000 repairs.  As the elapsed time passes, 
your staffing needs will rise accordingly.  Using January of 1998 as the starting point, your 
staffing needs will change by 250 function points per calendar month. 

�  
�� In the absence of “data point” metrics assume that your data base repairs and your source 

code repairs will take roughly the same amount of effort; i.e. one month of data base repair 
work for every month of software repair work. 

�  
�� Assume that true date field expansion for data bases is so complex and time consuming 

that alternatives such as data duplexing, windowing, or bridging are the possible strategies 
for year 2000 data base repairs commencing in January of 1998. 

�  
�� Assume that testing and regression testing your year 2000 repairs will each take about 

60% as much effort as the repairs themselves, and more than half of the calendar time.  
Year 2000 testing is unusually complex, and final testing requires cooperative testing with 
your clients, suppliers, government agencies, and perhaps even competitors if you are in 
an industry such as telecommunications or public utilities. 

 
�� Assume that “bad fixes” will approximate 10% of your initial defect repairs, and hence the 

repairs will have to be done over.  The bad-fix injection rate for year 2000 repairs has 
received little attention in the press, but will prove to be a major problem. 

 
�� Assume that 10% of your year 2000 test cases are incorrect and will need to be repaired 

themselves.  If you are doing Euro-currency updates and year 2000 repairs on the same 
application at the same time, using different teams, assume that the bad fix injection rate 
will be 15%. 

 
�� Assume that your software year 2000 repairs will be about 95% efficient, but that 5% of 

the total possible number of year 2000 “hits” will be missed before the end of the century, 
and will not be discovered until after the year 2000 itself. 

 
�� If your organization uses embedded software in manufacturing or process control devices, 

assume that only about 80% of these can be repaired in time, and 20% will fail when the 
year 2000 occurs. 

 
�� In the absence of any metrics for repairing embedded devices, assume that the costs will 

roughly 50% of the costs of your software repairs.  This is an unsafe rule of thumb, but 
since many manufacturing and process control companies have ignored embedded devices 
and omitted them from their year 2000 estimates, it is better than a zero value. 

 
�� Assume that year 2000 repairs will degrade application performance and throughput by 

10% to 20% unless performance monitoring, careful tuning, and extensive testing are used 
to regain performance. 

 
�� If your enterprise average for software compensation levels is about $60,000 per year, 

expect your year 2000 repair costs to run from $0.25 to $1.00 per physical line of code if 
you do the work yourself, and you use date field expansion as your primary repair method.  
This is equivalent to $25 to $100 per function point.  A mid point would be about $0.50 
per physical line of code or roughly $50 per function point. 
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�� If you outsource your year 2000 repairs to a contractor, expect your year 2000 repair costs 

to run from $1.00 to $2.50 per physical line of code.  This is equivalent to $100 to $250 
per function point.  This assumes date field expansion as the primary repair method.  A 
mid point would be about $1.75 per physical LOC or $175 per function point. 

 
�� If you utilize windowing, bridging, or some other masking approach as your primary year 

2000 repair strategy, and you do the work with your own staff, your costs per LOC will be 
lower than with date field expansions.  Assume your costs can run from about $0.10 to 
$0.50 per physical line of code, which is roughly equivalent to $10 to $50 per function 
point.  This assumes about $60,000 per year as an average compensation level for your 
staff. 

 
�� If you outsource your year 2000 repairs and masking is the method utilized (i.e. bridging, 

windowing, etc.) assume that the costs will run from about $0.20 to $1.00 per physical 
lines of code, or roughly $20 to $100 per function point. 

 
�� Assume that the damages, litigation, and recovery costs from unrepaired year 2000 

problems in software and data bases will cost about $3.00 to more than $20.00 per 
physical line of code.  This is equivalent to between $30 and $2000 per function point.  

�  
�� Do not assume that any cost data about year 2000 repair costs will be accurate for your 

enterprise unless the data uses the same compensation rates, burden rates, and work 
pattern assumptions that your enterprise uses.  This is an obvious fact and does not require 
a specific source of information. 

 
Once again, these rules of thumb are not safe for serious year 2000 estimating purposes, but 
are included for the benefit of year 2000 project managers and enterprise executives who are 
seeking some kind of general guidance about potential resources for dealing with the year 
2000 issues. 
 
To illustrate some of the many complexities of year 2000 repairs, table 1 illustrates some of 
the variations in schedules noted for various alternative repair strategies.  Table 1 shows the 
approximate number of calendar months required to implement a selection of year 2000 repair 
strategies.  Table 1 has a significant margin of error, but one point cannot be overemphasized:  
Time is running out for the year 2000 problem, and a significant number of companies and 
applications will not be repaired in time. 
 
Table 1 is based on the results of fairly large corporations which own at least 100,000 function 
points in their portfolios and employ several hundred software personnel.  In other words, 
table 1 is based on the time needed to fix at least 100 software applications and about the 
same number of data bases. 
 
Table 1:  Approximate Calendar Months to Implement Year 2000 
Strategies 

     
Year 2000 
strategy 

 Calendar Months 

   to Implement 
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Data base date field 
expansions 

40 

Software application date field 
expansions 

36 

Data duplexing  36 
Redevelopment of applications > 2500 function 
points 

30 

Redevelopment of applications < 2500 function 
points 

22 

Compression  21 
Bridging   20 
Windowi
ng 

  18 

Encapsulation  14 
Replacement via commercial 
packages 

13 

Substitution of manual 
methods 

12 

Object-code interception (if possible) 6 
    

Average   22 
    

 
Table 1 assumes that a company will be doing year 2000 repairs with their own personnel.  It 
is possible to bring in contractors or outsource vendors and these specialists may be able to do 
the work somewhat faster.  Indeed, a capable set of year 2000 experts such as the specialists 
employed by the major year 2000 outsource vendors can probably accomplish year 2000 
repairs in about 15% less time than inexperienced groups just beginning their year 2000 
repairs. 
 
There are also a number of year 2000 tools available that can find the year 2000 problem and 
assist in repairing it for common languages such as COBOL.  These year 2000 “search 
engines” can speed up the process of finding year 2000 hits, and some can assist in repairing 
straight-forward instances of date problems. 
 
The best case scenario, which would be the combination of “top gun” personnel and a full 
suite of year 2000 search and repair engines can do better than table 1 by about 30%.  
However, doing worse than table 1 can occur too, and does occur with distressing frequency. 
 
 
Rules of Thumb for Euro-Currency Conversion 
 
The European Union has scheduled the beginning of a unified currency for Western Europe to 
start on January 1, 1999 and then expand until 2002.  Of course this puts the Euro-conversion 
work in conflict with the much more serious year 2000 repair work.  It is hard to imagine a 
more serious public policy mistake than scheduling the second largest software project in 
history so that it conflicts with the largest software project in history. 
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This is such a serious international error that it lowers the probability that the European Union 
will be able to finish either their year 2000 repairs or their Euro currency work on schedule.  
In fact, the timing of the Euro currency work is bad enough to lead to a recession in Western 
Europe. However, politicians seem to know and care little about technical problems so Europe 
is going to have to live with their errors. 
 
The following rules of thumb are only approximate and not a replacement for a full-featured 
cost estimating tool.  Note that for Euro-currency estimates, under-estimating has been a very 
common problem. 
 
�� To estimate the schedule for any software application that is being updated for the 

European-currency raise the size of the application in function points to the 0.25 power.  
This will give the approximate number of calendar months from the start of analysis to 
final testing.  For example if you are updating an application of 1000 function points 
raising 1000 to the 0.25 power yields a schedule of 5.6 calendar months. 

 
�� For applications that are being simultaneously updated for both the Euro and for year 2000 

repairs, use 0.3 rather than 0.25.  For example, updating a 1000 function point application 
for both Euro and year 2000 repairs would take 7.9 calendar months if 1000 is raised to 
the 0.3 power. 

 
�� If you lack all other data points, you can assume that Euro-currency updates will take 

between 2.5 and 4 staff months on the part of all of your software employees. 
 
�� Assume that about 25% of the applications in your total software portfolio have currency 

calculations and will need updates.  This rule is for generalized companies such as 
manufacturing.  For key industries such as banks, retail chains, hotels, etc. the percentage 
can top 70% of all software applications. 

 
�� Assume that the amount of code in your active applications which needs Euro-currency 

modification repair is about 7% of the total code of financial applications measured in 
physical lines. 

 
�� Assume that your initial Euro-conversion work based on the number of lines of code 

needing repair (7% of the total) will proceed at a rate of 1200 lines of code per staff 
month, or 12 function points per staff month. 

 
�� Assume that you will need at least one full-time Euro-conversion specialist for every 

2,500 function points (roughly 250,000 source code statements) in your active portfolio if 
you had 24 months in which to accomplish Euro repairs.   As the elapsed time passes, your 
staffing needs will rise accordingly.  If you start Euro conversion in the summer of 1998 
you will need one full-time for about every 1,500 function points (roughly 150,000 source 
code statements) in your active portfolio. 

 
�� In the absence of “data point” metrics assume that your data base updates and your source 

code updates will take roughly the same amount of effort; i.e. one month of data base 
repair work for every month of software repair work. 

�  
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�� Assume that testing and regression testing your Euro-conversion work will each take 
about 45% as much effort as the repairs themselves, and just under half of the calendar 
time. 

�� Assume that “bad fixes” will approximate 10% of your Euro updates, and hence the 
repairs will have to be done over.  If you are doing year 2000 repairs and Euro repairs on 
the same application, using different teams, assume a 15% bad fix injection rate. 

 
�� Assume that 10% of your Euro-conversion test cases are incorrect and will need to be 

repaired themselves.  
 
�� Assume that your Euro-currency conversion work will be about 90% efficient, but that 

10% of the total possible number of Euro “hits” will be missed and will not be discovered 
until the software fails or produces erroneous results. 

 
�� If your enterprise average for software compensation levels is about $60,000 per year, 

expect your Euro-conversion costs to run from $0.50 to $1.25 per physical line of code.  
This is equivalent to $50 to $125 per function point. 

 
�� If you outsource your Euro updates to a contractor, expect your costs to run from $1.15 to 

$2.75 per physical line of code.  This is equivalent to $115 to $275 per function point. 
 
�� Do not assume that any cost data about Euro-currency costs will be accurate for your 

enterprise unless the data uses the same compensation rates, burden rates, and work 
pattern assumptions that your enterprise uses.  This is an obvious fact and does not require 
a specific source of information. 

 
�� If yours is one of the unfortunate companies that is tasked with trying to do both year 2000 

repairs and Euro-currency work at the same time, be cautious and conservative.  These 
two massive tasks are not synergistic but rather antagonistic, and the combination will 
tend to raise bad fix injection rates, more than double costs, and stretch out schedules so 
that neither task has a high probability of finishing on time. 

 
 
Summary And Conclusions On Manual Estimating 
 
Simple rules of thumb are never very accurate, but continue to be very popular.  The main 
sizing and estimating rules of thumb and the corollary rules presented here are all derived 
from the use of the function point metric.  Although function points metrics are more versatile 
than the former “lines of code” metric the fact remains that simple rules of thumbs are not a 
substitute for formal estimating methods. 
 
The year 2000 problem is the largest and most complicated software estimating problem in 
history.  The European currency updates comprise the second largest software estimating 
problem in history and is also complex, although not as complex as the year 2000 work. 
 
Both of these massive problems need formal cost estimates supported by state-of-the-art cost 
estimation tools and methods.  The simple rules of thumb shown here are not suited for 
contracts or serious business purposes, but are being published merely to raise awareness of 
the magnitudes of these two critical software issues. 
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BETWEEN CRAFT AND SCIENCE 

 
Christof Ebert, Alcatel Telecom, Antwerp  

 
 

Abstract 
Society in the information age is heavily dependent on reliable computing and communication 
technology. However, due to the lack of an engineering base this technology is not accessible and the 
development of necessary software can not be guaranteed. The dilemma is new in that a discipline 
without solid foundations is taken so seriously by other disciplines and by the whole society that three 
decades after the discipline’s emergence this very society and millions of people are heavily 
dependent on its correct functioning. The goal of this paper is to make aware the necessity that we 
have to treat software engineering as an immature engineering discipline in order to learn from other 
disciplines and hence to progress. 
 
Keywords 

engineering, maturity, science theory, software engineering 
 
 
1 Introduction 
 
Our modern society is increasingly dependent on software in all forms, sizes and complexities 
to drive computers that are embedded in nearly all aspects of daily life. We are on the other 
hand consistently surprised by the inability of software engineers to deliver software with the 
required functionality on time and within budget. While the society should not wait for a 
catastrophe before it tries to improve this critical resource, the software engineering 
community - which is ourselves - has to think about positioning itself correctly and finally 
start to learn from other disciplines and from within. 
 
How can this be achieved? After all the so-called "software crisis" is as old as software 
engineering as a discipline. Many talented individuals tried to overcome the crisis over these 
30 years. What should not happen is to blame the first two (or were it already three ?) 
generations of serious software engineers for the named problems. Civil engineering needed 
centuries of trial and error, and mechanical engineering also took decades during certain 
stages of craftsmanship before visible advances had been achieved. However, the dilemma is 
new in that a discipline without solid foundations is taken so seriously by other disciplines and 
by the whole society that three decades after the start of the discipline (which again is 
completely new to be dated so exactly) this very society with millions of people is heavily 
dependent on its correct functioning.  
 
The goal of this paper is to make aware of the necessity to treat software engineering (in the 
course of this paper abbreviated as SE) as an immature engineering discipline. We selected 
the words "immature engineering discipline" carefully. Although behaving often more like a 
craft, we think that any engineering discipline emerges on a trajectory in the craft vs. science 
spectrum (fig. 1). Engineering in our point of view includes both craftsmanship and scientific 
working. Maturity means that both aspects of the same engineering discipline have evolved 
towards what is considered mature (e.g. repeatability, reflected and defined methods, 
processes, and artifacts, etc.).  
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To stimulate discussion we decided to use only black and white for coloring our critical self 
assessment with the implicit danger of being blamed of being too negative. A panelist of a 
virtual roundtable recently even questioned the necessity of SE as a discipline on its own [8]. 
Indicating that most parts of computer science are today influenced by other disciplines he 
pointed out that SE could become part of the different application domains' related disciplines. 
The viewpoint of this paper is less radical, questioning instead how to build upon available 
experience and how to learn from other disciplines in order to improve qualitatively. 
 
The paper is organized as follows. The following section acts as a methodological 
introduction and provides some restrictions and underlying assumptions. The third section 
positions SE somewhere in between a craft and a science. Problems that arise with its current 
position are briefly summarized and the underlying assumptions of this article are given. 
Section 4 notes resulting scientific questions that are not answered completely in this study. 
The key to providing answers is given in sections 5 and 6 that look on insights from within 
science theory and on answers from within SE.  
 
 
2 Some restrictions and assumptions 
 
In order to narrow the focus of this paper we did not include systems engineering aspects 
although we clearly see software and systems engineering foundations and current positions 
being closer than to any other engineering discipline. The basic difference between these two 
disciplines is that systems engineering positions itself entirely in the application domain, that 
is complex systems. Systems engineers are from origin engineers from other areas that have to 
work interdisciplinary and hence to think and act as generalists that are experts in the 
application domain (e.g. space projects). A parallel - which we should take as one starting 
point of seeing similarities and learn from each other - is that in the case of systems 
engineering it was also industry that saw huge deficits in knowledge and abilities of their 
workforce that could not be provided by universities [3]. Companies such as GD, TRW, or 
NASA thus started their own systems engineering programs.  
 
This paper does not intend to treat topics that have been discussed elsewhere 
comprehensively, though they should nevertheless be considered while talking about SE as a 
science. This includes educational aspects, curriculum aspects [13], the legitimization of SE 
as a discipline (i.e. separated from computer science) [16,17], research goals and programs, or 
research credits and evaluation of research results. Such aspects had been named before by 
Berry in his outstanding paper on the academic legitimacy of the SE discipline [1]. Research 
aspects and goals had been discussed broadly in the Computer Science and Technology Board 
(CSTB) available from the US National Academy [2]. Substantial critique of current research 
in SE including helpful directions towards improving the situation had been provided recently 
by Glass [15]. 
 
Although we feel the strong need of a common language for any science, we do not strive to 
re-write a glossary. Most of our terminology is according to the established wording of the 
current SE scientific community and the related engineering standards (e.g. [4]). Especially 
the use of "discipline" and "science" might sometimes look strange. We distinguish between 
an engineering discipline (e.g. civil engineering) and a science (e.g. natural sciences), to 
underline that engineering has aspects of a science and of a craft. 
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Due to the broad topic and the many well-known open questions that are often only restated, 
we tried to emphasize those inputs that can directly be used for finding answers and for 
getting further. DeMarco and Lister once remarked that "somewhere today a project is failing" 
[12] which exactly shows the tragedy. We know about it (everybody does), however since we 
do not know where to find remedies and treats (besides a lot of really helpful project- or 
people-specific cookbooks), we close our eyes and are sure that this time, it must work. It 
almost never works and the few success stories provide the stuff for the next cookbook [16]. 
There are so many of these cookbooks around that practitioners often question their 
applicability and helpfulness and typically start writing their own project-specific handbooks. 
And here we are, questioning from within industry what could be done together with academia 
to shape SE as a solid engineering discipline.  
 
We will finish this section with our assumptions towards a path of SE to an engineering 
discipline that is able to mature: 

�� SE is an engineering discipline and should hence learn from other engineering 
disciplines to struggle its way to maturity; 

�� there is no engineering discipline without scientific foundations (e.g. common 
language, defined methods, hermeneutics); 

�� computer science is but one scientific disciplines that SE is based upon. 
 
Obviously SE has to consider inputs from other disciplines, from science theory, and - in 
order to accelerate quickly - from within its already available and broad set of experiences. 
This is to be done in the following sections. 
 
 
3 From a Craft to a Science 
 
The still shortest definition of SE is given in [4] and is based on a similar definition of 
"engineering": SE is [5] the application of a systematic, disciplined, quantifiable approach to 
the development, operation, and maintenance of software; that is, the application of 
engineering to software. SE is [6] the study of approaches as in [5]. The maturity of SE as an 
engineering discipline is determined by the flow of scientific results (e.g. from computer 
science) to daily work and of problems resulting from daily business as questions to other 
sciences. Being a science implies knowing about and reflecting the scientific foundations. The 
second part of the definition makes clear that we reflect our methods and hence we are really 
talking about a science. 
 
Upon trying to find SE's position in a spectrum of craft vs. science (fig. 1) several interesting 
problems arose that are typical for immature sciences: 
 
There is no common language within the community (take for example the use of words like 
"process" or "method"). Of course this makes scientific discourses impossible.  
Hermeneutic questions are typically not addressed by the community, and thus (empirical) 
validation of what we call "knowledge" is more than questionable. We could even go further 
and state that there is no theory in SE that has ever been treated seriously in terms of 
applicability and validation or falsification.  
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Available solutions that we earlier called cookbook recipes lack broad applicability. Limit and 
risk assessments are typically conducted superficially or postmortem, and so are cost benefit 
analyses. Too often software engineers and their companies rely on some method advocate 
who suggests a new method that is told to have worked somewhere else without even 
questioning environments or comparing processes. Nobody ever provides insight about 
applicability to classes of problems because there are no such classes. Lack of industrial 
acceptance is the result. 
 
Controlled experiments are almost never conducted and upon reporting results from such 
experiments (e.g. [6]) the conclusion is drawn that they are typically impossible in SE for cost 
reasons. A survey of 400 recent research articles in SE showed that of those that would require 
experimental validation 40% have none at all compared to 15% in other disciplines [5]. Even 
postmortem analyses are neglected in industry due to an assumed lack of interest to really 
learn from other projects, and of course fear to unveil management deficiencies. 
 
We will contrast these observations with a traditional engineering discipline, namely electrical 
engineering (EE). For centuries there was no discipline called EE and even associated crafts 
were more or less magic. Reducing simple observations to what was essence (as opposite to 
accident) during the last century provided laws and a completely new (scientific) branch of 
physics (e.g. by scientists Kirchhoff, Faraday, or Maxwell). Almost immediately the practical 
applicability was obvious and mechanical engineering expanded to what was later known as 
EE (e.g. by engineers Siemens or Bell). Ever since new theoretical insights that usually 
swapped over from physics were instantaneously used by engineers to provide technical 
artifacts for the use of mankind. A good example of such chains from theory to practice is the 
generalization of Kirchhoff's laws to the theory of circuits and then to CAD tools that allow 
for easy design, test and simulation of new circuits. Resulting problems from daily 
applications of circuit theory are continuously played back and forth to the theoretical branch 
of EE to obtain applicable solutions. The tools in turn adapt and provide these theoretical 
results almost immediately in a way that is useful for practitioners. 
 
The path of EE to an engineering science was paved with small and controlled experiments. 
Complexity was reduced by considering regular geometric shapes. Related questions were 
reduced to "limitation problems" and considered much later. All theories emerged from such 
small examples and even today circuit design of VLSI chips starts with elementary cells and 
then reduces them in size, plays a little with geometry and materials, and later places other 
cells nearby.  
 
 
4 Resulting Scientific Questions 
 
Contemporary science theory considers everything scientific that is treated by reasonable 
people as such - independent of methods and approaches. Therefore, our introductory 
assumption on SE being an engineering discipline and thus being also a science still holds 
from this viewpoint. Trying to position the current state of SE in the already mentioned 
spectrum resulted in many singular areas, each with its own spot, however not connected by 
something called scientific or engineering framework (fig. 2). Nevertheless we investigated 
SE in terms of scientific approaches of other engineering disciplines. Several questions came 
up while trying to sort out aspects that help in building a solid engineering discipline. 
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Dependent on the reader’s background the list may seem irrelevant (for a craft) or superficial 
(for science theory). 
 
What is the meaning of SE? This is probably the most difficult question, because the easy 
answer based on the SE definition (i.e. the application of engineering to software) does not 
progress towards the pragmatic component of "meaning".  
 
What are the underlying assumptions of SE as a scientific discipline? We know that especially 
SE is shaped by conceptual confusion in dealing with phenomena pertaining to human beings 
and computers (e.g. "intelligence", "communication") or in separating processes from artifacts 
(e.g. "design", "quality"). 
 
What is theory in SE? We might generalize Naur's view towards the assumption that SE is 
theory building [9]. Theory building in this broad context is to find ways in which software 
can meaningfully be applied to meet customer demands. Theory as it is included in any 
software system finally deeply influences maintenance activities, since theory building is tied 
up with people who might not be available in the future. 
 
What makes the SE discipline mature? Knowing that a mature engineering discipline needs to 
be mature as a craft and as a science leaves this question open. Due to a completely inductive 
approach the maturity of an engineering discipline is associated with validity and broad 
applicability of basic hypotheses. 
 
What is scientific quality in contrast to the quality of resulting artifacts? Intuitively we know 
that in order to provide improved products, SE has to evolve as a discipline. However, we 
must clearly separate one from the other. The problem with design is that we are trying to 
invent a form to fit in a context that we do not fully understand [10].  
 
How is it feasible to separate SE specific problems from domain specific problems? This 
question is important as SE usually provides artifacts or products that are to be used in other 
domains. The question might be enhanced from an ontological point of view by asking what is 
"real world" in SE.  
 
What are choices or decisions and what is determination during any design process? Often the 
software engineer is portrayed as making design decisions in an open situation, where there 
are several possibilities to choose from. In paying attention to design decisions, there is 
obviously an emphasis on our responsibilities, and hence an ethical dimension of our activities 
is included in this discussion. This coincides with the search for values that allow for 
repeatable conflict resolution. 
 
How should SE experiments be designed and conducted in order to validate or reject 
underlying theoretical assumptions? This includes project size, repeatability, appropriate 
measurements, dealing with all influencing factors, keeping these factors stable but one, 
proper and suitable statistical techniques, consideration of time and learning curves, stochastic 
systems design, simulation, reliability and quality analysis of results, and the reporting of the 
results. 
How can interdisciplinary techniques effectively being integrated in an emerging science? SE 
is often considered a conglomerate of many disciplines, while the adaptation of techniques 
from these disciplines is neglected. Aspects to be integrated include holistic thinking 
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capability and conceptual analysis, basic principles and theory of several other engineering 
disciplines, interpersonal skills, organization, and administrative skills. 
 
How is complexity to be managed in an interdisciplinary area? Complexity in this context has 
to be seen from different viewpoints, namely interacting disciplines that build the foundation 
of SE (e.g. technical constraints vs. management restrictions vs. ethical guidelines), system 
and environmental aspects of any specific application domain interacting in a given project 
(e.g. real-time issues, interfaces to other systems), software complexity (e.g. interacting 
components), or psychological complexity (e.g. human interface, maintenance aspects). 
 
Is there a difference between theoretical understanding and methodical support? Of course this 
question provokes discussion because everybody agrees - from a scientific point of view - that 
there must be a difference. There are many hints on the other hand that in SE descriptive and 
prescriptive approaches are typically not clearly separated and if so, only to bridge the gap 
between modeling and real world (take any introduction to SA or OOA as an example). Since 
there are no such things as methods a priori (those a posteriori are published anyway), what 
should result is situative method selection and adaptation. 
 
Is there anything such as discourse theory in SE? We don’t think so, however we like to 
emphasize questioning who is our audience; what do they know and which problems do they 
have; and how is our research helpful for them. Studies showed that typically 40 % of the total 
elapsed effort goes almost evenly distributed into specifying, coding, and testing, while 
another 40 % of the effort are eaten by communication and information exchange. It is 
amazing that even in teams that work together for a long time lots of problems cannot be 
discussed openly due to fixed positions, ownership of ideas (NIH syndromes) and 
unwillingness to retract.  
 
Most of these questions have already been answered for other engineering disciplines. 
However, there can be no single theoretical framework providing answers to the set of 
questions raised above. We will try to provide some inputs in chapters 5 and 6. We realize that 
while collecting problems and trying to provide some inputs from other areas we always 
reflect our own perspectives and experiences.  
 
 
5 Inputs from Science Theory 
 
The immature state of SE is reflected by the lack of even a general framework of paradigms, 
categories, or conceptual schemes that is subject to so many scientific revolutions in other 
sciences. The first step towards more scientific thinking in this context is the current transition 
away from treating all software - which includes both problem descriptions and design 
approaches - as essentially being the same. Techniques for approaching distinct domain-
specific problems provide improvements in quality and productivity that seemed impossible 
for general-purpose SE techniques (e.g. component-ware, frameworks). 
Talking about science and SE as a science of course raises the question whether we need 
something like a SE science similar to other engineering sciences. Perhaps a craft would fit for 
all purposes beyond what could be provided by associated sciences. From a science theory 
point of view there are several answers that are however self-contained and lack applicability 
to the original question. The primary goal of science might be the acquisition of knowledge. 
Another more behaviouralistic view is that scientific results are prescriptions for actions in 
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practical decision-making situations. Both viewpoints are combined once the function of 
knowledge is questioned. While mathematics, humanistic sciences, or philosophy strive for 
explanation and understanding, natural or social sciences strive for prediction and control. 
Possible scientific contents of SE include: 

�� the subject-object relations between the researcher, the object of research, and the 
scientific community in a situation where the objects of research are changing 
rapidly; 

�� the relationships between descriptive and prescriptive knowledge (i.e. the 
combination of theory and practice); 

�� the applicability and the limits of methods from other sciences. 
 
Of course the search for knowledge or truth alone are not sufficient as the main objectives of 
science. However, the search for applicable knowledge justifies a more scientific approach. 
Knowledge acquisition in natural sciences and engineering disciplines is based on an 
inductive approach. This proceeding from the special observation to the general theory is 
pictured in fig. 3 as a spiral. The increasing radius is a measure of the discipline’s maturity. 
Observations that are based on inputs from application domains, such as project experiences, 
eventually result in hypotheses that combine several observations. These hypotheses might be 
fed with inputs from other related disciplines or sciences, such as EE or CS.  
 
The critical boundary between a craft and a science is crossed upon formulating generalizing 
laws from the given hypotheses. Laws that are not proven false for a while are considered 
know-how because they allow for engineering work, for example by providing methods and 
tools for improved software production. The inductive cycle is completed when a general 
theory is formulated that allows for deductive approaches, such as coining new hypotheses for 
other areas. We consider all accepted theories as the knowledge of SE that in turn establishes 
links to other sciences and disciplines by realizing that distinct questions had been formulated 
elsewhere before.  
 
 
6 Answers that we already know 
 
It would be bewildering in this context to neglect those broad experiences made in the 30 year 
history of SE. Hence we try to provide insights from within our community that can help in 
building a sound engineering discipline. Considering the following suggestions shows that 
there is both a framework for scientific advance and enough space to overcome the software 
crisis in a controlled manner.  
 
Shape the SE community. Something we can easily provide from within is a set of applicable 
standards and a defined language. To make such things common thinking, training and 
education need to be adjusted. Although SE educational needs at universities have been 
addressed before, they need a flavor of real life which could be provided by business school 
like case studies. It must be ensured that research and practice talk the same language. 
Taxonomies that bridge SE language and that of application domains can help in organizing 
our knowledge in a way that not only improves communication but also organizes and 
structures the way we think. We have to learn from our projects, and it should not be too 
difficult to get sufficient archival material or even material from ongoing projects for that 
purpose. Licensing of staff based on at least minimal competence for general practice similar 
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to other disciplines also influences professionalism. Methods for monitoring and dealing with 
professional malpractice combined with formal decertification might set additional targets for 
a true engineering discipline. An instrument that could be used to steer the direction of SE as a 
scientific discipline is tenure. If tenure committees and funding agencies focused on quality 
instead of quantity of research (publications) results would be more valuable. 
 
Apply the same restrictions as in other engineering disciplines. Take civil engineering and 
think about the degree of parallelism that is possible due to clearly defined processes, 
interfaces between them and resulting products. In other disciplines separated processes 
became almost independent domains of systematic scientific inquiry. The need obviously is to 
reduce the complexity of processes. Processes have their importance since they allow local 
control and reproducible results that can be planned and tracked.  
 
Reduce complexity. It had been pointed out that software in general is so complex that it lacks 
the degree of repetitiveness which is so characteristic of artifacts in other engineering 
disciplines [11]. However, from a distant point of view all engineering artifacts seem complex 
and still can be controlled [7]. The key is to keep things as simple as feasible. Once distinct 
techniques are applicable to controlled complexity, complexity can slowly be increased in 
limited areas and where experience is available. Reducing complexity means separating 
problem-specific complexity (e.g. functionality, interconnections between domains) and 
solution-specific complexity (i.e. the complexity created by constructing an artifact). Typical 
SE problems arise when both complexities are tangled, for instance when performance (as a 
problem-specific aspect) is improved at the sake of modularity (which is solution-specific). 
Instead of focusing on maintaining legacy software on the one hand and creating sophisticated 
object-oriented frameworks on the other, SE could instead show how to migrate and replace 
legacy systems by better architectures. 
 
Allow for routine work. Current software engineering practice is based on uniqueness of 
projects [11]. Knowing that something similar has been done before is considered as having 
no practical impact because some interfaces might differ and several environmental flavors 
could have changed. Other engineering disciplines clearly separate between routine design 
(including reuse and adjusted copies) and innovative design. SE too should support routine 
tasks and investigate how to improve exactly what is never taught at universities: how to copy 
what is good and how to make use of what already exists.  
 
Consider all influencing factors according to their individual impacts. A typical example is the 
people factor [12]. Knowing about it does not mean considering it. Give another boss to a 
successful team and it may separate immediately. It is by no means easy to consider such 
factors, however we have to deal with past experiences. The sorry state of SE is underlined by 
knowing that practitioners don't even care for "scientific" results because they have no idea 
how to transfer them to their own environments, while researchers disregard studies done by 
other researchers because too often it is impossible to get further information from the 
authors. 
Consider different viewpoints. Viewpoints' impacts are often neglected. Consider a survey of 
assumed capability maturity in a big organization. Independent of any "objective" assessment 
(if this is no oxymoron) management would surely rank the organization much higher than 
practitioners that know about the daily deficiencies. Closely related to viewpoints and to the 
maturity of processes are attitudes. As long as firefighting is rewarded in many organizations 
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instead of smoothly steering a project, sound engineering and planning techniques will not 
evolve. 
 
Conduct small controlled experiments. Almost all natural sciences, and hence all engineering 
sciences, gained their knowledge by proceeding from the particular to the general. Scaleability 
should be an underlying goal of experiment design. Completeness in terms of projects and 
solutions must be ensured which supports the classification of projects that can be used for 
benchmarking. Experiments and measured pilots with readily available results should 
substitute "common SE sense" that too often judges over applying or replacing existing 
practices. 
 
Keep quantitative approaches sound and simple. Lord Kelvin is quoted with the insight that 
science starts with accurate measuring. Measurement seems to be the key and still Fenton et al 
recently showed that many reported projects and experiments are worthless for the SE 
community due to invalid statistical procedures and neglecting influencing factors [6]. 
Software measures and models should be mathematically and statistically sound. A quality 
standard checklist used by reviewers could serve not only as entry criteria upon submitting an 
article but also could improve experiment design. 
 
Learn from your faults. The willingness to reflect on our own practice in terms of faults is 
psychologically difficult to achieve. Failures may be costly, however not learning from 
failures is even more expensive. The same holds for management faults. The typical top-
management reaction on a missed schedule is to "improve productivity", which is all too often 
achieved by reducing effort for "non-productive processes" (such as requirements engineering, 
training or reviews). If schedules are missed, we have to improve our planning capabilities 
and if estimations are wrong we have to adjust estimation techniques and not the development 
process.  
 
Consider the application domains. Models are used in various SE areas without a theory for 
building and validating models. Fundamental assumptions about the nature of the application 
area are typically made without even realizing what reality is and what our perception of 
reality is [14]. Limits of our models are not questioned due to lack of knowledge about real 
limits. Upon finishing a model it is used for abstractions to reduce the solution space and 
again nobody is able to validate these abstractions in relation to reality.  
 
Take whatever you can learn from other disciplines. Technology transfer is the key to linkages 
in many engineering areas, cross-country and cross-disciplinary. The adaptation of 
configuration and change management techniques from the aircraft industry to SE was but one 
example in the past. Today it might be the confession towards clear and stable interfaces 
between reusable software components. Requirements engineering might learn from 
hermeneutics which is concerned with the interpretation of text in a very broad sense. 
Software design might learn from architecture [10]. In order to learn from other disciplines we 
must be aware that this touches education and skills. Kipling is quoted saying that "those who 
know only England do not know England". As long as our workforce is recruited mainly from 
CS, they cannot be expected to be open and sensible towards engineering issues.  
 
 
7 And how do we proceed from here? 
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Several steps must be accomplished, to progress to what we call maturity. Applying the 
named principles or inputs from within SE is the first step. It is now the time to rate research 
results according to their impact to making SE mature. This could help in reducing one effect 
of advocacy research, namely that practitioners simply ignore research results. If there is a 
crisis, then it is not an average 20 % schedule or 30 % budget overrun (which by the way is 
quite common in other engineering projects), but this acceptance gap between theory and 
practice.  
 
SE practitioners should change their approach towards complex software systems and the 
underlying development process. Complexity is not completely essential, and thus approaches 
to reduce and to manage complexity must be applied. Both sides, researchers and 
practitioners, should cooperate more closely which includes openness towards exchange of 
problems and solutions. Proprietary interests of companies are inefficient and expensive in the 
long run. Classroom examples and "experiments" that lack scaleability are worthless because 
they hinder discussion. Research support and funding from governments or industry should be 
more oriented towards systematic problem-solving and broad dissemination of knowledge. 
The probably best example for implementation of this approach is the NASA’s Software 
Engineering Laboratory. 
 
While this paper only reflected on few observations dealing with SE in the craft vs. science 
spectrum, it intents to stimulate discussions on the topic. Many approaches especially several 
that are mentioned in the SE related references below indicate not only awareness but also 
improving maturity of the discipline. After all we still happen to deliver software - 
independent of schedule and budget constraints - that is used by millions of people worldwide. 
The good news is that despite all mentioned scientific pitfalls and with an "initial maturity 
level" some key players are highly profitable. It seems as if we have to learn from another 
discipline that never became clear about being craft or science: medicine. It is not so much the 
position in the craft vs. science spectrum that distinguishes between a doctor and a quack - it 
is the degree he serves mankind. 
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STRENGTHS AND WEAKNESSES OF  
SOFTWARE METRICS 
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Abstract 
The software industry lacks standard metric and measurement practices.  Almost every major 
software metric has multiple definitions and ambiguous counting rules.  Further, there are no 
standards for dealing with basic topics such as the activities to include in software measurement 
studies.  There are also key topics with no metrics at all, such as quantifying the volume or quality 
levels of data bases and data warehouses.  The result is a lack of solid empirical data on software 
costs, effort, schedules, quality, and other tangible matters.  This report analyzes some of the key 
software size metrics and the underlying technical problems associated with software measurement. 
 
 
Introduction 
 
Measurement, metrics, and statistical analysis of data are the basic tools of science and 
engineering.  Unfortunately, the software industry has existed for more than 50 years with a 
dismaying paucity of measured data, with metrics that have never been formally validated, and 
with statistical techniques that are at best questionable. 
 
One of the fundamental measurement issues for software that need to be put on a firm and 
rational basis is how to measure the size of various software deliverables.  A full treatment of 
the size topic is too large for a journal, so this article only summarizes the current state of 
software size metrics research. 
 
 
What Software Artifacts Require Size Data? 
 
Before turning to the available metrics for dealing with sizes, it is useful to step back and 
examine the kinds of items associated with software projects where size information is 
needed.  There are 20 software artifacts where size information is important because the costs 
of creating or dealing with these deliverables is significant: 
 
Table 1:  Twenty Software Artifacts Requiring Size Metrics 
 
1)  The functionality of the application 
2)  The volume of information in data bases 
3)  The quantity of new source code to be produced 
4)  The quantity of changed source code, if any 
5)  The quantity of deleted source code, if any 
6)  The quantity of base code in any existing application being updated 
7)  The quantity of “dead code” no longer utilized but still present 
8)  The quantity of reusable code from certified or uncertified sources 
9)  The number of paper deliverables (plans, specifications, documents, etc.) 

10)   The sizes of paper deliverables (pages, words) 
11)   The number of national languages (English, French, Japanese, etc.) 
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12)   The number of on-line screens 
13)   The number of graphs, and illustrations 
14)   The sizes of non-standard deliverables (i.e. music, animation) 
15)   The number of test cases that must be produced 
16)   The number of bugs or errors in requirements 
17)   The number of bugs or errors in specifications 
18)   The number of bugs or errors in source code 
19)   The number of bugs or errors in user manuals 
20)   The number of secondary “bad fix” bugs or errors 
 
The available metrics for quantifying the sizes of software deliverables include the following: 
 
�� Natural metrics such as counts of pages and words in paper documents 
�� Source code metrics using physical lines 
�� Source code metrics using logical statements 
�� Function point metrics as defined by the IFPUG organization 
�� Function point variants as defined by a dozen other organizations 
�� Object-oriented metrics of various kinds 
�� Counts of bugs or defects 
 
A major omission from this list of metrics is the absence of any known size metric for data 
bases, data warehouses, or repositories. 
 
 
Strengths and Weaknesses of Source Code Metrics 
 
When the software industry began in the early 1950’s the first metric developed for 
quantifying the output of a software project was the metric termed “lines of code” or LOC.  
Almost at once some ambiguity occurred, because a “line of code” could be defined either: 
 
�� A physical line of code. 
�� A logical statement. 
 
Physical lines of code are simply sets of coded instructions terminated by pressing the enter 
key of a computer keyboard.  For some languages physical lines of code and logical 
statements are almost identical, but for other languages there can be major differences in 
apparent size based on whether physical lines or logical statements are used. 
 
Table 2 illustrates some of the code counting ambiguity for a simple COBOL application, 
using both logical statements and physical lines: 
 
 
 
 
 
 
Table 2:  Sample COBOL Application Showing Sizes of Code Divisions Using Logical 
Statements and Physical Lines of Code 
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Division          Logical          Physical 
           Statements         Lines 
 
Identification Division 25      25 
Environment Division 75      75 
Data Division    300    350 
Procedure Division 700    950 
Dead code    100    300 
Comments    200    700 
Blank lines    100    100 

Total Lines of Code 1,500 2,500 
 
As can be seen from this simple example, the concept of what actually comprises a “line of 
code” is surprisingly ambiguous.  The size range can run from a low of 700 lines of code if 
you select only logical statements in the procedure division to a high of 2,500 lines of code if 
you select a count of total physical lines.  Almost any intervening size is possible, and most 
variations are in use for productivity studies, articles, etc. 
 
Bear in mind that table 1 is a simple example using only one programming language for a new 
application.  The SPR catalog of programming languages [5] contains almost 500 
programming languages and more are being added on a daily basis.  Furthermore, a significant 
number of software applications utilize two or more programming languages at the same time.  
For example combinations such as COBOL and SQL or Ada and Jovial are very common.  
SPR has observed one system that actually contained twelve different programming 
languages. 
 
There are other complicating factors too, such as the use of macro instructions, inclusion of 
copybooks, inheritance, class libraries, and other forms of reusable code.  There is also 
ambiguity when dealing with enhancements and maintenance, such as whether or not to count 
the base code when enhancing existing applications. 
 
Obviously with so many variations in how lines of code might be counted, it would be useful 
to have a standard for defining what should be included and excluded.  Here we encounter 
another problem.  There is no true international standard for defining code counting rules.  
Instead, there are a number of published local standards which unfortunately are in conflict 
with one another. 
 
Citing just two of the more widely used local standards, the Software Productivity Research 
(SPR) code counting rules published in 1991 are based on logical statements [6] while the 
Software Engineering Institute (SEI) code counting standards published in 1992 are based on 
physical lines of code [10].  Both of these conflicting standards are widely used and widely 
cited, but they differ in many key assumptions. 
 
As an experiment, the author carried out an informal survey of code counting practices in 
software journals such as American Programmer, Byte, Application Development Trends, 
Communications of the ACM, IBM Systems Journal, IEEE Computer, IEEE Software, 
Software Development, and Software Magazine [7]. 
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About a third of the published articles using LOC data used physical lines, another third used 
logical statements, while the remaining third did not define which method was used and hence 
were ambiguous in results by several hundred percent.  While there may be justifications for 
selecting physical lines or logical statements for a particular research study, there is no 
justification at all for publishing data without stating which method was utilized! 
 
The main strengths of physical lines of code (LOC) are: 
 
1. The physical LOC metric is easy to count. 
2. The physical LOC metric has been extensively automated for counting. 
3. The physical LOC metric is used in a number of software estimating tools. 
 
The main weaknesses of physical lines of code are: 
 
1. The physical LOC metric may include substantial “dead code.” 
2. The physical LOC metric may include blanks and comments. 
3. The physical LOC metric is ambiguous for mixed-language projects. 
4. The physical LOC metric is ambiguous for software reuse. 
5. The physical LOC metric is a poor choice for full life-cycle studies. 
6. The physical LOC metric does not work for some “visual” languages. 
7. The physical LOC metric is erratic for direct conversion to function points. 
8. The physical LOC metric is erratic for direct conversion to logical statements. 
 
The main strengths of the logical statements are: 
 
1. Logical statements exclude dead code, blanks, and comments. 
2. Logical statements can be mathematically converted into function point metrics. 
3. Logical statements are used in a number of software estimating tools. 
 
The main weaknesses of logical statements are: 
 
1. Logical statements can be difficult to count. 
2. Logical statements are not extensively automated. 
3. Logical statements are a poor choice for full life-cycle studies. 
4. Logical statements are ambiguous for some ”visual” languages. 
5. Logical statements may be ambiguous for software reuse. 
6. Logical statements may be erratic for direct conversion to the physical LOC metric. 
 
 
Strengths and Weaknesses of Function Point Metrics 
 
The IBM Corporation, which in the 1970’s was the world’s largest developer of software 
applications, commissioned a team to develop a software metric which could be used for 
software economic studies regardless of what programming language, or combination of 
languages, were utilized for the code itself. 
The IBM metrics team was headed by Allan Albrecht, and the result of their research was 
termed the “function point” metric.  Function points were used internally by IBM in the mid 
1970’s, and then placed into the public domain at a presentation by Albrecht in October of 
1979 at a conference in Monterey, California [2]. 
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Function point metrics are developed from the requirements and specifications of a software 
application, and consist of the weighted and adjusted totals of five key elements: 
 
1. Inputs (screens, signals, etc.) 
2. Outputs (screens, reports, checks, etc.) 
3. Inquiries 
4. Logical files 
5. Interfaces 
 
The actual rules for counting and adjusting function points are fairly complex so training is 
needed to count function points accurately.  The counting rules have passed from IBM, and 
are now controlled in the United States by the non-profit International Function Point Users 
Group (IFPUG).  IFPUG publishes function point counting rules [11] and administers the 
certification exams which are a prerequisite for those who wish to become function point 
analysts. 
 
Many software researchers recognized the advantages of function points for software 
economic studies, but were not completely satisfied with the form and structure of the 
function point metric as originally defined by the IBM team, and more recently defined by the 
IFPUG counting practices committee. 
 
In 1983, Charles Symons gave a presentation in London on an alternative function point 
variant which he termed the Mark II Function Point [4], which is now widely used in the 
United Kingdom and to a lesser degree in Hong Kong and Canada. 
 
The Mark II function point alternative was only the first in a growing set of function point 
variants, which now include at least these 25 alternative functional metrics.  It is fairly 
obvious that 25 variations in how the function point metric might be counted is too many.  
The International Standards Organization (ISO) is attempting to develop a standard for 
function point sizing, but the complicated international politics of functional metrics are likely 
to interfere with the pure technical issues. 
 
The main reason cited for not working directly with IFPUG is that the counting practices 
committee is viewed as slow-moving and not always receptive to external inputs. 
 
Another reason for developing alternative function point metrics is based on a 
misunderstanding of function point principles.  Function points were developed as a unit of 
measure for expressing the size of software applications. 
 
Other factors in addition to size determine the effort required to build the application.  
Unfortunately, some of the alternative function point metrics were developed for dealing with 
software that is costly to construct, such as real-time and embedded software. 
 
The reason for developing alternative function points for these difficult applications is that 
when productivity is measured using standard IFPUG function points, the productivity is 
rather low.  Instead of exploring the reasons why real-time software productivity is often 
lower than information systems, some researchers prefer to develop alternative function points 
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which gave real-time software larger apparent sizes than standard IFPUG function points and 
hence artificially elevate the productivity of real-time development. 
 
The overall range of results across the many function point variants has not been studied in 
detail, but is probably in excess of plus or minus 50%. 
 
The main strengths of function point metrics are: 
 
1. Function points stay constant regardless of programming languages used. 
2. Function points are a good choice for full-life cycle analysis. 
3. Function points are a good choice for software reuse analysis. 
4. Function points are a good choice for object-oriented economic studies. 
5. Function points are supported by many software cost estimating tools. 
6. Function points can be mathematically converted into logical code statements for many 

languages. 
 
The main weaknesses of function point metrics are: 
 
1. Accurate counting requires certified function point specialists. 
2. Function point counting can be time-consuming and expensive. 
3. Function point counting automation is of unknown accuracy. 
4. Function point counts are erratic for projects below 15 function points in size. 
5. Function point variations have no conversion rules to IFPUG function points. 
6. Many function point variations have no “backfiring” conversion rules. 
 
 
Correlating Lines of Code and Function Points Metrics Via “Backfiring” 
 
In the 1970’s Allan Albrecht and his colleagues at IBM measured a number of projects using 
both logical source code statements and function point metrics.  These pioneering studies 
found some interesting but not perfect correlations between source code size and function 
points for many programming languages. 
 
Table 3 illustrates some typical ratios of logical source code statements and equivalent 
volumes of function points.  This is a small excerpt from the main SPR table of languages 
with almost 500 entries [5]: 
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Table 3:  Ratios of Logical Source Code Statements to Function Points for Selected 
Programming Languages Using Version 4 of the IFPUG Rules 
 
Language  Nominal    Source Statements 
   Level     Per Function Point 
 
 Low Mean High 
 
Basic assembly 1.00 200 320 450 
Macro assembly 1.50 130 213 300 
C  2.50 60 128 170 
FORTRAN 3.00 75 107 160 
COBOL 3.00 65 107 150 
PASCAL 3.50 50 91 125 
PL/I 4.00 65 80 95 
ADA 83 4.50 60 71 80 
C++ 6.00 30 53 125 
Ada 95 6.50 28 49 110 
Visual Basic 10.00 20 32 37 
SMALLTALK  15.00 15 21 40 
SQL 27.00 7 12 15 
 
Backfiring has become the most popular method for ascertaining function point sizes of aging 
legacy applications.  In fact, for many legacy applications backfiring is the only convenient 
method for developing function point totals because the specifications are often missing and 
the original developers have departed. 
 
Backfiring was quickly adopted by commercial software estimating vendors, and is now a 
common feature among most of the well-known software estimating products such as 
CHECKPOINT�, COCOMO II, GECOMO, KnowledgePlan�, and SLIM�. 
 
Backfiring was also adopted for benchmark studies by a number of well-known consulting 
companies such as Compass Group, Gartner Group’s Real Decision subsidiary, Meta Group, 
Quantitative Software Management (QSM), Rubin Systems, Inc.; and the author’s own 
company, Software Productivity Research, Inc. 
 
Because backfiring is so often used in commercial software estimating tools and also by 
management consultants and commercial benchmark companies, it is arguably the most 
widely used software metric in the world. 
 
The accuracy of backfiring is not claimed to be as high as normal function point counts.  The 
accuracy of backfiring from logical statements is about plus or minus 20%, while normal 
counting by certified function point counters has been measured to range by about plus or 
minus 10% in a study commissioned by IFPUG and performed by Dr. Chris Kemerer [9] 
when he was at MIT. 
 
It is a curious situation that neither the IFPUG organization nor any of the other major 
function point associations have evaluated backfiring, and the published literature on this 
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method comes primarily from estimating tool vendors and software management consultants 
rather than the function point user community itself. 
 
The main strengths of backfiring function points are: 
 
1. Backfiring is extremely quick and easy to perform. 
2. Backfiring automation is commercially available. 
3. Backfiring is supported by many software cost estimating tools. 
4. Backfiring is used in many software benchmark studies. 
 
The main weaknesses of backfiring function point metrics are: 
 
1. Backfiring is of lower accuracy than normal function point counting. 
2. Backfiring is ambiguous if the starting point is physical lines of code (LOC). 
3. Backfiring may be ambiguous for mixed-language applications. 
4. Backfiring results may vary based on individual programming styles. 
5. Backfiring is not endorsed by any of the major function point associations. 
 
 
Strengths and Weaknesses of Object-Oriented Metrics 
 
As the object-oriented (OO) paradigm began to spread throughout the software community, it 
was quickly apparent that OO projects needed to be estimated and measured just as had 
procedural projects.  Both lines of code metrics and function point metrics have been utilized 
with OO projects with varying degrees of success [8]. 
 
The fundamental differences in the way OO projects are constructed compared to procedural 
projects quickly led to new kinds of software metrics aimed exclusively at OO projects.  Some 
of the specialized OO metrics include those of Kemerer and Chidamber [3] in the United 
States originally termed “metrics for object oriented systems environments” or MOOSE; and 
Abrieu and colleagues in Portugal with their “metrics for object oriented design” or MOOD 
metrics [1]. 
 
Some of the specialized OO metrics constructs include weighted methods per class, depth of 
inheritance tree, number of children, coupling between object classes, and a number of others. 
 
In the past, both lines of code metrics and function point metrics have splintered into a 
number of competing and semi-incompatible metric variants.  There is some reason to believe 
that the OO metrics community will also splinter into competing variants, possibly following 
national boundaries. 
 
The main strengths of OO metrics are: 
 
1. The OO metrics are psychologically attractive within the OO community. 
2. The OO metrics appear to be able to distinguish simple from complex OO projects. 
 
 
 
The main weaknesses of OO metrics are: 
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1. The OO metrics do not support studies outside of the OO paradigm. 
2. The OO metrics do not deal with full life-cycle issues. 
3. The OO metrics have not yet been applied to testing. 
4. The OO metrics have not yet been applied to maintenance. 
5. The OO metrics have no conversion rules to lines of code metrics. 
6. The OO metrics have no conversion rules to function point metrics. 
7. The OO metrics lack automation. 
8. The OO metrics are difficult to enumerate. 
9. The OO metrics are not supported by software estimating tools. 
 
 
Summary and Conclusions 
 
Software metrics research is an important topic, but not yet a well-formed or mature topic.  
Each of the major software metrics candidates has splintered into a number of competing 
alternatives, often following national boundaries.  There is no true international standard for 
any of the more widely used software metrics.  Further, the adherents of each metric variant 
claim remarkable virtues for their choice, and often criticize rival metrics. 
 
From a distance, the software metrics domain is fragmented, incomplete, and gives the 
appearance of being more influenced by “metrics politics” than by technical considerations. 
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EDUCATION IN SOFTWARE MEASUREMENT 
 IN THE WWW 

 
Reiner R. Dumke, University of Magdeburg 

 
 
In the last month, we have extended the possibilities to use examples of process evaluation 
based on Capability Maturity Model, ISO 9000, and product evaluation based on the Function 
Point Method and the COCOMO. You can use it for education as online (Java-based) 
application located in our SMLAB (http://ivs.cs.uni-magdeburg.de/sw-eng/us/). 
 
 
 

 
 
 
 
 
The next pictures present the modified versions of the current evaluation methods and give an 
impression of the first pages of the online applications for process and product evaluations. 
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The Function Point Evaluation 
 

 
 
 
 

The CMM-based Evaluation 
 

 

The COCOMO-based Evaluation 
 

 
 
 

 
 

The ISO 9000 Evaluation 
 

 
 



 Position Papers 45

THE ROLE OF FUNCTION POINT METRICS 
IN THE 21ST CENTURY 

 
Capers Jones, SPR, Inc. 

 
 

Abstract 
The function point metric began in the mid 1970’s as a basic size metric for software projects.  By the 
1990’s Function points had expanded far beyond that modest beginning.  Function points are now 
being used for software quality studies, software contract management, business process 
reengineering (BPR), and software portfolio control.  The Internal Revenue Service is also exploring 
the usage of function point metrics for software taxation purposes. 
This article covers the recent expansion of function point metrics, and points out some areas that are 
currently outside the scope of function points.  If these areas are brought under the function point 
umbrella, the software community may start the 21st century with one of the most powerful suites of 
metrics of any technical domain. 
 
 
Introduction 
 
Function Point metrics originated in IBM in the mid 1970’s as a methodology for sizing, 
estimating, and measuring software projects.  The function point metric was first publicly 
discussed by the inventor, Allan Albrecht, at a joint IBM/SHARE/GUIDE conference in 
Monterey, California in October of 1979. 
 
IBM put into the function point metric into the public domain at that time.  Albrecht’s 
conference paper on function points had only a limited circulation in the conference 
proceedings but IBM began to teach function point metrics to interested clients. 
 
The first international publication of the function point metric occurred in 1981 in Capers 
Jones book, Programming Productivity -- Issues for the Eighties which was published by the 
IEEE Computer Society press.  This book included Albrecht’s full paper on function points, 
with the permission of IBM and the Monterey conference organization. 
 
When the power and utility of the function point metric became known, usage of the metric 
expanded very rapidly and quite spontaneously.  By 1984 usage of function points among 
IBM’s client base had grown enough to form the nucleus of the present International Function 
Point Users Group (IFPUG), which started in Toronto, Canada.  Also in 1984, Albrecht and 
IBM issued the first major revision to the function point counting rules. 
 
From the time of the founding of the IFPUG organization, usage of the function point metric 
expanded very rapidly throughout the world.  By the early 1990’s, the function point metric 
had become a major tool for software project managers.  Function points could be quantified 
directly from software requirements, they could be understood by both clients and software 
development personnel, and they were far less erratic and ambiguous than the former “lines of 
code” metric for sizing, estimating, and measurement purposes. 
 
New uses for the Function Point Metric 
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Not only did the function point metric expand in terms of numbers of users, but the 
applications of the function point metric turned out to be far broader than originally 
envisioned.  Following are brief discussions of the newer uses for the function point metric 
and the approximate year when the usage started. 
 
1980 -- Function Points and Programming Language Evaluation 
 
Allan Albrecht and his colleagues at IBM used both function points and the older lines of code 
(LOC) metrics concurrently.  This concurrent usage of both metrics led to the discovery of 
“backfiring” or direct conversion from LOC to function points as early as 1979.  By 1980, it 
was also realized that the function point metric could be used to evaluate the “level” of 
programming languages, as well as the resulting productivity rates. 
 
Prior to function point analysis, definitions of programming language levels were highly 
ambiguous.  It can now be stated with some justification that the phrase "high level" 
languages should be applied to languages that take less than 50 statements to encode one 
function point.  By contrast, "low level" languages take more than 100 statements to encode 
one function point. 
 
Information on the ratio of function points to source code is now available for more than 500 
programming languages and dialects (Table of Programming Languages and Levels -- Version 
8.2; Software Productivity Research, September 1996). 
 
1985 -- Function Points and Software Cost Estimating 
 
The first commercial software estimating tool that was designed and built around the function 
point metrics was the SPQR/20 tool released in March of 1985.  From that point on, usage of 
function point metrics rapidly expanded through the software estimating business.  In 1985, 
there were only four commercial software estimating tools on sale in the United States, and 
only one was based on function points. 
 
By 1995, more than 50 commercial software estimating tools are being marketed in the United 
States, and at least 30 of the major ones support function point metrics.  Some of the many 
commercial software cost estimating tools supporting function point metrics include, in 
alphabetical order:  Before Your Leap (BYL), Bridge Modeler, CHECKPOINT, COCOMO II, 
Estimacs, GECOMO, KnowledgePlan, Price-S, ProQMS, and SLIM. 
 
1986 -- Function Points and Software Quality 
 
The function point metric is now rapidly becoming the preferred metric for software quality 
analysis.  Current U.S. norms indicate a total of about 5.0 bugs or defects per function point, 
coupled with a defect removal efficiency that averages about 85%.  This means that about 
0.75 bugs per function point are delivered with the first releases of new software packages. 
 
Best-in-class organizations can drop below two defects per function point in total potentials, 
and eliminate more than 95% of all defects prior to delivery to clients. 
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The former “lines of code” metric made many defect classes difficult to study.  Function 
points are now being used to explore defects levels found in: 
 
Requirements (about 15% of all defects) 
Specifications (about 35% of all defects) 
Source code (about 40% of all defects) 
User documents (about 5% of all defects) 
Bad fixes or secondary defects (about 5% of all defects) 
 
1988 -- Function Points and Software Benchmarks 
 
One of the major uses of the function point metric is to do benchmark studies, or comparisons 
of software quality and productivity between companies, between industries, and even 
between countries.  The function point metric has become a basic tool for benchmark 
comparisons, and is used by a large and growing number of benchmark consulting groups.  
For example Compass Group, Gartner Group, IBM, and Software Productivity Research 
(SPR) all utilize function point metrics as the basis of their quantitative benchmark studies.  
As of 1997, at least 15 international consulting companies are using function points for 
software benchmark studies. 
 
1989 -- Function Points and Software Portfolio Analysis 
 
It was soon noted that function point metrics could be used for analyzing complete portfolios 
as well as individual projects.  Function point based portfolio analysis has now been applied 
to a number of companies and even to several industries, such as banks, insurance companies, 
computer manufacturers, software companies, and the like.  Smaller companies may own less 
than 250,000 function points in their corporate portfolios, but large corporations in the 
Fortune 500 category often exceed 1,000,000 function points in their full portfolios. 
 
Note: This ability to utilize function point metrics for large collections of software written in 
multiple languages is leading to more powerful year 2000 estimating methods than the 
simplistic “lines of code” metric. 
 
1990 -- Function Points and Tool or Environment Analysis 
 
One of the most powerful uses of function point metrics is to perform multiple-regression 
studies to explore the impact of tools such as those of Sybase, DataEase, Lotus Notes, Texas 
Instruments, COGNOS, Microsoft, and the like.  When productivity studies include the tools 
utilized as well as the function point productivity data, it is possible to derive the impact of an 
ever-growing number of software development and maintenance tools.  For example, design 
tools, testing tools, complexity analysis tools, CASE tools, reverse engineering tools, cost 
estimating tools, project management tools, and a host of others are now being evaluated via 
function point benchmark studies. 
 
It is now known that it takes more than 50,000 function points to fully equip a software 
engineering team.  More recent studies have demonstrated that software quality assurance 
teams with more than 8,000 function points of tools have higher quality levels than QA 
groups that are sparsely equipped.  Software project managers with more than 10,000 function 
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points of management tools on tap can do a better job of estimation and planning than 
managers with sparse tool suites. 
 
1991 - Function Points and Make Versus Buy Analysis 
 
Basic software application packages such as spreadsheets can sometimes be purchased for as 
little as $0.25 per function point.  More specialized niche packages in the domains of finance 
or stock market analysis can cost in the range of $10.00 to more than $300.00 per function 
point.  Information of this kind serves as a new way of evaluating the economics of make 
versus buy analysis.  Software development costs can run from less than $200.00 per function 
point for small end-user applications to more than $2,000.00 for large military and defense 
applications.  By enumerating acquisition costs versus development costs per function point, a 
new way of exploring packages is emerging. 
 
1993 -- Function Points and Outsource Analysis 
 
The function point metric provides a new and useful way for evaluating outsource contracts.  
In fact several outsourcers are already including "cost per function point" as part of their 
contracts for diverse topics including but not limited to:  1) Cost per function point for basic 
development projects;  2) Cost per function point on a sliding scale for creeping requirements 
or late improvements;  3) Cost per function point for maintenance and enhancement work. 
 
The usage of cost per function points as a software contract methodology is starting to become 
more widespread.  Not only that, but the method is also being used internationally.  Several 
international outsourcers in India such as Tata are using the differential between their cost per 
function point and U.S. averages to leverage their business. 
 
Function point cost differentials are also starting to be used by Eastern European outsource 
groups in the Russia, the Ukraine, and the Czech Republic.  The main reason for the rapid 
adoption of function points by global outsource vendors is because of the significant 
marketing advantages which these off-shore outsourcers perceive.  The average cost for 
building a function point in Western Europe is close to $1500 but in Eastern Europe the 
average cost is less than $300. 
 
1994 -- Function Points and Business Process Reenginering (BPR) 
 
Once a company quantifies the volume of its software portfolio using the function point 
metric, it is obvious that segments of that portfolio service the operating components of the 
business.  For example, in a typical manufacturing company, out of a portfolio of 1,000,000 
function points engineering might use 200,000 function points, manufacturing might use 
350,000;  marketing and sales might use 50,000; finance and administration might use 
100,000; and so forth. 
 
When BPR studies occur, the use of function point metrics provides a new and powerful tool 
for aligning the software capabilities of the company with the new or revised operating units. 
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1995 - Function Points and Taxation 
 
The internal revenue service in the United States, and several equivalent groups abroad, are 
exploring function points for determining the taxable value of software assets.  Function 
points are also being used for determining the assets value of software companies when they 
merge or are acquired.  Since function point metrics are far more appropriate for economic 
analysis than the former "lines of code" metric this topic can be expected to grow in 
importance. 
 
Between 1995 and 1997 function points and lines of code metrics were in direct conflict in at 
least half a dozen major U.S. tax cases, with the lines of code metric being on the losing side 
of the decision in every case. 
 
Having learned from experience that function points are often on the prevailing side in 
litigation, the IRS has begun to utilize certified function point counters as expert witnesses.  In 
the most recent tax litigation in 1996 and 1997 the IRS is now starting to use sophisticated 
cost models supporting function points, such as CHECKPOINT� and KnowledgePlan� 
rather than their former crude lines of code model. 
 
In one major tax case in 1996, function points and the CHECKPOINT� estimating tool were 
utilized by both the IRS and by the defendant, which may be the first tax case in which 
function points were utilized by both sides of the dispute without the older lines of code 
metric being part of the case at all. 
 
1995 - Function Points and Outsource Litigation 
 
A somewhat ominous sign that indicates function point metrics are now entering the main 
stream of business topics is the increasing number of lawsuits involving outsource contracts 
where function point metrics are part of the pleadings. 
 
The author and his colleagues at SPR have served as expert witnesses in several lawsuits 
where function points were part of the cases involving breach of contract disputes between 
contractors and clients.  In one major case, the outsource contract itself had included claims of 
increasing productivity over five years measured using function points.  The suit alleged that 
the productivity gains had not been achieved, although the most troublesome issue was the 
original client productivity prior to starting the contract. 
 
Other recent  cases involve damage claims due to alleged poor quality by a contractor, and 
claims by a vendor to recover the costs of lost effort due to excessive requirements changes by 
a client.  Function point metrics have even been part of a suit for wrongful termination of an 
employee.   
 
Quite a few function point consultants are now serving as expert witnesses in litigation where 
function points are a significant factor.  Since the software industry is notoriously prone to 
litigation, it can be assumed that this trend will probably escalate as we near the end of the 
century. 
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Indeed, now that function point metrics are being applied to various kinds of year 2000 
repairs, it can be expected that they will play a major role in forthcoming year 2000 litigation. 
1996 - Function Points and the Year 2000 Problem 
 
There are more than 500 programming languages affected by the on-rushing year 2000 
problem.  This means that simplistic year 2000 cost measures such as multiplying the size of a 
portfolio by a fixed rate of $1.00 is not an adequate method. 
 
One of the problems with outsource contracts based on the lines of code metric is the fact that 
many aging legacy applications contain significant quantities of “dead code” which may 
comprise 30% by volume of code in some applications.  Obviously the more astute CIO’s 
object to paying outsource vendors fees of between $1.00 and $2.00 per line of code for dead 
code, blank lines, comments, and other artifacts that have no year 2000 impact whatsoever. 
 
Among SPR’s clients, many of the more sophisticated companies are choosing to keep year 
2000 repairs in house, primarily because some of the year 2000 vendors don’t really know 
how to construct a year 2000 contract that is not one-sided and damaging to the client. 
 
The first major book on year 2000 cost estimating using function points is Capers Jones’ 
Economic Impact of the Year 2000 Software Problem which is now in production with 
Addison Wesley and will be published in the Autumn of 1997. 
 
 
Potential Expansion of Function Point Metrics 
 
In spite of the considerable success of function point metrics in improving software quality 
and economic research, there are a number of important topics that still cannot be measured 
well or even measured at all in some cases.  Here are some areas where there is a need for 
either an expansion of the current function point metric, or possibly the development of 
related metrics within a broad family of functional metrics: 
 
Improved Guidelines for Embedded and Real-time Software 
 
Allan Albrecht is an electrical engineer by training, and always envisioned the function point 
metric as being appropriate for any kind of software.  However, since the first use of the 
function point metric was for information systems, there has been a shortage of counting 
guidelines for the real-time and embedded software domain. 
 
What is needed is an expanded set of counting rules, which include topics such as how to deal 
with sensor-based inputs, with situations where “inputs” may be changes in voltage potentials, 
and with “outputs” that may be electronic signals. 
 
The Need for Data Point Metrics 
 
In addition to software, companies own huge and growing volumes of data and information.  
As topics such as repositories, data warehouses, data quality, data mining, and on-line 
analytical processing (OLAP) become more common, it is obvious that there are no good 
metrics for sizing the volumes of information that companies own.  Neither are there good 
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metrics for exploring data quality, the costs of creating data, migrating data, or eventually 
retiring aging legacy data. 
A metric similar to function points in structure but aimed at data and information rather than 
software would be a valuable addition to the software domain.  Aspects of the British Mark II 
function point metric which include entities and relationships are moving in the direction of 
data metrics. 
 
Surprisingly, data base and data warehouse vendors have performed no research on data 
metrics, and are about to be “blind-sided” by the on-rushing year 2000 problem.  Because the 
costs of data base repairs are much higher than the costs of software repairs for year 2000 
purposes, many companies are lagging in performing this critical task. 
 
There is a strong possibility that the year 2000 problem will put at least a temporary end to 
data warehousing and OLAP and will have very negative impacts on the entire chain of 
decision support tools and methods. 
 
In a year 2000 context, the absence of an effective “data point” metric means that a major cost 
element cannot easily be estimated or measured using either function point metrics or the 
older lines of code metric. 
 
The Need for Service Point Metrics 
 
The utility of function points for software studies has raised the question as to whether or not 
something similar can be done for service groups such as customer support, human resources, 
sales personnel, and even health and legal professionals. 
 
What would be useful would be a metric similar in structure to function points, only aimed at 
service functions within large corporations.  Right now, there is no easy way to explore the 
lifetime costs of systems that include extensive human service components as well as software 
components. 
 
Experiments with variations on the function point metric have been carried out for customer 
support groups, insurance claims handling, and medical office practices.  The results have 
been encouraging, but are not yet at a point for formal publication. 
 
The Need for Hardware Point Metrics 
 
The U.S. Navy and the other military services have a significant number of complex projects 
that involve hardware, software, and microcode.  Several years ago the Navy posed an 
interesting question:  “Is it possible to develop a metric like function points for hardware 
projects, so that we can do integrated cost analysis across the hardware/software barrier?” 
 
The ability to perform integrated sizing, cost, and quality studies that could deal with 
software, hardware, data bases, and human service and support activities would be a notable 
advance indeed. 
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Summary and Conclusions 
 
Function point metrics are rapidly placing software quality, productivity, and economic 
studies on a firm economic base.  It is fair to assert that function point metrics are rapidly 
becoming the dominant metric of the software world. 
 
However, in spite of the great success of the function point metric, there are still important 
business topics that are difficult to measure.  It might be possible to expand the function point 
metric into other domains, or more probably, to construct a family of metrics that can support 
integrated cost and quality studies across the domains of software, data bases, hardware, and 
services. 
 
 
Suggested Readings on Function Point Analysis 
 
Dreger, Brian: Function Point Analysis. Prentice Hall, Englewood Cliffs, NJ; 1989; 225 
pages. 

 
This was the first college primer intended to teach function points to those without any 
prior knowledge of the metric.  This book is a very readable introduction to an important 
topic.  It even manages to add a few items of humor to lighten up what might otherwise 
be a very dry topic.  The only caveat about this book is that it was published in 1989, and 
the rules for counting function points underwent a minor revision in 1993 and a major 
revision in 1994.  To learn the rudiments of function point counting the book is still 
useful, but to learn the most current rules and practices, the book is unfortunately out of 
date.  As of 1996, this book will be available in a CD ROM edition under license to 
Miller Freeman publishers. 

 
Garmus, David & Herron, David: Measuring the Software Process:  A Practical Guide to 

Functional Measurement. Prentice Hall, Englewood Cliffs, NJ;  Due out in November of 
1995. 

 
Function point metrics are expanding rapidly throughout the world.  David Garmus is a 
member of the counting practices committee of the International Function Point Users 
Group (IFPUG).  David Herron is a former member of the same committee, and the two 
authors have formed a consulting company specializing in function point metrics.  This is 
a new primer aimed at introducing function point metrics to a wide audience.  The book 
covers the new Version 4.0 counting practices revision and hence is current through 1995 
in terms of IFPUG counting rules. 
 
The book attempts to discuss other topics such as benchmarking and estimating, but the 
authors are not recognized experts in these topics and the discussions are slight and 
sometimes at odds with best current practices.  Surprisingly, given that the title of the 
book is “Measuring the Software Process” the authors do not even discuss process or 
activity-level measurements.  Their view seems to stop at entire projects, which is not 
granular enough for serious process analysis. 



 Position Papers 53

 
 
 
 
Howard, Phil:  Guide to Software Productivity Aids.  Applied Computer Research, Scottsdale, 

AZ; ISSN 0740-8374; published quarterly. 
 

This is not a true book in the sense that most other citations are books.  This is a quarterly 
catalog of software tools marketed in the United States.  The catalog is larger than many 
book, and typically runs to perhaps 500 pages.  The text of the tool descriptions are 
provided by the tool vendors, and hence may exaggerate features and functions.  
However, this book is useful because it has contact information for hundreds of vendors 
and descriptions of thousands of tools. 
 
The ACR catalog lists all of the major cost estimating tools, function point counting 
tools, and project management tools which support function point metrics. 

 
Jones, Capers: Applied Software Measurement (2nd Edition). McGraw Hill, 1996; ISBN 0-07-

032826-9; 618 pages. 
 

This book has become a standard reference volume in many companies, and in some 
university software management curricula as well.  The new second edition of this book 
includes U.S. national averages for software productivity and quality derived from more 
than 6700 projects using the Function Point metric for normalizing the data.  It also 
included comparative data on productivity from 50 industries, including banking, 
insurance, telecommunications, computer manufacturers, government, etc. 
 
A major revision was published in August of 1996 that included substantial new data on 
about 2000 new software projects, and discussed the emerging results of various new 
technologies such as object-oriented approaches, client-server applications, ISO 9000 
certification, and the Software Engineering Institute (SEI) approach.  The new edition 
shows data for six subindustries (system software, military software, commercial 
software, information systems software, contract and outsourced software, and end-user 
software).  National averages are then derived from the overall results of these six 
domains. 

 
Jones, Capers: Assessment and Control of Software Risks. Prentice Hall, 1994;  ISBN 0-13-

741406-4; 711 pages. 
 

This book discusses some 65 technical and sociological risk factors associated with 
software development and maintenance operations.  The data has been collected during 
the course of SPR's software process assessment activities.  Among the technical risks are 
those of inadequate tools, inadequate methodologies, and inadequate support for quality 
assurance.   
 
Among the social risks are those of excessive schedule pressure, the low status of the 
software community within many corporations, and the high risks of litigation.  Other 
risks include the tendency of vendors to make false claims about quality and productivity, 
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and the tendency of software managers and staff to believe those claims without requiring 
proof.  Several large companies are using this book as a guide for improving their 
software processes, and upgrading their software curricula for both management and 
staff.  A somewhat controversial section of this book discusses the deficiencies and gaps 
in the SEI assessment program.  The book includes quantitative data on "best in class" 
quality and productivity results derived from the top 10% of SPR's clients.  A Japanese 
translation was published in August of 1995. 
 
This book was published in CD ROM form in 1996 and is available through both Prentice 
Hall and Miller Freeman. 

 
Jones, Capers: Patterns of Software System Failure and Success.  International Thomson, 

Boston, MA;  December 1995; 250 pages; ISBN 1-850-32804-8; 292 pages. 
 

This book was published in December of 1995.  The contents are based on large-scale 
studies of failed projects (i.e. projects that were either terminated prior to completion or 
had severe cost and schedule overruns or massive quality problems) and successful 
projects (i.e. projects that achieved new records for high quality, low costs, short 
schedules, and high customer satisfaction). 
 
On the whole, management problems appear to outweigh technical problems in both 
successes and failures.  Other factors discussed include the use of planning and estimating 
tools, quality control approaches, experience levels of managers, staff, and clients, and 
stability of requirements. 
 
Also discussed are intermittent and extrinsic factors such as bankruptcy, layoffs, 
downsizings, litigation and other business problems that can affect software projects.  It is 
possible to minimize the probability of failure and maximize the probability of success, 
but both technical and sociological changes must occur to achieve significant 
improvements. 
 

Jones, Capers: Software Quality – Analysis and Guidelines For Success.  International 
Thomson, Boston, MA; ISBN 1-85032-867-6; 1997; 492 pages. 

 
This new book covers 70 topics that influence software quality:  Inspections, ISO 9000-
9004 standards, the SEI CMM, all forms of testing, total quality management (TQM), and 
many more.  This book differs from many other books on software quality in that is 
shows the actual measured impact of the various methods in terms of defect potentials, 
defect removal efficiency levels, costs, and other relevant quantified information.  
Function points are used as the normalizing metric, and there are cautions that both “lines 
of code” and “cost per defect” exert severe bias when performing large-scale quality 
studies.  The contents are based on large-scale studies of many software projects in the 
U.S., Europe, and the Pacific Rim.  A useful feature of the book is the summarization of 
quality “best practices” based on empirical results rather than hypothetical considerations. 
 
Software project management problems appear to outweigh technical problems in both 
projects with poor quality levels.  Other factors discussed include the use of quality 
estimating tools, quality measurements, quality control approaches, experience levels of 
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managers, staff, and clients, and stability of requirements.  Also discussed are 
sociological factors such as layoffs, downsizings, litigation and other business problems 
that can affect the quality of software projects.  It is possible to optimize software quality, 
costs, and schedules concurrently but both technical and sociological changes must occur 
to achieve significant improvements. 

Jones, Capers: The Year 2000 Software Problem.  Addison Wesley Longman, Reading, MA; 
ISBN 0-201-30964-5; Due in the Autumn of 1997; 300 pages. 

 
This new book utilizes function point metrics as the primary tool for exploring the costs 
of the most expensive software problem in history.  The book covers year 2000 costs in 
30 countries and more than a dozen industries.  The book also discusses “masking” as 
well as date field expansion, and hence covers the costs of windowing, bridging, 
encapsulation, etc.  Because it is obvious that many companies will not achieve year 2000 
compliance, the book explores the possible damages and recovery costs for the 
anticipated 1,700,000 U.S. software applications that will not be ready for the next 
century and hence will fail on January 1, 2000.  The book explores the year 2000 impacts 
of information systems, systems software, military software, commercial software, and 
end-user applications.  Data base repairs, litigation, hardware upgrades, and all other 
known cost elements are included.  Paul Strassmann, former CIO of the Department of 
Defense, has written a foreword. 

 
Kan, Stephen H.: Metrics and Models in Software Quality Engineering.  Addison Wesley, 

Reading, MA; ISBN 0-201-63339-6; 1995; 344 pages. 
 
This is a thoughtful overview of a number of metrics in the software quality domain.  The 
book also covers topics of great importance to the software management community, 
such as the Baldrige Award, the ISO 9000-9004 standards, the Software Engineering 
Institute (SEI) capability maturity model (CMM), and total quality management (TQM).  
The chapters and sections are fairly complete, and give context and background 
information.  A full reading of this book will transfer a considerable amount of useful 
information to the readers, and it covers many topics well enough to give fresh insight. 
 
 
 

Some of the Quality Initiatives in Germany: 
 
 
�� Arbeitskreis Software-Qualität Franken e.V. 
 

see: http://www.asqf.de 
 
 
�� Gesellschaft für Softwarequalitätssicherung GmbH 

 
see: http://www.sqs.de 
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�� Fraunhofer Institut Experimentelles Software Engineering (IESE) 
 

see: http://www.iese.fhg.de/ 
 
 
�� Deutsche Informatik Akademie Seminare: 
 

	� Strategien zur Verbesserung des Softwareentwicklungsprozesses (Dr. C. Ebert) 
�  
	� Methodisches Testen und Analysieren von Software (Dr. P. Liggesmeyer) 
�  
	� Software-Projektsteuerung für die Praxis (Metriken für Projektmanagement, 

Qualitäts- und Prozeßverbesserung) (Dr. C. Ebert) 
 

see: http://www.gi-ev.de/dia/ 
 
 
�� Deutschsprachige Anwendergruppe für Softwaremetriken und Aufwandsschätzung 

(DASMA) 
 

see: http://home.t-online.de/erwin.loch/dasma_index.htm 
 
 
�� European TeleCASE Center (ETC) in Braunschweig 
 

see: http://www.dlr.de/bs_d.html 
 
 
�� Das Software Meßlabor (SMLAB) der Universität Magdeburg 
 

see: http://ivs.cs.uni-magdeburg.de/sw-eng/us/ 
 
 
�� etc. 
 

 
 
Emam, K.E.; Drouin, J.N.; Melo, W.: SPICE - The Theory and Practice of 
Software Process Improvement and Capability Determination 
IEEE Computer Society Press, 1998 (486 p.) 
 
This book is intended for current and potential users of the emerging International Standard on 
Software Process Assessment (SPA). Users may include organizations wanting to conduct 
process assessment internally or as a service to their customers, providers of models, methods, 
and tools compliant with the requirements of the emerging stand, educators wanting to teach 
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the principles of SPA as part of a university course, and researchers developing technology to 
support process assessments and then empirically evaluating them. 

 This book provides the first comprehensive coverage of the theory and practice of SPA as 
embodied in the current version of the ISO/IEC documents. The official title of these 
documents is ISO/IEC ODTR 15504, although they are also commonly known as the SPICE 
Version 2.00 documents. The main focus of the book is twofold: to help the reader understand 
the evolution of the SPA ideas that were developed between 1993 and 1997 and to provide 
guidance for interpreting and using the documents for assessment and subsequent 
improvement and/or capability determination. 

The name SPICE—Software Process Improvement and Capability dEtermination—was 
given to this project as the development vehicle for the initial version of the SPA documents 
and as the management of the trials. 
 
 
 
Whitmire, S.A.: Object-Oriented Design Measurement 
John Wiley & Sons Inc., 1997 (452 p.) 
 
“Once in a while a potentially classic book comes along—one that is built not only to last but 
also to have a lasting impact on its field. In this case, Scott Whitmire’s text is likely to offer 
significant influences on the very foundational ideas underpinning object technology. 

.  .  . 
Scott also dares to attempt to create a formal object model based on category theory. Whilst 

we have all known that this would be a fruitful path to follow, no one until Scott has dared to 
accept this challenge in what I know is a difficult area for many of us not trained as pure 
mathematicians and logicians. 

Not until he has undertaken this tour de force does Scott turn to his original aim: Of 
formally describing many of the object-oriented measures that have been proposed in the 
literature and are in use in industry today. He summarizes and transcends the empirical, 
theoretical, and mathematical work done before, integrating it into a whole that is both 
satisfying and valuable. At the same time, this is not a dry, theoretical treatise with no obvious 
utility. Scott is an industry user driven to investigate these areas from his industry needs.“ 

cited from the foreword by Brian Henderson-Sellers 
 

 
 
 
Lehner, F.; Dumke, R.; Abran, A.: Software Metrics - Research and 
Pracitce in Software Measurement 
Gabler-Verlag, Wiesbaden, 1997 (232 p.) ISBN: 3-8244-6518-3 
 
This book contains all presentations of the 1996 workshop of the GI-interest group on 
software metrics and of the Canadian Group (CIM) in September in Regensburg. It is a 
collection of theoretical studies in the field of software measurement as well as experience 
reports on the application of software metrics in Canadian, Austrian, Belgian and German 
companies and universities. Some of these papers and reports describe new software 
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measurement applications and paradigms for knowledge-based techniques, maintenance 
service evaluation, factor analysis discussions and neural-fuzzy applications. Others address 
the object-oriented paradigm and discuss the application of the Function Point approach to an 
object-oriented design method, the evaluation of the Java development environment, the 
analysis of quality and productivity improvements of object-oriented systems, as well as the 
definition of the metrics of class libraries. Other papers offer a different perspective, 
presenting a software measurement education system designed to help improve the lack of 
training in this field, for example, or they include experience reports about the implementation 
of measurement programs in industrial environment. 
 
 
Poulin, J.S.: Measuring Software Reuse 

Addison-Wesley, 1997 (195 p.) 
 
With the techniques in this book, you will have the tools you need to design a far more 
effective reuse program, prove its bottom-line profitability, and promote software reuse within 
your organization. Measuring Software Reuse brings together all of the latest concepts, tools, 
and methods for software reuse metrics, presenting concrete quantitative techniques for 
accurately measuring the level of reuse in a software project and objectively evaluating its 
financial benefits.  
 
 
Dumke, R.; Foltin, E.; Koeppe, R.; Winkler, A.: Softwarequalität durch 
Meßtools - Assessment, Messung und instrumentierte ISO 9000 
Vieweg Publ., 1996 (223 p.) ISBN 3-528-005527-8 
 
This book gives an overview about the software metrics tools for all phases of the software 
development process. The metrics tools are defined as CAME tools (Computer Assisted 
Software Measurement and Evaluation). The introduction describes the essential aspects of 
the software measurement. The description oft the CAME tools includes the cost estimation 
tools, Capability Maturity Model evaluation tools, metrics tool for software specification, 
design and code, and tools forthe software testing and maintenance (including network 
performance). Some tables helps to decision of choosing the useful tool integration for the 
software quality assurance process. 
 
 
Zuse,  H.: A Framework of Software Measurement 
de Gruyter Publ., Berlin New York,  1997 (755 p.) ISBN 3-11-015587-7 
 
 
This book describes a framework for software measurement from a theoretical, practical and 
educational view. The main idea is the application of the measurement theory on the area of 
software measurement.  

The book is written in nine chapters and includes exercises for a teaching in software 
measurement. The chapters describe the software measurement aspect, the history of software 
measurement, the theoretical foundations from theoretical and practical view, especially the 
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object-oriented software measures, the discussion about the properties and validation, and 
helpful remarks for a successful application of software measures. 

The book includes a CD ROM  that include a demo tool for software measurement 
education based on more than thousand references and metrics. 
 
EASE'98:  

 
Empirical Assessment & Evaluation in Software Engineering,  
30th March - 1st April, Staffordshire, U.K.  
see: http://keele.ac.uk/depts/cs/Announcements/conferences/ease98.html  
 

AQuIS'98: 
 
Fourth International Conference on Achieving Quality in Software: Software 
Quality in the Communication Society, 
30th March - 2nd April, Venice, Italy,  
see: http://www.iei.pi.cnr.it/AQUIS98  
 

SQM'98:  
 
International Conference on Software Quality Management, 
April 6-8, 1998, Amsterdam, Netherlands  
contact: kstonestct@cix.compulink.co.uk 
 

IFPUG'98, Spring:  
 
International Function Point User Group Spring Conference,  
April 5-9, 1998, Washington D.C., USA  
see: http://www.ifpug/org/  
 

QW'98:  
 
Quality Week 1998,  
May 26-29, San Fancisco, USA,  
see: http://www.soft.com/QualWeek/QW98  
 

FESMA'98:  
 
First European Conference on Software Measurement, 
May 6-8, 1998, Antwerp, Belgium  
see: http://www.kviv.be/ti/fesma.htm  
 

Linz'98:  
 
Evaluation and Evaluation Research in Informations Systems, 
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June 5, 1998, Linz, Austria,  
contact: haentschel@winie.uni-linz.ac.at  
 

IWSF'98:  
 
International Workshop on Software Functional Size Measurement,  
August 3-5, 1998, Mont-Tremblant, Canada  
see: http://saturne.info.uqam.ca/Labo_Recherche/lrgl.html  
 

IWSM'98:  
 
8th International Workshop on Software Measurement,  
September 17-18, Magdeburg, Germany,  
see: http://ivs.cs.uni-magdeburg.de/sw-eng/us  
 

IFPUG'98, Fall:  
 
International Function Point User Group Fall Conference,  
September 21-25, 1998, Orlando, USA  
see: http://www.ifpug/org/  
 

IASTED'98:  
 
International Conference on Software Engineering,  
October 28-31, Las Vegas, USA, see: http://www.iasted.com  
 

ISSRE'98: 
 
9th International Symposium on Software Reliability Engineering,  
November 4-7, 1998, Paderborn, Germany, 
contact: belli@adt.uni-paderborn.de  
 
 

EuroSTAR'98: 
 
6th European International Conference on Software Testing, 
30th November - 4nd December, 1998, Munich, Germany  
see: email: EuroSTAR@aimware.com 
 

SEPG’99: 
 
11th Software Engineering Process Group Conference, 
March 8-11, 1999, Atlanta, USA  
see: http://www.sei.cmu.edu/products/sepg99/  
 



 Position Papers 61

 
metrics themes are also discussed in the yearly OOIS, ECOOP and ESEC conferences 
 
Other Information Sources and Related Topics 
 
 

�� http://rbse.jsc.nasa.gov/virt-lib/soft-eng.html 
  Software Engineering Virtual Library in Houston 
 
�� http://www.mccabe.com/ 
  McCabe & Associates. Commercial site offering products and services for 

software developers (i. e. Y2K, Testing or Quality Assurance) 
 
�� http://www.sei.cmu.edu/ 
  Software Engineering Institute of the U. S. Department of Defence at 

Carnegie Mellon University. Main objective of the Institute is to identify and 
promote successful software development practices.  

  Exhaustive list of publications available for download. 
 
�� http://dxsting.cern.ch/sting/sting.html 
  Software Technology INterest Group at CERN: their WEB-service is 

currently limited (due to "various reconfigurations") to a list of links to other 
information sources. 

 
�� http://www.spr.com/index.htm 
  Software Productivity Research, Capers Jones. A commercial site offering 

products and services mainly for software estimation and planning. 
 
�� http://fdd.gsfc.nasa.gov/seltext.html 
  The Software Engineering Laboratory at NASA/Goddard Space Flight Center. 

Some documents on software product and process improvements and findings 
from studies are available for download. 

 
�� http://www.qucis.queensu.ca/Software-Engineering/ 
  This site hosts the World-Wide Web archives for the USENET usegroup 

comp.software-eng. Some links to other information sources are also 
provided. 

 
�� http://www.esi.es/ 
  The European Software Institute,Spain 
 
�� http://saturne.info.uqam.ca/Labo_Recherche/lrgl.html 
  Software Engineering Management Research Laboratory at the University of 

Quebec, Montreal. Site offers research reports for download. One key focus 
area is the analysis and extension of the Function Point method. 

 
�� http://www.SoftwareMetrics.com/ 
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  Homepage of Longstreet Consulting. Offers products and services and some 
general information on Function Point Analysis. 

 
�� http://www.utexas.edu/coe/sqi/ 
  Software Quality Institute at the University of Texas at Austin. Offers 

comprehensive general information sources on software quality issues. 
 
�� http://wwwtrese.cs.utwente.nl/~vdberg/thesis.htm 
  Klaas van den Berg: Software Measurement and Functional Programming 

(PhD thesis) 
 
�� http://divcom.otago.ac.nz:800/com/infosci/smrl/home.htm 
  The Software Metrics Research Laboratory at the University of Otago (New 

Zealand). 
 
�� http://ivs.cs.uni-magdeburg.de/sw-eng/us/ 
  Homepage of the Software Measurement Laboratory at the University of 

Magdeburg. 
 
�� http://www.cs.tu-berlin.de/~zuse/ 
  Homepage of Dr. Horst Zuse 
 
�� http://dec.bournemouth.ac.uk/ESERG/bibliography.html 
  Annotaded Bibliography on Object-Oriented Metrics 
 
�� http://www.iso.ch/9000e/forum.html 
  The ISO 9000 Forum aims to facilitate communication between newcomers 

to Quality Management and those who, having already made the journey have 
experience to draw on and advice to share. 

 
�� http://www.qa-inc.com/ 
  Quality America, Inc's Home Page offers tools and services for quality 

improvement. Some articles for download are available. 
 
�� http://www.quality.org/qc/ 
  Exhaustive set of online quality resources, not limited to software quality 

issues 
 
�� http://freedom.larc.nasa.gov/spqr/spqr.html 
  Software Productivity, Quality, and Reliability N-Team 

 
 
News Groups 
 

�� news:comp.software-eng 
�  
�� news:comp.software.testing 
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�  
�� news:comp.software.measurement 
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